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1. Introduction

We shall provide oscillation results for the hyperbolic equation

∂

∂t

(

r(t)
∂

∂t
u(x, t)

)

+ p(t)
∂

∂t
u(x, t) − a(t)∆u(x, t)

+c(x, t, u) = f(x, t), (x, t) ∈ Ω ≡ G× (0,∞), (E)

with

c(x, t, u) =
2
∑

i=0

qi(x, t)ϕi(u(x, t))

= q0(x, t)u(x, t) + q1(x, t)|u(x, t)|
β−1u(x, t)

+q2(x, t)|u(x, t)|
γ−1u(x, t),

where β > 1, 0 < γ < 1, ∆ is the Laplacian in R
n and G is a bounded

domain of R
n with piecewise smooth boundary ∂G.

We consider the following boundary conditions

u = ψ on ∂G× (0,∞), (B1)

∂u

∂ν
+ µu = ψ̃ on ∂G× (0,∞), (B2)

where ν denotes the unit exterior normal vector to ∂G and ψ, ψ̃ ∈ C(∂G ×
(0,∞); R), µ ∈ C(∂G× (0,∞); [0,∞)).

We assume throughout this paper that:

1Corresponding author. E-mail address: shoukaku@t.kanazawa-u.ac.jp
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(H1) r(t) ∈ C1([0,∞); (0,∞)), p(t) ∈ C([0,∞); R),
a(t) ∈ C([0,∞); [0,∞)), qi(x, t) ∈ C(Ω; [0,∞)) (i = 0, 1, 2),
f(x, t) ∈ C(Ω; R).

Definition 1. A solution u(x, t) ∈ C2(Ω) ∩ C1(Ω) of Eq. (E) is said to be
oscillatory in Ω if u has a zero in G× (t,∞) for any t > 0.
Definition 2. We say that functions (H1, H2) belong to a function class H,
denoted by (H1, H2) ∈ H, if H1, H2 ∈ C(D; [0,∞)) satisfy

Hi(t, t) = 0, Hi(t, s) > 0 (i = 1, 2) for t > s,

where D = {(t, s) : 0 < s ≤ t < ∞}. Moreover, the partial derivatives
∂H1/∂t and ∂H2/∂s exist on D and satisfy

∂H1

∂t
(s, t) = h1(s, t)H1(s, t) and

∂H2

∂s
(t, s) = −h2(t, s)H2(t, s),

where h1, h2 ∈ C(D; R).

There is an increasing interest in oscillation problems for hyperbolic equa-
tions with forcing terms. There are many papers dealing with nonlinear
hyperbolic equations (see, e.g., [2, 6, 7, 9–16]) under the following restrict
conditions

(C) ϕ′

i(u) ≥ K0 or ϕi(u)/u ≥ K0

for some constant K0 > 0. In recent years there are a number of papers
[1,3,8,16,17] which obtained oscillation criteria for the second order forced
ordinary differential equation with mixed nonlinearities. In these papers,
they utilized the arithmetic-geometric mean inequality to establish the in-
terval oscillation criteria. However, those metods in [1, 3, 8, 16, 17] cannot
apply to the Eq. (E). Therefore, the aim of this paper is to obtain oscil-
lation theorems without restrictions (C) for Eq. (E) by using the different
inequality in [1, 3, 8, 16, 17].

This paper is organized as follows. In the next section we introduce the
main ideas by using Young’s inequality (see, [4]), which plays an important
role in establishing oscillation theorems for superlinear and sublinear hyper-
bolic equations. In Section 3 we use the well-known Riccati type transfor-
mation. The latest section contains the main results and an example which
illustrates our results.

2. Reduction to one-dimensional problems
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In this section we reduce the multi-dimensional oscillation problems for
(E) to one-dimensional oscillation problems. It is known that the first eigen-
value λ1 of the eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive, and the corresponding eigenfunction Φ(x) can be chosen so that
Φ(x) > 0 in G. The notations in this paper are as follows:

U(t) = KΦ

∫

G

u(x, t)Φ(x)dx, Ũ(t) =
1

|G|

∫

G

u(x, t)dx,

F (t) = KΦ

∫

G

f(x, t)Φ(x)dx, F̃ (t) =
1

|G|

∫

G

f(x, t)dx,

Ψ(t) = KΦ

∫

∂G

ψ
∂Φ

∂ν
(x)dS, Ψ̃(t) =

1

|G|

∫

∂G

ψ̃dS,

qi(t) = min
x∈G

qi(x, t) (i = 0, 1, 2),

where KΦ = (
∫

G
Φ(x)dx)−1 and |G| =

∫

G
dx.

The following lemma is of basic importance for our later considerations.
Lemma 1(Young’s Inequality). If p > 1 and q > 1 are conjugate numbers,

i.e. 1

p
+ 1

q
= 1, then for any u, v ∈ R

|u|p

p
+

|v|q

q
≥ |uv|

and equality holds iff u = |v|q−2v.

Theorem 1. If the functional differential inequalities

(r(t)y′(t))
′
+ p(t)y′(t) + q(t)y(t) ≤ ±FΨ(t) (1)

have no eventually positive solutions, then every solution u(x, t) of the prob-

lem (E), (B1) is oscillatory in Ω, where

q(t) = q0(t) +
β − γ

1 − γ

(

β − 1

1 − γ

)
1−β
β−γ

q1(t)
1−γ
β−γ q2(t)

β−1

β−γ ,

FΨ(t) = F (t) − a(t)Ψ(t).
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Proof. Suppose to the contrary that there is a nonoscillatory solution u
of the problem (E), (B1). Without loss of generality we may assume that
u(x, t) > 0 in G × [t0,∞) for some t0 > 0 because the case u(x, t) < 0 is
handled similarily. It follows from Lemma 1 that

q0(x, t)u(x, t) + q1(x, t)|u(x, t)|
β−1u(x, t) + q2(x, t)|u(x, t)|

γ−1u(x, t)

≥ q0(t)u(x, t) + q1(t)|u(x, t)|
β−1u(x, t) + q2(t)|u(x, t)|

γ−1u(x, t)

= q0(t)u(x, t) + u(x, t)
(

q1(t)|u(x, t)|
β−1 + q2(t)|u(x, t)|

γ−1
)

≥ q0(t)u(x, t) + u(x, t)

(

β − γ

1 − γ

(

β − 1

1 − γ

)
1−β
β−γ

q1(t)
1−γ
β−γ q2(t)

β−1

β−γ

)

= q(t)u(x, t), (x, t) ∈ G× (t0,∞),

and hence, Eq. (E) can be written in the form

∂

∂t

(

r(t)
∂

∂t
u(x, t)

)

+ p(t)
∂

∂t
u(x, t) − a(t)∆u(x, t)

+q(t)u(x, t) ≤ f(x, t), (x, t) ∈ G× (t0,∞). (2)

Multiplying (2) by KΦΦ(x) and integrating over G, we obtain

(r(t)U ′(t))
′
+ p(t)U ′(t) − a(t)KΦ

∫

G

∆u(x, t)Φ(x)dx

+q(t)U(t) ≤ F (t), t ≥ t0.

Using Green’s formula, we see that

KΦ

∫

G

∆u(x, t)Φ(x)dx

= −KΦ

∫

∂G

(

ψ
∂Φ

∂ν
(x)

)

dS − λ1KΦ

∫

G

u(x, t)Φ(x)dx ≤ −Ψ(t) (3)

for t ≥ t0. Combining (2) with (3) yields

(r(t)U ′(t))
′
+ p(t)U ′(t) + q(t)U(t) ≤ FΨ(t), t ≥ t0.

Therefore U(t) is an eventually positive solution of (1) with +FΨ(t). This
contradicts the hypothesis and completes the proof.

Theorem 2. If the functional differential inequalities

(r(t)y′(t))
′
+ p(t)y′(t) + q(t)y(t) ≤ ±F̃Ψ(t) (4)
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have no eventually positive solutions, then every solution u(x, t) of the prob-

lem (E), (B2) is oscillatory in Ω, where

F̃Ψ(t) = F̃ (t) + a(t)Ψ̃(t).

Proof. Suppose to the contrary that there is a nonoscillatory solution u of
problem (E), (B2). Without loss of generality we may assume that u(x, t) > 0
in G × [t0,∞) for some t0 > 0. Dividing (2) by |G| and integrating over G,
we have

(

r(t)Ũ ′(t)
)

′

+ p(t)Ũ ′(t) −
a(t)

|G|

∫

G

∆u(x, t)dx

+q(t)Ũ(t) ≤ F̃ (t), t ≥ t0. (5)

It follows from Green’s formula that

1

|G|

∫

G

∆u(x, t)dx

=
1

|G|

∫

∂G

(

−µu(x, t) + ψ̃
)

dS ≤ Ψ̃(t), t ≥ t0. (6)

Combining (5) with (6) yields

(

r(t)Ũ ′(t)
)

′

+ p(t)Ũ ′(t) + q(t)Ũ(t) ≤ F̃Ψ(t), t ≥ t0.

Hence Ũ(t) is an eventually positive solution of (4) with +F̃Ψ(t). This con-
tradicts the hypothesis and completes the proof.

3. Second order functional differential inequalities

We consider sufficient conditions for every solution y(t) of the functional
differential inequality

(r(t)y′(t))
′
+ p(t)y′(t) + q(t)y(t) ≤ f(t) (7)

to have no eventually positive solution, where f(t) ∈ C([0,∞); R).
Theorem 3. Assume that

(H2) for any T > 0 there exists an interval [tk, tk+1] ⊂ [T,∞) such that

f(t) ≤ 0, t ∈ [tk, tk+1].
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If the Riccati inequality

z′(t) +
1

2

1

P (t)
z2(t) ≤ −Q(t) (8)

has no solution on [tk, tk+1], then (7) has no eventually positive solution,

where φ(t) ∈ C1((0,∞); (0,∞)) and

P (t) = φ(t)r(t),

Q(t) = φ(t)q(t) −
1

2

(

φ(t)p(t)

r(t)
− φ′(t)

)2
r(t)

φ(t)
.

Proof. Suppose that y(t) is a positive solution of (7) on [t0,∞) for some
t0 > 0. From the hypothesis (H2) there exists an interval I = [tk, tk+1] ⊂
[t0,∞) such that f(t) ≤ 0 in I, and so

(r(t)y′(t))′ + p(t)y′(t) + q(t)y(t) ≤ 0, t ∈ I. (9)

If we set

w(t) =
r(t)y′(t)

y(t)
,

then we obtain

w′(t) =
(r(t)y′(t))′

y(t)
− r(t)y′(t)

y′(t)

y2(t)

≤ −
p(t)

r(t)
w(t) − q(t) −

1

r(t)
w2(t), t ∈ I. (10)

Multiplying (10) by φ(t), we obtain

φ(t)w′(t) +
φ(t)p(t)

r(t)
w(t) +

φ(t)

r(t)
w2(t) ≤ −φ(t)q(t), (11)

and hence

(φ(t)w(t))′ +

(

φ(t)p(t)

r(t)
− φ′(t)

)

w(t)

+
φ(t)

r(t)
w2(t) ≤ −φ(t)q(t), t ∈ I. (12)

By Young’s inequality (cf. Lemma 1), we have
∣

∣

∣

∣

(

φ(t)p(t)

r(t)
− φ′(t)

)

w(t)

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

(

φ(t)p(t)

r(t)
− φ′(t)

)(

φ(t)

r(t)

)

−
1

2

(

φ(t)

r(t)

)
1

2

w(t)

∣

∣

∣

∣

∣

≤
1

2

(

(

φ(t)p(t)

r(t)
− φ′(t)

)2(

φ(t)

r(t)

)

−1

+

(

φ(t)

r(t)

)

w2(t)

)

,

which means that
(

φ(t)p(t)

r(t)
− φ′(t)

)

w(t)

≥ −
1

2

(

φ(t)

r(t)

)

w2(t) −
1

2

(

φ(t)p(t)

r(t)
− φ′(t)

)2(

r(t)

φ(t)

)

, t ∈ I. (13)

Combining (12) with (13), we have

(φ(t)w(t))′ +
1

2

(

φ(t)

r(t)

)

w2(t)

≤ −φ(t)q(t) +
1

2

(

φ(t)p(t)

r(t)
− φ′(t)

)2(

r(t)

φ(t)

)

, t ∈ I. (14)

We define
z(t) = φ(t)w(t),

then the above inequality reduces to

z′(t) +
1

2

(

1

φ(t)r(t)

)

z2(t)

≤ −φ(t)q(t) +
1

2

(

φ(t)p(t)

r(t)
− φ′(t)

)2(

r(t)

φ(t)

)

, t ∈ I.

Therefore z(t) is a solution of (8) on I. This contradicts the hypothesis and
completes the proof.

Theorem 4. Assume that (H2) holds, and let φ(t) ∈ C1((T0,∞); (0,∞)) for

some T0 > 0. If for each T ≥ T0 there exist (H1, H2) ∈ H and a = tk, b =
tk+1, c ∈ R such that T ≤ a < c < b and

1

H1(c, a)

∫ c

a

H1(s, a)

{

q(s) −
1

4
r(s)λ2

1(s, a)

}

φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s)

{

q(s) −
1

4
r(s)λ2

2(b, s)

}

φ(s)ds > 0, (15)
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then (7) has no eventually positive solution, where

λ1(s, t) =
φ′(s)

φ(s)
−
p(s)

r(s)
+ h1(s, t),

λ2(t, s) =
φ′(s)

φ(s)
−
p(s)

r(s)
− h2(t, s).

Proof. Suppose that y(t) is a positive solution of (7) on [t0,∞) for some
t0 ≥ T0 > 0. Then there exists an interval [a, b] such that t0 ≤ a < b, and
hence y(t) > 0 in (a, b). Proceeding as in the proof of Theorem 3, there
exists a positive solution w(s) of (11) on [a.b]. Multiplying (11) by H2(t, s)
and integrating over [c, t] for t ∈ [c, b), we have

∫ t

c

H2(t, s)q(s)φ(s)ds

≤ −

∫ t

c

H2(t, s)w
′(s)φ(s)ds−

∫ t

c

H2(t, s)
p(s)

r(s)
w(s)φ(s)ds

−

∫ t

c

H2(t, s)
1

r(s)
w2(s)φ(s)ds

≤ H2(t, c)w(c)φ(c) +
1

4

∫ t

c

H2(t, s)λ
2

2(t, s)r(s)φ(s)ds

−

∫ t

c

H2(t, s)

{
√

1

r(s)
w(s) −

1

2
λ2(t, s)

√

r(s)

}2

φ(s)ds,

and so

1

H2(t, c)

∫ t

c

H2(t, s)

{

q(s) −
1

4
r(s)λ2

2(t, s)

}

φ(s)ds ≤ w(c)φ(c).

Letting t→ b− 0 in the above, we obtain

1

H2(b, c)

∫ b

c

H2(b, s)

{

q(s) −
1

4
r(s)λ2

2(b, s)

}

φ(s)ds ≤ w(c)φ(c). (16)

On the other hand, multiplying (11) by H1(s, t) and integrating over [t, c] for
t ∈ (a, c], we obtain

∫ c

t

H1(s, t)q(s)φ(s)ds

≤ −

∫ c

t

H1(s, t)w
′(s)φ(s)ds−

∫ c

t

H1(s, t)
p(s)

r(s)
w(s)φ(s)ds
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−

∫ c

t

H1(s, t)
1

r(s)
w2(s)φ(s)ds

≤ −H1(c, t)w(c)φ(c) +
1

4

∫ c

t

H1(s, t)λ
2

1(s, t)r(s)φ(s)ds

−

∫ c

t

H1(s, t)

{
√

1

r(s)
w(s) −

1

2
λ1(s, t)

√

r(s)

}2

φ(s)ds,

and so

1

H1(c, t)

∫ c

t

H1(s, t)

{

q(s) −
1

4
r(s)λ2

1(s, t)

}

φ(s)ds ≤ −w(c)φ(c).

Letting t→ a + 0 in the above, we obtain

1

H1(c, a)

∫ c

a

H1(s, a)

{

q(s) −
1

4
r(s)λ2

1(s, a)

}

φ(s)ds ≤ −w(c)φ(c). (17)

Adding (16) and (17), we easily obtain the following

1

H1(c, a)

∫ c

a

H1(s, a)

{

q(s) −
1

4
r(s)λ2

1(s, a)

}

φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s)

{

q(s) −
1

4
r(s)λ2

2(b, s)

}

φ(s)ds ≤ 0,

which contradicts the condition (15). This contradiction proves that Theo-
rem 4 holds.

Theorem 5. Assume that (H2) holds. If

lim sup
t→∞

∫ t

T

H1(s, T )

{

q(s) −
1

4
r(s)λ2

1(s, T )

}

φ(s)ds > 0 (18)

and

lim sup
t→∞

∫ t

T

H2(t, s)

{

q(s) −
1

4
r(s)λ2

2(t, s)

}

φ(s)ds > 0 (19)

for some functions (H1, H2) ∈ H and each T ≥ 0, then (7) has no eventually

positive solution, where φ(t) ∈ C1((T0,∞); (0,∞)) for some T0 > 0.
Proof. For any T ≥ t0, let a = T . In (18) we choose T = a. Then there
exists c > a such that

∫ c

a

H1(s, a)

{

q(s) −
1

4
r(s)λ2

1(s, a)

}

φ(s)ds > 0 (20)
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(cf. [14, Theorem 8.8.5]). In (19) we choose T = c. Then there exists b > c
such that

∫ b

c

H2(b, s)

{

q(s) −
1

4
r(s)λ2

2(b, s)

}

φ(s)ds > 0. (21)

Combining (20) and (21), we obtain (15). The conclusion follows from The-
orem 4, and the proof is completed.

4. Oscillation results

Using the Riccati inequality, we derive sufficient conditions for every so-
lution of the hyperbolic equation (E) to be oscillatory. We are going to use
the following lemma which is due to Usami [5].

Lemma 2. If there exists a function φ(t) ∈ C1([T0,∞); (0,∞)) such that

∫

∞

T1

(

p̄(t)|φ′(t)|β

φ(t)

)

1

β−1

dt <∞,

∫

∞

T1

1

p̄(t)(φ(t))β−1
dt = ∞,

∫

∞

T1

φ(t)q̄(t)dt = ∞

for some T1 ≥ T0, then the Riccati inequality

x′(t) +
1

β

1

p̄(t)
|x(t)|β ≤ −q̄(t)

has no solution on [T,∞) for all large T , where β > 1, p̄(t) ∈ C([T0,∞); (0,∞))
and q̄(t) ∈ C([T0,∞); R).

Combining Theorems 1–5 and Lemma, we obtain the following theorems.
Theorem 6. Assume that the hypothesis (H1) holds, and that:

(H3) for any t > 0 there exists tk, tk+1, tk+2 such that T ≤ tk < tk+1 < tk+2

and

FΨ(t) [or F̃Ψ(t)] =

{

≤ 0, t ∈ [tk, tk+1],
≥ 0, t ∈ [tk+1, tk+2].

If

∫

∞

T1

(

P (t)φ′(t)2

φ(t)

)

dt <∞,

∫

∞

T1

1

P (t)φ(t)
dt = ∞,

∫

∞

T1

φ(t)Q(t)dt = ∞,
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then every solution u(x, t) of (E), (B1) (or (E), (B2)) is oscillatory in Ω.

Theorem 7. Assume that the hypotheses (H1) and (H3) hold. If for each

T > 0, there exist functions (H1, H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)) and

a = tk, b = tk+1, d = tk+2, c, c̃ ∈ R such that T ≤ a < c < b < c̃ < d, (15)
holds and

1

H1(c̃, b)

∫ c̃

b

H1(s, b)

{

q(s) −
1

4
r(s)λ2

1(s, b)

}

φ(s)ds

+
1

H2(d, c̃)

∫ d

c̃

H2(d, s)

{

q(s) −
1

4
r(s)λ2

2(d, s)

}

φ(s)ds > 0,

then every solution u(x, t) of (E), (B1) (or (E), (B2)) is oscillatory in Ω.

Theorem 8. Assume that the hypotheses (H1) and (H3) hold. If (18) and

(19) hold for some functions (H1, H2) ∈ H and each T ≥ 0, then every

solution u(x, t) of (E), (B1) (or (E), (B2)) is oscillatory in Ω.

Example. We consider the hyperbolic equation

∂

∂t

(

et ∂

∂t
u(x, t)

)

− 2et ∂

∂t
u(x, t) − a(t)uxx(x, t)

+
3

4
e2tu(x, t) +

1

2
e

t
2 |u(x, t)|2u(x, t) + 3|u(x, t)|−

2

3u(x, t)

= sin x sin t, (x, t) ∈ (0, π) × (0,∞), (22)

u(0, t) = u(π, t) = 0, t > 0. (23)

Here r(t) = et, p(t) = −2et, q0(t) = (3/4)e2t, q1(t) = (1/2)et/2, β = 3,
q2(t) = 3, γ = 1/3 and f(x, t) = sin x sin t. By direct calculation we have
F (t) = FΨ(t) = π

4
sin t and

q(t) =
3

4
e2t + 4 × 3−

3

4 ×

(

1

2
e

t
2

)
1

4

× 3
3

4 = e2t.

Choosing φ(t) = e−t, we obtain

Q(t) = e−t × q(t) −
1

2

(

e−t × (−et)

et
+ e−t

)2
et

e−t
= et,

and so
∫

∞
(

P (t)φ′(t)2

φ(t)

)

dt =

∫

∞

e−tdt <∞,

∫

∞ 1

P (t)φ(t)
dt =

∫

∞

etdt = ∞,

∫

∞

φ(t)Q(t)dt =

∫

∞

(1)dt = ∞.
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Hence all conditions of Theorem 6 are satisfied. Moreover, the hypotheses
(18) and (19) of Theorem 8 hold, since

lim sup
t→∞

∫ t

T

(eT − es)2

{

e2s −
1

4
es

(

2eT

eT − es

)2
}

e−2sds > 0

and

lim sup
t→∞

∫ t

T

(et − es)2

{

e2s −
1

4
es

(

2es

et − es

)2
}

e−2sds > 0,

where
φ(t) = e−2t and H1(s, t) = H2(t, s) = (et − es)2.

It follows from Theorems 6 or 8 that for every solution u of the problem (22),
(23) is oscillatory in (0, π) × (0,∞).
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