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1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena. As a consequence there
was an intensive development of the theory of differential equations of frac-
tional order ([21, 22, 24] etc.). The study of fractional differential inclusions
was initiated by El-Sayed and Ibrahim ([16]). Very recently several qualita-
tive results for fractional differential inclusions were obtained in [1, 3, 7-12,
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19, 23] etc.. Applied problems require definitions of fractional derivative al-
lowing the utilization of physically interpretable initial conditions. Caputo’s
fractional derivative, originally introduced in [5] and afterwards adopted in
the theory of linear visco elasticity, satisfies this demand. For a consistent
bibliography on this topic, historical remarks and examples we refer to [1].

The study of theory of abstract differential equations with fractional
derivatives in infinite dimensional spaces is also very recent. The main prob-
lem consists in how to introduce new concepts of mild solutions. One of the
first paper on this topic is [15]. In [20] it is showed that several papers on
fractional differential equations in Banach spaces were incorrect and used an
approach to treat these equations based on the theory of resolvent opera-
tors for integral equations. A suitable definition of mild solutions based on
Laplace transform and probability density functions may be found in [26-29].

In this paper we study fractional semilinear differential inclusions of the
form

Dr
cx(t) ∈ Ax(t) + F (t, x(t)) t ∈ I, x(0) = x0 (1.1)

where I = [0, T ], X is a separable Banach space, A is the infinitesimal
generator of a strongly continuous semigroup {T (t), t ≥ 0}, F (., .) : I×X →
P(X) is a set-valued map and Dr

c is the Caputo fractional derivative of order
r ∈ (0, 1].

The aim of the present paper is twofold. On one hand, we show that Fil-
ippov’s ideas ([17]) can be suitably adapted in order to obtain the existence
of a solution of problem (1.1). We recall that for a first order differential
inclusion defined by a lipschitzian set-valued map with nonconvex values Fil-
ippov’s theorem ([17]) consists in proving the existence of o solution starting
from a given ”almost” solution. Moreover, the result provides an estimate
between the starting ”quasi” solution and the solution of the differential
inclusion. On the other hand, we prove the existence of solutions contin-
uously depending on a parameter for problem (1.1). This result may be
interpreted as a continuous variant of Filippov’s theorem for problem (1.1).
The key tool in the proof of this theorem is a result of Bressan and Colombo
([4]) concerning the existence of continuous selections of lower semicontinu-
ous multifunctions with decomposable values. This result allows to obtain a
continuous selection of the solution set of the problem considered.

Our results may be interpreted as extensions of previous results of Fran-
kowska ([18]) and Staicu ([25]) obtained for ”classical” semilinear differential
inclusions.
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The paper is organized as follows: in Section 2 we briefly recall some
preliminary results that we will use in the sequel and in Section 3 we prove
the main results of the paper.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (Y, d) be a metric space. The Pompeiu-Hausdorff distance of the

closed subsets A,B ⊂ Y is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = inf{d(x, y); y ∈ B}. With
cl(A) we denote the closure of the set A ⊂ X.

Let I be the interval [0, T ], T > 0, denote by L(I) the σ-algebra of all
Lebesgue measurable subsets of I and let X be a real separable Banach space
with the norm |.| and with the corresponding metric d(., .). Denote by B the
closed unit ball in X. Denote by P(X) the family of all nonempty subsets
of X and by B(X) the family of all Borel subsets of X. If A ⊂ I then
χA(.) : I → {0, 1} denotes the characteristic function of A.

As usual, we denote by C(I,X) the Banach space of all continuous func-
tions x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by
L1(I,X) the Banach space of all (Bochner) integrable functions x(.) : I → X

endowed with the norm |x(.)|1 =
∫ T
0 |x(t)|dt.

Recall that a subset D ⊂ L1(I,X) is said to be decomposable if for any
u(·), v(·) ∈ D and any subset A ∈ L(I) one has uχA + vχB ∈ D, where
B = I\A. We denote by D(I,X) the family of all decomposable closed
subsets of L1(I,X).

Let F (., .) : I × X → P(X) be a set-valued map. Recall that F (., .)
is called L(I) ⊗ B(X) measurable if for any closed subset C ⊂ X we have
{(t, x) ∈ I ×X;F (t, x) ∩ C 6= ∅} ∈ L(I) ⊗ B(X).

We recall next the following definitions. For more details, we refer to [21].

Definition 2.1. a) The fractional integral of order r > 0 of a Lebesgue
integrable function f : (0,∞) → R is defined by

Irf(t) =
∫ t

0

(t− s)α−1

Γ(r)
f(s)ds, t > 0, r > 0

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the
(Euler’s) Gamma function defined by Γ(α) =

∫
∞

0 tα−1e−tdt.
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b) The Riemann-Liouville derivative of order r of f(.) ∈ L1(I,R) is de-
fined by

Dr
Lf(t) =

1

Γ(n− r)

dn

dtn

∫ t

0

f(s)

(t− s)r+1−n
ds, t > 0, n− 1 < r < n.

c) The Caputo fractional derivative of order r of f(.) ∈ L1(I,R) is defined
by

Dr
cf(t) = Dr

L(f(t) −
n−1∑
k=0

tk

k!
f (k)(0)) t > 0, n− 1 < r < n.

Remark 2.2. a) If f(.) ∈ Cn([0,∞),R) then Dr
cf(t) = In−rf (n)(t),

t > 0, n− 1 < r < n.
b) The Caputo derivative of a constant is equal to zero.
c) If f : I → X, with X a Banach space, then integrals which appears in

Definition 2.1 are taken in Bochner’s sense.

Consider A : D(A) → X the infinitesimal generator of a strongly contin-
uous semigroup {T (t), t ≥ 0} and let M ≥ 0 be such that supt∈I |T (t)| ≤M .

Definition 2.3. A continuous function x(.) ∈ C(I,X) is called a mild
solution of problem (1.1) if there exists a (Bochner) integrable function f(.) ∈
L1(I,X) such that f(t) ∈ F (t, x(t)) a.e. (I) and

x(t) = S1(t)x0 +
∫ t

0
(t− u)r−1S2(t− u)f(u)du ∀t ∈ I, (2.1)

where

S1(t) =
∫

∞

0
ξr(θ)T (trθ)dθ, S2(t) = r

∫
∞

0
θξr(θ)T (trθ)dθ,

ξr(θ) =
1

r
θ−1− 1

rωr(θ
−

1

r ) ≥ 0,

ωr(θ) =
1

π

∞∑
n=1

(−1)n−1θ−rn−1Γ(nr + 1)

n!
sin(nπr), θ > 0

and ξr is a probability density function defined on (0,∞), i.e. ξr(θ) ≥ 0,
θ ∈ (0,∞) and

∫
∞

0 ξr(θ)dθ = 1.
We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) and we denote

by S(x0) the solution set of problem (1.1).

EJQTDE, 2012 No. 64, p. 4



The results summarized in the next lemmas will be used in the proof of
our main results.

Lemma 2.4. ([28,29]) a) For any fixed t ≥ 0, S1(t) and S2(t) are linear
and bounded operators, i.e. for any x ∈ X

|S1(t)x| ≤ M |x|, |S2(t)x| ≤
M

Γ(r)
|x|.

b){S1(t), t ≥ 0} and {S2(t), t ≥ 0} are strongly continuous.
c) If T (t), t ≥ 0 is compact, then S1(t), t ≥ 0 and S2(t), t ≥ 0 are also

compact operators.

Lemma 2.5. ([18]) Let X be a separable Banach space, let H : I → P(X)
be a measurable set-valued map with nonempty closed values and g, h : I →
X,L : I → (0,∞) measurable functions. Then one has

i) The function t→ d(h(t), H(t) is measurable.
ii) If H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e. (I) then the set-valued map t →

H(t) ∩ (g(t) + L(t)B) has a measurable selection.
Moreover, if F (., .) : I ×X → P(X) has nonempty closed values, F (., x)

is measurable for any x ∈ X and x(.) ∈ C(I,X) then the set-valued map
t→ F (t, x(t)) is measurable.

Next (S, d) is a separable metric space; we recall that a multifunction
G(·) : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed
subset C ⊂ X, the subset {s ∈ S;G(s) ⊂ C} is closed.

Lemma 2.6. ([4]) Let F ∗(., .) : I × S → P(X) be a closed-valued L(I)⊗
B(S)-measurable multifunction such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the multifunction G(.) : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. (I)}

is l.s.c. with nonempty closed values if and only if there exists a continuous
mapping p(.) : S → L1(I,R) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2.7. ([4]) Let G(.) : S → D(I,X) be a l.s.c. multifunction with
closed decomposable values and let φ(.) : S → L1(I,X), ψ(.) : S → L1(I,R)
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be continuous such that the multifunction H(.) : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t) − φ(s)(t)| < ψ(s)(t) a.e. (I)}

has nonempty values.
Then H(.) has a continuous selection, i.e. there exists a continuous map-

ping h(.) : S → L1(I,X) such that h(s) ∈ H(s) ∀s ∈ S.

3 The main results

In order to obtain a Filippov type existence result for problem (1.1) one need
the following assumptions.

Hypothesis 3.1. i) The operator A generates a strongly continuous
semigroup {T (t), t ≥ 0} on a real separable Banach space X and there exists
a constant M ≥ 1 such that supt∈I |T (t)| ≤M .

ii) F (., .) : I × X → P(X) is a set-valued map with non-empty closed
values and for all x ∈ X, F (., x) is measurable.

iii) There exists l(.) ∈ L1(I,R+) with L := supt∈I I
rl(t) < +∞ and for

almost all t ∈ I, F (t, ·) is l(t) - Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀x1, x2 ∈ X.

In what follows g(.) ∈ L1(I,X) is given such that there exists λ(.) ∈
L1(I,R+) with Λ := supt∈I I

rλ(t) < +∞ which satisfies

d(g(t), F (t, y(t))) ≤ λ(t) a.e. (I),

where y(.) is a solution of the fractional semilinear differential equation

Dr
cy(t) = Ay(t) + g(t) t ∈ I, y(0) = y0,

with y0 ∈ X.

Theorem 3.2. Let Hypothesis 3.1 be satisfied, ML < 1 and consider
g(.), λ(.), y(.) y0 as above.

Then for any ε > 0 there exists (x(.), f(.)) a trajectory-selection pair of
problem (1.1) such that

|x(t) − y(t)| ≤
M(|x0 − y0| + Λ + T r

Γ(r+1)
ε)

1 −ML
, ∀t ∈ I, (3.1)
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|f(t) − g(t)| ≤
l(t)M(|x0 − y0| + Λ + T r

Γ(r+1)
ε)

1 −ML
+ λ(t) + ε, a.e. (I). (3.2)

Proof. Let ε > 0, m0 = M(|x0 − y0| + Λ + T r

Γ(r+1)
ε).

We claim that is enough to construct the sequences xn(.) ∈ C(I,X),
fn(.) ∈ L1(I,X), n ≥ 1 with the following properties below

xn(t) = S1(t)x0 +
∫ t

0
(t− s)r−1S2(t− s)fn(s)ds, ∀t ∈ I, (3.3)

|x1(t) − x0(t)| ≤ m0 ∀t ∈ I, (3.4)

|f1(t) − f0(t)| ≤ λ(t) + ε a.e. (I), (3.5)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.6)

|fn+1(t) − fn(t)| ≤ L(t)|xn(t) − xn−1(t)| a.e. (I), n ≥ 1. (3.7)

Indeed, from (3.3), (3.4) and (3.7) we have for almost all t ∈ I

|xn+1(t) − xn(t)| ≤
∫ t

0
(t− t1)

r−1|S2(t− t1)|.|fn+1(t1) − fn(t1)|dt1 ≤

M

Γ(r)

∫ t

0
(t− t1)

r−1|fn+1(t1) − fn(t1)|dt1 ≤
M

Γ(r)

∫ t

0
(t− t1)

r−1l(t1)|xn(t1)

−xn−1(t1)|dt1 ≤
M

Γ(r)

∫ t

0
(t− t1)

r−1l(t1)
M

Γ(r)

∫ t1

0
(t1 − t2)

r−1l(t2)

|fn(t1)− fn−1(t1)|dt2dt1 ≤Mn 1

Γ(r)

∫ t

0
(t− t1)

r−1l(t1)
1

Γ(r)

∫ t1

0
(t1 − t2)

r−1l(t2)

...
1

Γ(r)

∫ tn−1

0
(tn−1 − tn)r−1l(tn)m0dtn...dt1 ≤Mnm0L

n = (ML)nm0.

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,X). Thus,
from (3.7) for almost all t ∈ I, the sequence {fn(t)} is Cauchy in X. More-
over, from (3.4) and the last inequality we have

|xn(t) − y(t)| ≤ |x1(t) − y(t)| +
∑n−1

i=2 |xi+1(t) − xi(t)|
≤ m0(1 +ML+ (ML)2 + ...) = m0

1−ML
.

(3.8)

On the other hand, from (3.5), (3.7) and (3.8) we obtain for almost all
t ∈ I

|fn(t) − g(t)| ≤
∑n−1

i=1 |fi+1(t) − fi(t)| + |f1(t) − g(t)| ≤
l(t)

∑n−2
i=1 |xi(t) − xi−1(t)| + λ(t) + ε ≤ l(t) m0

1−ML
+ λ(t) + ε.

(3.9)
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Let x(.) ∈ C(I,X) be the limit of the Cauchy sequence xn(.). From (3.9)
the sequence fn(.) is integrably bounded and we have already proved that for
almost all t ∈ I, the sequence {fn(t)} is Cauchy in X. Take f(.) ∈ L1(I,X)
with f(t) = limn→∞ fn(t).

Using the fact that the values of F (., .) are closed we get that f(t) ∈
F (t, x(t)) a.e. (I).

One may write successively,

|
∫ t

0
(t− s)r−1S2(t− s)fn(s)ds−

∫ t

0
(t− s)r−1S2(t− s)f(s)ds| ≤

M

Γ(r)

∫ t

0
(t− s)r−1|fn(s) − f(s)|ds ≤

M

Γ(r)

∫ t

0
(t− s)r−1l(s)|xn−1(s)

−x(s)|ds ≤
M

Γ(r)
L|xn−1(.) − x(.)|C .

Therefore, we may pass to the limit in (3.1) and we obtain that x(.) is a
solution of problem (1.1)

Finally, passing to the limit in (3.8) and (3.9) we obtained the desired
estimations.

It remains to construct the sequences xn(.), fn(.) with the properties in
(3.3)-(3.7). The construction will be done by induction.

We apply, first, Lemma 2.5 and we have that the set-valued map t →
F (t, y(t)) is measurable with closed values and

F (t, y(t)) ∩ {g(t) + (λ(t) + ε)B} 6= ∅ a.e. (I).

From Lemma 2.5 we find f1(.) a measurable selection of the set-valued map
H1(t) := F (t, y(t)) ∩ {g(t) + (λ(t) + ε)B}. Obviously, f1(.) satisfy (3.5).
Define x1(.) as in (3.3) with n = 1. Therefore, we have

|x1(t) − y(t)| ≤ |S1(t)(x0 − y0)| + |
∫ t

0
(t− s)r−1S2(t− s)(f1(s) − g(s))ds|

≤M |x0 − y0| +
M

Γ(r)

∫ t

0
(t− s)r−1(λ(s) + ε)ds ≤

≤M |x0 − y0| +MΛ +
M

Γ(r + 1)
εT r = m0.
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Assume that for some N ≥ 1 we already constructed xn(.) ∈ C(I,X) and
fn(.) ∈ L1(I,X), n = 1, 2, ...N satisfying (3.3)-(3.7). We define the set-valued
map

HN+1(t) := F (t, xN(t)) ∩ {fN(t) + L(t)|xN (t) − xN−1(t)|B}, t ∈ I.

From Lemma 2.5 the set-valued map t → F (t, xN (t)) is measurable and
from the lipschitzianity of F (t, .) we have that for almost all t ∈ I HN+1(t) 6=
∅. We apply Lemma 2.5 and find a measurable selection fN+1(.) of F (., xN(.))
such that

|fN+1(t) − fN(t)| ≤ L(t)|xN (t) − xN−1(t)| a.e. (I)

We define xN+1(.) as in (3.3) with n = N + 1 and the proof is complete.

If in Theorem 3.2 we take g = 0, y = 0, y0 = 0, λ = l and ε = Γ(r+1)
MT r

ε

then we obtain the following existence result for solutions of problem (1.1).

Corollary 3.3. Let Hypothesis 3.1 be satisfied, ML < 1 and assume that
d(0, F (t, 0)) ≤ l(t) ∀(t) ∈ I.

Then there exists x(.) ∈ C(I,X) a solution of problem (1.1) such that

|x(t)| ≤
ML+ ε

1 −ML
, ∀(t) ∈ I.

Next we obtain a continuous version of Theorem 3.1. This result allows
to provide a continuous selection of the solution set of problem (1.1).

Hypothesis 3.4. i) The operator A generates a strongly continuous
semigroup {T (t), t ≥ 0} on a real separable Banach space X and there exists
a constant M ≥ 1 such that supt∈I |T (t)| ≤M .

ii) F (., .) : I ×X → P(X) has nonempty closed values, F (., .) is L(I) ⊗
B(X) measurable and there exists l(.) ∈ L1(I,R+) with L := supt∈I I

rl(t) <
+∞ such that, for almost all t ∈ I, F (t, .) is l(t)-Lipschitz.

Hypothesis 3.5. i) S is a separable metric space, a(.) : S → X, ε(.) :
S → (0,∞) are continuous mappings.

ii) There exists the continuous mappings g(.) : S → L1(I,X),λ(.) : S →
L1(I,R+), y(.) : S → C(I,X) such that

Dr
c(y(s))(t) = Ay(s)(t) + g(s)(t) ∀s ∈ S, t ∈ I,
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d(g(s)(t), F (t, y(s)(t))) ≤ λ(s)(t) a.e. (I), ∀ s ∈ S

and the mapping s→ Λ(s) := supt∈I(I
rλ(s))(t) is continuous.

Next we use the notation b(s) := supt∈I |a(s) − y(s)(0)|.

Theorem 3.6. Assume that Hypotheses 3.4 and 3.5 are satisfied and
ML < 1.

Then there exists the continuous mapping x(.) : S → C(I,X) such that
for any s ∈ S, x(s)(.) is a mild solution of the problem

Dr
cx(t) ∈ Ax(t) + F (t, x(t)), x(0) = a(s)

and

|x(s)(t) − y(s)(t)| ≤
M

1 −ML
(b(s) + ε(s) + Λ(s)) ∀(t, s) ∈ I × S.

Proof. Set x0(.) = y(.), λp(s) := (ML)p−1M(b(s) + ε(s) + Λ(s)), p ≥ 1.
We consider the set-valued maps G0(.), H0(.) defined, respectively, by

G0(s) = {v ∈ L1(I,X); v(t) ∈ F (t, y(s)(t)) a.e. (I)},

H0(s) = cl{v ∈ G0(s); |v(t) − g(s)(t)| < λ(s)(t) +
Γ(r + 1)

T r
ε(s)}.

Since d(g(s)(t), F (t, y(s)(t)) ≤ λ(s)(t) < λ(s)(t) + Γ(r+1)
T r

ε(s) the set H0(s) is
not empty.

Set F ∗

0 (t, s) = F (t, y(s)(t)) and note that

d(0, F ∗

0 (t, s)) ≤ |g(s)(t)| + λ(s)(t) =: λ∗(s)(t)

and λ∗(.) : S → L1(I,R) is continuous.
Applying now Lemmas 2.6 and 2.7 we obtain the existence of a continuous

selection f0 of H0 such that ∀s ∈ S, t ∈ I,

f0(s)(t) ∈ F (t, y(s)(t)) a.e. (I), ∀s ∈ S,

|f0(s)(t) − g(s)(t)| ≤ λ0(s)(t) = λ(s)(t) +
Γ(r + 1)

T r
ε(s).

We define

x1(s)(t) = S1(t)a(s) +
∫ t

0
(t− u)r−1S2(t− u)f0(s)(u)du
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and one has

|x1(s)(t) − x0(s)(t)| ≤Mb(s) +
M

Γ(r)

∫ t

0
(t− u)r−1|f0(s)(u) − g(s)(u)|du

≤Mb(s) +
M

Γ(r)

∫ t

0
(t− u)r−1(λ(s)(u) +

Γ(r + 1)

T r
ε(s))ds ≤

≤Mb(s) +MΛ(s) +Mε(s) =: λ1(s) t ∈ I, s ∈ S.

We shall construct, using the same idea as in [14], two sequences of ap-
proximations fp(.) : S → L1(I,X), xp(.) : S → C(I,X) with the following
properties

a) fp(.) : S → L1(I,X), xp(.) : S → C(I,X) are continuous,
b) fp(s)(t) ∈ F (t, xp(s)(t)) a.e. (I), s ∈ S,
c) |fp(s)(t) − fp−1(s)(t)| ≤ l(t)λp(s) a.e. (I), s ∈ S.
d) xp+1(s)(t) = S1(t)a(s) +

∫ t
0(t− u)r−1S2(t− u)fp(s)(u)du, t ∈ I, s ∈ S.

Suppose we have already constructed fi(.), xi(.) satisfying a)-c) and define
xp+1(.) as in d). From c) and d) one has

|xp+1(s)(t) − xp(s)(t)| ≤
M

Γ(r)

∫ t
0(t− u)r−1|fp(s)(u) − fp−1(s)(u)|du ≤

M
Γ(r)

∫ t
0(t− u)r−1l(u)λp(s)du < MLλp(s) =: λp+1(s).

(3.10)
On the other hand,

d(fp(s)(t), F (t, xp+1(s)(t)) ≤ l(t)|xp+1(s)(t) − xp(s)(t)| <
< l(t)λp+1(s).

(3.11)

For any s ∈ S we define the set-valued maps

Gp+1(s) = {v ∈ L1(I,X); v(t) ∈ F (t, xp+1(s)(t)) a.e. (I)},

Hp+1(s) = cl{v ∈ Gp+1(s); |v(t) − fp(s)(t)| < l(t)λp+1(s)}.

We note that from (3.11) the set Hp+1(s) is not empty.
Set F ∗

p+1(t, s) = F (t, xp+1(s)(t)) and note that

d(0, F ∗

p+1(t, s)) ≤ |fp(s)(t)| + l(t)λp+1(s) =: λ∗p+1(s)(t)

and λ∗p+1(.) : S → L1(I,R) is continuous.

EJQTDE, 2012 No. 64, p. 11



By Lemmas 2.6 and 2.7 we obtain the existence of a continuous function
fp+1(.) : S → L1(I,X) such that

fp+1(s)(t) ∈ F (t, xp+1(s)(t)) a.e. (I), ∀s ∈ S,

|fp+1(s)(t) − fp(s)(t)| ≤ l(t)λp+1(s) ∀s ∈ S, (t) ∈ I.

From (3.10), c) and d) we obtain

|xp+1(s)(.) − xp(s)(.)|C ≤ λp+1(s) = (ML)pM(b(s) + ε(s) + Λ(s)), (3.12)

|fp+1(s)(.)−fp(s)(.)|1 ≤ |l|1λp(s) = (ML)p−1M |l|1(b(s)+ε(s)+Λ(s)). (3.13)

Therefore fp(s)(.), up(s)(.) are Cauchy sequences in the Banach space
L1(I,X) and C(I,X), respectively. Let f(.) : S → L1(I,X), x(.) : S →
C(I,X) be their limits. The function s → b(s) + ε(s) + Λ(s) is continuous,
hence locally bounded. Therefore (3.13) implies that for every s′ ∈ S the
sequence fp(s

′)(.) satisfies the Cauchy condition uniformly with respect to s′

on some neighborhood of s. Hence, s → f(s)(.) is continuous from S into
L1(I,X).

From (3.12), as before, xp(s)(.) is Cauchy in C(I,X) locally uniformly
with respect to s. So, s → x(s)(.) is continuous from S into C(I,X). On
the other hand, since xp(s)(.) converges uniformly to x(s)(.) and

d(fp(s)(t), F (t, x(s)(t)) ≤ l(t)|xp(s)(t) − x(s)(t)| a.e. (I), ∀s ∈ S

passing to the limit along a subsequence of fp(s)(.) converging pointwise to
f(s)(.) we obtain

f(s)(t) ∈ F (t, x(s)(t)) a.e. (I), ∀s ∈ S.

One may write successively,

|
∫ t

0
(t− u)r−1S2(t− u)fp(s)(u)du−

∫ t

0
(t− u)r−1S2(t− u)f(s)(u)du| ≤

M

Γ(r)

∫ t

0
(t− u)r−1|fp(s)(u) − f(s)(u)|du ≤

M

Γ(r)

∫ t

0
(t− u)r−1l(u)|xp−1(s)(u)

−x(s)(u)|du ≤ML|xp−1(s)(.) − x(s)(.)|C .

Therefore one may pass to the limit in d) and we get ∀t ∈ I, s ∈ S

x(s)(t) = S1(t)a(s) +
∫ t

0
(t− u)r−1S2(t− u)f(s)(u)du,
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i.e., x(s)(.) is the desired solution.
Moreover, by adding inequalities (3.10) for all p ≥ 1 we get

|xp+1(s)(t) − y(s)(t)| ≤
p+1∑
l=1

λl(s) ≤
M(b(s) + ε(s) + Λ(s))

1 −ML
. (3.14)

Passing to the limit in (3.14) we obtain the conclusion of the theorem.

Hypothesis 3.7. Hypothesis 3.4 is satisfied and there exists q(.) ∈
L1(I,R+) with supt∈I I

rq(t) <∞ such that d(0, F (t, 0)) ≤ q(t) a.e. (I).

Corollary 3.8. Assume that Hypothesis 3.7 is satisfied.
Then there exists a function x(., .) : I ×X → X such that
a) x(., ξ) ∈ S(ξ), ∀ξ ∈ X.
b) ξ → x(., ξ) is continuous from X into C(I,X).

Proof. We take S = X, a(ξ) = ξ ∀ξ ∈ X, ε(.) : X → (0,∞) an arbitrary
continuous function, g(.) = 0, y(.) = 0, λ(s)(t) ≡ q(t) ∀ξ ∈ X, t ∈ I and we
apply Theorem 3.6 in order to obtain the conclusion of the corollary.
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[5] M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969.

EJQTDE, 2012 No. 64, p. 13



[6] C. Castaing and M. Valadier, Convex Analysis and Measurable Multi-
functions, Springer, Berlin, 1977.

[7] A. Cernea, On the existence of solutions for fractional differential in-
clusions with boundary conditions, Fract. Calc. Appl. Anal., 12 (2009),
433-442.

[8] A. Cernea, Variational inclusions for fractional differential inclusions,
Commun. Appl. Nonlinear Anal., 16 (2009), 85-92.

[9] A. Cernea, Continuous version of Filippov’s theorem for fractional dif-
ferential inclusions, Nonlinear Anal. 72 (2010), 204-208.

[10] A. Cernea, On the existence of solutions for nonconvex fractional hyper-
bolic differential inclusions, Commun. Math. Anal. 9 (2010) 109-120.

[11] A. Cernea, Some remarks on a fractional differential inclusion with non-
separated boundary conditions, Electronic J. Qual. Theory Diff. Equa-
tions, 2011, no. 45, (2011), pp. 1-14.

[12] Y.K. Chang and J.J. Nieto, Some new existence results for fractional dif-
ferential inclusions with boundary conditions, Mathematical and Com-
puter Modelling, 49 (2009), 605-609.

[13] L. Chen and Z. Fan, On mild solutions to fractional differential equations
with nonlocal conditions, Electronic J. Qual. Theory Diff. Equations,
2011, no. 53, (2011), pp. 1-13.

[14] R.M. Colombo, A. Fryszkowski, T. Rzezuchowski and V. Staicu, Con-
tinuous selections of solution sets of Lipschitzean differential inclusions,
Funkcial. Ekvac., 34 (1991), 321-330.

[15] M.M. El-Borai, Some probability densities and fundamental solutions
of fractional evolution equations, Chaos Solitons Fractals, 14 (2002),
433-440.

[16] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential
equations of arbitrary orders, Appl. Math. Comput. 68 (1995), 15-25.

[17] A. F. Filippov, Classical solutions of differential equations with multi-
valued right hand side, SIAM J. Control, 5 (1967), 609-621.

EJQTDE, 2012 No. 64, p. 14



[18] H. Frankowska, A priori estimates for operational differential inclusions,
J. Diff. Equations, 84 (1990), 100-128.

[19] J. Henderson and A. Ouahab, Fractional functional differential inclu-
sions with finite delay, Nonlinear Anal., 70 (2009), 2091-2105.

[20] E. Hernandez, D. O’Regan and K. Balachandran, On recent develop-
ments in the theory of abstract differential equations with fractional
derivatives, Nonlinear Anal., 70 (2010), 3462-3471.

[21] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications
of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[22] K. Miller and B. Ross, An Introduction to the Fractional Calculus and
Differential Equations, John Wiley, New York, 1993.

[23] A. Ouahab, Some results for fractional boundary value problem of dif-
ferential inclusions., Nonlinear Anal. 69 (2009), 3871-3896.

[24] I. Podlubny, Fractional Differential Equations, Academic Press, San
Diego, 1999.

[25] V. Staicu, Continuous selections of solutions sets to evolution equations,
Proc. Amer. Math. Soc., 113 (1991), 403-413.

[26] J. Wang and Y. Zhou, A class of fractional evolution equations and
optimal controls, Nonlinear Anal. Real World Appl., 12 (2011), 262-
272.

[27] J. Wang and Y. Zhou, Existence and controllability results for fractional
semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12
(2011), 3642-3653.

[28] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral
evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.

[29] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution
equations, Nonlinear Anal. Real World Appl., 11 (2010), 4465-4475.

(Received January 10, 2012)

EJQTDE, 2012 No. 64, p. 15


