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Abstract

This paper presents a fixed point theorem utilizing operators and functionals

in the spirit of the original Leggett-Williams fixed point theorem which is void

of any invariance-like conditions. The underlying sets in the Leggett-Williams

fixed point theorem that were defined using the total order of the real numbers

are replaced by sets that are defined using an ordering generated by a border-

symmetric set, that is, the sets that were defined using functionals in the original

Leggett-Williams fixed point theorem are replaced by sets that are defined using

operators.
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1 Introduction

Mavridis [8] attempted to generalize the Leggett-Williams [7] fixed point theorem by
replacing arguments that involved concave and convex functionals with arguments

3Corresponding author.
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that involved concave and convex operators. Some of the arguments went through
seamlessly due to the antisymmetric property of the partial order generated by the
cone, while others were dealt away with invariance-like conditions.

Anderson, Avery, Henderson and Liu [1] removed the invariance-like conditions
when working in a cone P of a real Banach space E which is a subset of F (K), the set
of real valued functions defined on a set K. The key to this result was developing the
notion of an operator being comparable to a function on a compact set. That is, if JR

is a compact subset of K and xR ∈ E, we say that R is comparable to xR on P relative
to JR if, given any y ∈ P , either R(y) <JR

xR or xR ≤JR
R(y). This did solve the

problem of creating a fixed point theorem in the spirit of the original Leggett-Williams
fixed point theorem that avoided invariance-like conditions with the underlying sets
being defined using operators; however, the comparability criterion is very restrictive
(very few operators satisfy it) and the theorem is valid only in a subset of real-valued
functions.

By introducing an ordering through a border-symmetric set we are able to remove
the comparability criterion–which also removed the restriction of working in subsets
of real valued functions–while maintaining the spirit of the original Leggett-Williams
fixed point theorem in regards to avoiding any invariance-like conditions. We are also
able to replace the underlying sets of the Leggett-Williams fixed point theorem defined
using functionals (applying a total ordering) with sets that are defined using operators
(applying an ordering with boundary properties) which was the goal in the Mavridis
manuscript.

Note that when JR = {r} and xR(t) = s then the comparability criterion of [1]
says that for each x ∈ P either x(r) < s or s ≤ x(r). The same result can be
obtained by defining the linear functional (hence the functional is both concave and
convex) α by α(x) = x(r). Also, instead of defining the ordering based on evaluation,
that is y <JR

z which means that y(r) < z(r) (since r is the only element in JR) as
was done in the example found in [1], the ordering is defined in terms of sets, that is
y ≪T z where T := {y ∈ E | y(r) ≥ 0} means that z − y ∈ T ◦ hence y(r) < z(r).
Thus the envisioned applications of the Operator Type Expansion-Compression Fixed
Point Theorem can be proven using the new result which is less restrictive and easier
to interpret. We conclude with an illustration of the techniques introduced in this
manuscript by revisiting the example found in [1] and providing a justification based
on our main result (the statement of the theorem is essentially the same, however the
justification is much different - based on the new result using border-symmetric sets
and functionals instead of the restrictive techniques [1] based on the comparability
criterion).
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2 Preliminaries

In this section we will state the definitions that are used in the remainder of the paper.

Definition 1 Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E

is called a cone if, for all x ∈ P and λ ≥ 0, λx ∈ P , and if x,−x ∈ P then x = 0.

Every subset C of a Banach space E induces an ordering in E given by x ≤C y if
and only if y − x ∈ C, and we say that x <C y whenever x ≤C y and x 6= y.
Furthermore, if the interior of C, which we denote as C◦, is nonempty then we say
that x ≪C y if and only if y − x ∈ C◦. Note that if C and D are subsets of a Banach
space E with C ⊆ D then

x ≤C y implies x ≤D y

since y − x ∈ C ⊆ D. Also note that if P is a cone in the Banach space E then the
ordering induced by P is a partial ordering on E. Since the closure and boundary
of sets in our main results will be relative to the cone P , the definition of a border-
symmetric set which follows is stated in terms of the interior which will refer to the
interior relative to the entire Banach space E in our main results.

Definition 2 A closed, convex subset M of a Banach space E with nonempty interior
is said to be a border-symmetric subset of E if for all x ∈ M and λ ≥ 0, λx ∈ M , and
if the order induced by M satisfies the property that x ≤M y and y ≤M x implies that
x − y 6∈ M◦ and y − x 6∈ M◦.

Note that every nontrivial (not just the identity) cone P of a Banach space E is a
border-symmetric subset of E if it has a nonempty interior since if x ≤P y and y ≤P x

then y − x,−(y − x) ∈ P thus y − x = 0 and 0 6∈ P ◦. The border-symmetric property
is a less restrictive replacement of the antisymmetric property of a partial order. Our
main results rely on interior arguments of our border-symmetric subsets as well as the
lack of symmetry in the interior of a border-symmetric subset.

Definition 3 An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 4 Let P be a cone in a real Banach space E. Then we say that A : P → P

is a continuous concave operator on P if A : P → P is continuous and

tA(x) + (1 − t)A(y) ≤P A(tx + (1 − t)y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say that B : P → P is a continuous convex
operator on P if B : P → P is continuous and

B(tx + (1 − t)y) ≤P tB(x) + (1 − t)B(y)

for all x, y ∈ P and t ∈ [0, 1].
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Definition 5 A map α is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E if

α : P → [0,∞)

is continuous and

α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if

β : P → [0,∞)

is continuous and

β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

Let R and S be operators on a cone P of a real Banach space E, Q and M be subsets
of E that contain P , with xR, xS ∈ E, then we define the sets,

PQ(R, xR) = {y ∈ P : R(y) ≪Q xR}

and

P (R, S, xR, xS, Q, M) = PQ(R, xR) − PM(S, xS).

Definition 6 Let D be a subset of a real Banach space E. If r : E → D is continuous
with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is a retraction.
The convex hull of a subset D of a real Banach space X is given by

conv(D) =

{

n
∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],

n
∑

i=1

λi = 1, and n ∈ N

}

.

The following theorem is due to Dugundji and its proof can be found in [4, p 44].

Theorem 7 For Banach spaces X and Y , let D ⊂ X be closed and let F : D → Y

be continuous. Then F has a continuous extension F̃ : X → Y such that F̃ (X) ⊂
conv(F (D)).

Corollary 8 Every closed convex set of a Banach space is a retract of the Banach
space.
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The following theorem, which establishes the existence and uniqueness of the fixed
point index, is from [5, pp 82-86]; an elementary proof can be found in [4, pp 58 & 238].
The proof of our main result in the next section will invoke the properties of the fixed
point index.

Theorem 9 Let X be a retract of a real Banach space E. Then, for every bounded
relatively open subset U of X and every completely continuous operator A : U → X

which has no fixed points on ∂U (relative to X), there exists an integer i(A, U, X)
satisfying the following conditions:

(G1) Normality: i(A, U, X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;

(G2) Additivity: i(A, U, X) = i(A, U1, X)+i(A, U2, X) whenever U1 and U2 are disjoint
open subsets of U such that A has no fixed points on U − (U1 ∪ U2);

(G3) Homotopy Invariance: i(H(t, ·), U, X) is independent of t ∈ [0, 1] whenever
H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any (t, x) ∈
[0, 1] × ∂U ;

(G4) Solution: If i(A, U, X) 6= 0, then A has at least one fixed point in U .

Moreover, i(A, U, X) is uniquely defined.

3 Main Results

In the following lemmas we prove the criteria for an operator to be LW-inward and
LW-outward (see the definitions that follow) which will be the basis of our compression-
expansion fixed point theorem involving operators and functionals. All references to
the boundary and closure of sets is relative to the cone P for the application of the
fixed point index stated in Theorem 9 and references to the interior of sets are relative
to the entire Banach space E.

Lemma 10 Suppose P is a cone in real Banach space E, Q is a border-symmetric
subset of E with P ⊂ Q, α is a non-negative continuous concave functional on P , B

is a continuous convex operator on P , a is a nonnegative real number, and yB ∈ E.
Furthermore, suppose that T : P → P is completely continuous and that the following
conditions hold:

(B1) {y ∈ P : a < α(y) and B(y) ≪Q yB} 6= ∅;

(B2) if y ∈ ∂PQ(B, yB) and a ≤ α(y), then B(Ty) ≪Q yB;
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(B3) if y ∈ ∂PQ(B, yB) and α(Ty) < a, then B(Ty) ≪Q yB.

If PQ(B, yB) is bounded, then i(T, PQ(B, yB), P ) = 1.

Proof. By Corollary 8, P is a retract of the Banach space E since it is closed and
convex.

Claim 1: Ty 6= y for all y ∈ ∂PQ(B, yB).
Suppose to the contrary, that is, there is a z0 ∈ ∂PQ(B, yB) with Tz0 = z0. Since

z0 ∈ ∂PQ(B, yB), we have that B(z0) 6≪Q yB (that is, yB − B(z0) 6∈ Q◦). Either
α(Tz0) < a or a ≤ α(Tz0). If α(Tz0) < a, then B(Tz0) ≪Q yB by condition (B3), and
if a ≤ α(Tz0) = α(z0), then B(Tz0) ≪Q yB by condition (B2). Hence, in either case we
have that B(z0) = B(Tz0) ≪Q yB which is a contradiction since z0 ∈ ∂PQ(B, yB). Thus
Tz0 6= z0 and we have verified that T does not have any fixed points on ∂PQ(B, yB).

Let z1 ∈ {y ∈ P : a < α(y) and B(y) ≪Q yB} 6= ∅ (see condition (B1)), and let

H1 : [0, 1] × PQ(B, yB) → P be defined by H1(t, y) = (1 − t)Ty + tz1. Clearly, H1 is

continuous and H1([0, 1] × PQ(B, yB)) is relatively compact.

Claim 2: H1(t, y) 6= y for all (t, y) ∈ [0, 1] × ∂PQ(B, yB).
Suppose not; that is, suppose there exists (t1, y1) ∈ [0, 1] × ∂PQ(B, yB) such that

H(t1, y1) = y1. Since y1 ∈ ∂PQ(B, yB) we have that B(y1) 6≪Q yB, which together with
B(z1) ≪Q yB implies t1 6= 1. From Claim 1 we have t1 6= 0. Either α(Ty1) < a or
a ≤ α(Ty1).

Case 1 : α(Ty1) < a.
By condition (B3), we have

B(Ty1) ≪Q yB

which implies that

(1 − t1)B(Ty1) ≪Q (1 − t1)yB

since t1 6= 1 (z1 6∈ ∂PQ(B, yB)), thus we have

(1 − t1)B(Ty1) + t1B(z1) ≪Q (1 − t1)yB + t1B(z1) ≪Q (1 − t1)yB + t1yB = yB,

since t1 6= 0.
Since B is a convex operator on P ,

B(y1) = B((1 − t1)Ty1 + t1z1) ≤P (1 − t1)B(Ty1) + t1B(z1)

and since P ⊂ Q we have

B(y1) = B((1 − t1)Ty1 + t1z1) ≤Q (1 − t1)B(Ty1) + t1B(z1).
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Therefore,
B(y1) ≤Q (1 − t1)B(Ty1) + t1B(z1) ≪Q yB,

which contradicts B(y1) 6≪Q yB.
Case 2 : a ≤ α(Ty1).

We have

a = (1 − t1)a + t1a ≤ (1 − t1)α(Ty1) + t1α(z1) ≤ α((1 − t1)Ty1 + t1z1) = α(y1)

and thus by condition (B2), we have B(y1) ≪Q yB. This is the same contradiction we
reached in the previous case.

Therefore, we have shown that H1(t, y) 6= y for all (t, y) ∈ [0, 1]×∂PQ(B, yB), and thus
by the homotopy invariance property (G3) of the fixed point index, i(T, PQ(B, yB), P ) =
i(z1, PQ(B, yB), P ). And by the normality property (G1) of the fixed point index,
i(T, PQ(B, yB), P ) = i(z1, PQ(B, yB), P ) = 1.

�

Lemma 11 Suppose P is a cone in a real Banach space E, M is a border-symmetric
subset of E with P ⊂ M , β is a non-negative continuous convex functional on P , A

is a continuous concave operator on P , b is a nonnegative real number, and yA ∈ E.
Furthermore, suppose that T : P → P is completely continuous and that the following
conditions hold:

(A1) {y ∈ P : yA ≪M A(y) and β(y) < b} 6= ∅;

(A2) if y ∈ ∂PM (A, yA) and β(y) ≤ b, then yA ≪M A(Ty);

(A3) if y ∈ ∂PM (A, yA) and b < β(Ty), then yA ≪M A(Ty).

If PM(A, yA) is bounded, then i(T, PM(A, yA), P ) = 0.

Proof. By Corollary 8, P is a retract of the Banach space E since it is closed and
convex.

Claim 1: Ty 6= y for all y ∈ ∂PM(A, yA).
Suppose to the contrary, that is, there is a w0 ∈ ∂PM(A, yA) with Tw0 = w0. Since

w0 ∈ ∂PM (A, yA), we have that A(w0) 6≪M yA (that is, yA − A(w0) 6∈ M◦). Either
β(Tw0) ≤ b or β(Tw0) > b. If β(Tw0) > b, then yA ≪M A(Tw0) = A(w0) by condition
(A3), and if β(w0) = β(Tw0) ≤ b, then yA ≪M A(Tw0) = A(w0) by condition (A2).
Hence, in either case we have that yA ≪M A(Tw0) = A(w0) thus A(w0) − yA ∈ M◦

which is a contradiction since A(w0)− yA ∈ M and yA −A(w0) = −(A(w0)− yA) ∈ M
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implies that A(w0) − yA 6∈ M◦ since M is a border-symmetric subset of E. Thus
Tw0 6= w0 and we have verified that T does not have any fixed points on ∂PM (A, yA).

Let w1 ∈ {y ∈ P : yA ≪M A(y) and β(y) < b} (see condition (A1)), and let
H0 : [0, 1] × PM(A, yA) → P be defined by H0(t, y) = (1 − t)Ty + tw1. Clearly, H0 is
continuous and H0([0, 1] × PM(A, yA) is relatively compact.

Claim 2: H0(t, y) 6= y for all (t, y) ∈ [0, 1] × ∂PM (A, yA).
Suppose not; that is, suppose there exists (t0, y0) ∈ [0, 1] × ∂PM (A, yA) such that

H0(t0, y0) = y0. Since y0 ∈ ∂PM (A, yA) we have that A(y0) ≤M yA. From Claim 1,
we have t0 6= 0. Since A(w1) − yA ∈ M◦, A(y0) ≤M yA and M is a border-symmetric
subset, we have t0 6= 1. Either b < β(Ty0) or β(Ty0) ≤ b.

Case 1 : b < β(Ty0).
By condition (A3), we have yA ≪M A(Ty0) which implies that

(1 − t0)yA ≪M (1 − t0)A(Ty0)

since t0 6= 1, thus we have

yA = (1 − t0)yA + t0yA ≪M (1 − t0)A(Ty0) + t0A(w1),

since t0 6= 0.
Since A is a concave operator on P ,

(1 − t0)A(Ty0) + t0A(w1) ≤P A((1 − t0)Ty0 + t0w1) = A(y0)

and since P ⊂ M we have

(1 − t0)A(Ty0) + t0A(w1) ≤M A((1 − t0)Ty0 + t0w1).

Therefore,
yA ≪M (1 − t0)A(Ty0) + t0A(w1) ≤M A(y0)

hence A(y0)− yA ∈ M◦ and we have that yA −A(y0) = −(A(y0)− yA) ∈ M which is a
contradiction since M is a border-symmetric subset of E thus A(y0) − yA 6∈ M◦.

Case 2 : β(Ty0) ≤ b.
We have

β((1 − t0)Ty0 + t0w1) ≤ (1 − t0)β(Ty0) + t0β(w1) ≤ (1 − t0)b + t0b = b

and thus by condition (A2), we have yA ≪M A(Ty0). This is the same contradiction
we reached in the previous case.
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Therefore, we have shown that H0(t, y) 6= y for all (t, y) ∈ [0, 1]×∂PM(A, yA), and thus
by the homotopy invariance property (G3) of the fixed point index, i(T, PM(A, yA), P ) =
i(w1, PM(A, yA), P ). And by the normality property (G1) of the fixed point index,
i(T, PM(A, yA), P ) = i(w1, PM(A, yA), P ) = 0 since w1 6∈ PM(A, yA).

�

Definition 12 Suppose P is a cone in a real Banach space E, Q is a subset of E

with P ⊂ Q, α is a non-negative continuous concave functional on P , B is a contin-
uous convex operator on P , a is a nonnegative real number, yB ∈ E and T : P → P

is a completely continuous operator then we say that T is LW-inward with respect to
PQ(B, α, yB, a) if the conditions (B1), (B2), and (B3) of Lemma 10, and the bounded-

ness of PQ(B, yB) are satisfied.

Definition 13 Suppose P is a cone in a real Banach space E, M is a border-symmetric
subset of E with P ⊂ M , β is a non-negative continuous convex functional on P , A

is a continuous concave operator on P , b is a nonnegative real number, yA ∈ E and
T : P → P is a completely continuous operator then we say that T is LW-outward with
respect to PM(β, A, b, yA) if the conditions (A1), (A2), and (A3) of Lemma 11, and the
boundedness of PM(A, yA) are satisfied.

Theorem 14 Suppose P is a cone in a real Banach space E, Q is a subset of E with
P ⊂ Q, M is a border-symmetric subset of E with P ⊂ M , α is a non-negative con-
tinuous concave functional on P , β is a non-negative continuous convex functional on
P , B is a continuous convex operator on P , A is a continuous concave operator on P ,
a and b are nonnegative real numbers, and yA and yB are elements of E. Furthermore,
suppose that T : P → P is completely continuous and

(D1) T is LW-inward with respect to PQ(B, α, yB, a);

(D2) T is LW-outward with respect to PM(β, A, b, yA).

If

(H1) PM(A, yA) ( PQ(B, yB), then T has a fixed point y ∈ P (B, A, yB, yA, Q, M),

whereas, if

(H2) PQ(B, yB) ( PM(A, yA), then T has a fixed point y ∈ P (A, B, yA, yB, M, Q).

Proof. We will prove the expansive result (H2), as the proof of the compressive result
(H1) is nearly identical. To prove the existence of a fixed point for our operator T in
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P (A, B, yA, yB, M, Q), it is enough for us to show that i(T, P (A, B, yA, yB, M, Q), P ) 6=
0.

Since T is LW-inward with respect to PQ(B, α, yB, a), we have by Lemma 10 that
i(T, PQ(B, yB), P ) = 1, and since T is LW-outward with respect to PM(β, A, b, yA), we
have by Lemma 11 that i(T, PM(A, yA), P ) = 0.

In Lemma 10 we verified that T has no fixed points on ∂PQ(B, yB) and in Lemma
11 we verified that T has no fixed points on ∂PM(A, yA) thus T has no fixed points
on PM(A, yA) − (PQ(B, yB) ∪ P (A, B, yA, yB, M, Q)). Also, the sets PQ(B, yB) and

P (A, B, yA, yB, M, Q) are nonempty, disjoint, open subsets of PM(A, yA), since PQ(B, yB) (

PM(A, yA) implies that P (A, B, yA, yB, M, Q) = PM(A, yA) − PQ(B, yB) 6= ∅. There-
fore, by the additivity property (G2) of the fixed point index

i(T, PM(A, yA), P ) = i(T, PQ(B, yB), P ) + i(T, P (A, B, yA, yB, M, Q), P ).

Consequently, we have i(T, P (A, B, yA, yB, M, Q), P ) = −1, and thus by the solu-
tion property (G4) of the fixed point index, the operator T has a fixed point y ∈
P (A, B, yA, yB, M, Q).

�

4 Application

As an application of our main results, we consider the following second order nonlinear
right focal boundary value problem,

x′′ + g(t)f(x, x′) = 0, t ∈ [0, 1], (1)

x(0) = x′(1) = 0, (2)

where g : [0, 1] → [0,∞) and f : R2 → [0,∞) are continuous.
Let the Banach space E = C1[0, 1] with the norm of ‖x‖ = maxt∈[0,1] |x(t)| +

maxt∈[0,1] |x
′(t)|, and define the cone P ⊂ E by

P := {x ∈ E | x(t) ≥ 0, x′(t) ≥ 0, for t ∈ [0, 1], x is concave, and x(0) = 0}.

Then for any x ∈ P , we have ‖x‖ = x(1)+x′(0). And from the concavity of any x ∈ P ,
we have that x(t) ≥ tx(1) and x(t) ≤ x′(0)t for t ∈ [0, 1].

It is well known that the Green’s function for −x′′ = 0 and satisfying (2) is given
by

G(t, s) = min{t, s}, (t, s) ∈ [0, 1] × [0, 1].

EJQTDE, 2012 No. 12, p. 10



We note that, for any s ∈ [0, 1], G(t, s) ≥ tG(1, s) and G(t, s) is nondecreasing in t.
By using properties of the Green’s function, solutions of (1), (2) are the fixed points

of the completely continuous operator T : P → P defined by

Tx(t) =

∫ 1

0

G(t, s)g(s)f(x(s), x′(s))ds.

Since (Tx)′′(t) = −g(t)f(x, x′) ≤ 0 on [0, 1] and (Tx)(0) = (Tx)′(1) = 0, we have
T : P → P .

For y ∈ P , we define the following operators:

(Ay)(t) = y′(0)t and (By)(t) =

(

y′(0) + y(1)

2

)

t.

The above operators are continuous linear operators mapping P to P , and are convex
or concave continuous operators as well.

In the following theorem, we demonstrate how to apply the compressive condition
of Theorem 14 to prove the existence of at least one positive solution to (1), (2).

Theorem 15 Suppose there is some τ ∈ (0, 1) and 0 < a < b such that g and f satisfy

(a) f(u1, u2) > a
R

τ

0
g(s)ds

, for (u1, u2) ∈ [0, aτ ] × [0, a],

(b) f(u1, u2) < 2b
R

1

0
(1+s)g(s)ds

, for (u1, u2) ∈ [0, b] × [0, 2b).

Then the right focal problem (1), (2) has at least one positive solution y ∈ P with
y′(0) > a and y′(0) + y(1) < 2b.

Proof. Let yB(t) = bt, α : P → [0,∞) be defined by α(y) = y′(0), and Q := {y ∈
E | y(1) ≥ 0} thus Q is a border-symmetric subset of E and P ⊂ Q.

Claim 1: T is LW-inward with respect to PQ(B, α, yB, b).

Subclaim 1.1: {y ∈ P : b < α(y) and B(y) ≪Q yB} 6= ∅.

Let

y0(t) :=
7bt(2 − t)

12
∈ P

then

α(y0) = y′

0(0) =
7b

6
> b

and

(By0)(1) =
y′

0(0) + y0(1)

2
=

7b
6

+ 7b
12

2
=

21b

24
< b = yB(1)
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hence By ≪Q yB and we have shown that y0 ∈ {y ∈ P : b < α(y) and B(y) ≪Q yB}
thus it is nonempty.

Subclaim 1.2: If y ∈ ∂PQ(B, yB) and b ≤ α(y), then B(Ty) ≪Q yB.

Let y ∈ ∂PQ(B, yB) with b ≤ α(y), thus

(By)(1) =
y′(0) + y(1)

2
≤ b

and
b ≤ α(y) = y′(0)

thus 0 < y(1) ≤ b and b ≤ y′(0) < 2b which implies that 0 ≤ y(t) ≤ b and 0 ≤ y′(t) < 2b
for t ∈ [0, 1]. Thus by property (b),

f(y(t), y′(t)) <
2b

∫ 1

0
(1 + s)g(s)ds

for t ∈ [0, 1]

therefore

(BTy)(1) =
(Ty)′(0) + (Ty)(1)

2

=
1

2

∫ 1

0

g(s)f(y(s), y′(s)) ds +
1

2

∫ 1

0

sg(s)f(y(s), y′(s)) ds

=
1

2

∫ 1

0

(1 + s)g(s)f(y(s), y′(s)) ds

<

(

b
∫ 1

0
(1 + s)g(s)ds

)

∫ 1

0

(1 + s)g(s) ds

= b = yB(1).

Hence, (BTy)(1) < yB(1) which verifies that B(Ty) ≪Q yB.

Subclaim 1.3: If y ∈ ∂PQ(B, yB) and α(Ty) < b, then B(Ty) ≪Q yB.

Let y ∈ ∂PQ(B, yB) with α(Ty) < b, thus

(Ty)′(0) < b

and by the concavity of Ty we have that

(Ty)(1) ≤ (Ty)′(0) < b

hence
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(BTy)(1) =
(Ty)′(0) + (Ty)(1)

2

<
b + b

2
= b = yB(1).

Hence, (BTy)(1) < yB(1) which verifies that B(Ty) ≪Q yB.

It is easy to see that PQ(B, yB) is bounded, thus T is LW-inward with respect

to PQ(B, α, yB, b). Let yA(t) = at, β : P → [0,∞) be defined by β(y) = y(τ)
τ

, and
M = {y ∈ E | y(t) ≥ 0 for t ∈ [τ, 1]} thus M is a border-symmetric subset of E and
P ⊂ M .

Claim 2: T is LW-outward with respect to PM(β, A, a, yA).

Subclaim 2.1: {y ∈ P : yA ≪M A(y) and β(y) < a} 6= ∅.

Let

y1(t) :=
a(4 − τ)t(2 − t)

4(2 − τ)
∈ P

then

β(y1) =
y1(τ)

τ
=

a(4 − τ)

4
< a

and

y′

1(0) = 2

(

a(4 − τ)

4(2 − τ)

)

=
a(4 − τ)

4 − 2τ
> a

hence for all t ∈ (0, 1] yA(t) = at < (y′

1(0))t = (Ay1)(t), thus we have that yA ≪M Ay1

and we have shown that y1 ∈ {y ∈ P : yA ≪M A(y) and β(y) < a} thus it is
nonempty.

Subclaim 2.2: If y ∈ ∂PM (A, yA) and β(y) ≤ a, then yA ≪M A(Ty).

Let y ∈ ∂PM (A, yA) with β(y) ≤ a, thus

A(y) ≤M yA which implies 0 ≤ y′(s) ≤ y′(0) ≤ a

for all s ∈ [0, 1] and

y(τ)

τ
= β(y) ≤ a which implies 0 ≤ y(s) ≤ y(τ) ≤ aτ for s ∈ [0, τ ].

Hence, for t ∈ [τ, 1]

(ATy)(t) = ((Ty)′(0))t = t

∫ 1

0

g(s)f(y(s), y′(s)) ds
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= t

∫ τ

0

g(s)f(y(s), y′(s)) ds + t

∫ 1

τ

g(s)f(y(s), y′(s)) ds

≥ t

∫ τ

0

g(s)f(y(s), y′(s)) ds

> t

(

a
∫ τ

0
g(s) ds

)
∫ τ

0

g(s) ds

= at

thus for all t ∈ [τ, 1]
yA(t) = at < (Ty)′(0)t = A(Ty)(t)

therefore yA ≪M A(Ty).

Subclaim 2.3: If y ∈ ∂PM (A, yA) and a < β(Ty), then yA ≪M A(Ty).

Let y ∈ ∂PM (A, yA) with a < β(Ty), then since

(Ty)′(0) =

∫ 1

0

g(s)f(y(s), y′(s)) ds

=

∫ τ

0

g(s)f(y(s), y′(s)) ds +

∫ 1

τ

g(s)f(y(s), y′(s)) ds

≥

∫ τ

0

(s

τ

)

g(s)f(y(s), y′(s)) ds +

∫ 1

τ

g(s)f(y(s), y′(s)) ds

=

(

1

τ

)(
∫ τ

0

sg(s)f(y(s), y′(s)) ds +

∫ 1

τ

τg(s)f(y(s), y′(s)) ds

)

=
(Ty)(τ)

τ

we have that

(Ty)′(0) ≥
(Ty)(τ)

τ
= β(Ty) > a

thus for all t ∈ (0, 1]
yA(t) = at < (Ty)′(0)t = A(Ty)(t)

therefore, for all t ∈ [τ, 1] we have yA(t) < A(Ty)(t) thus yA ≪M A(Ty).
It is easy to see that PM(A, yA) is bounded, thus T is LW-outward with respect to

LW-outward with respect to PM(β, A, b, yA).

Claim 3: PM(A, yA) ( PQ(B, yB).

Let y ∈ PM(A, yA), thus for t ∈ [τ, 1]

(Ay)(t) = y′(0)t ≤ at = yA(t)
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hence y′(0) ≤ a. Since y ∈ P , y is concave and thus

y(1) =
y(1) − y(0)

1 − 0
≤ y′(0)

which implies that
y′(0) + y(1)

2
≤

y′(0) + y′(0)

2
≤ a < b

therefore for t ∈ [τ, 1],

(By)(t) ≤ at < bt = yB(t)

and we have shown that y ∈ PQ(B, yB). Also, yA+B

2

= yA+yB

2
∈ PQ(B, yB)−PM (A, yA),

hence we have verified that PM(A, yA) ( PQ(B, yB).
Therefore, by Theorem 14, T has a fixed point y∗ in P (B, A, xB, xA, Q, M). Hence,

y′(0) > a and y′(0) + y(1) < 2b. �

Example. The right focal boundary value problem,

x′′ + t

(

1.2 +
x

x′ + 1

)

= 0, t ∈ [0, 1], (3)

x(0) = x′(1) = 0, (4)

satisfies Theorem 15 with a = 1
8
, b = 1 and τ = 1

2
and thus has a solution x∗ such that

x′(0) >
1

8
and x′(0) + x(1) < 2.
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