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Abstract

We give a complete description of the set of solutions to the boundary value
problem

−
(

ϕ
(

u′
))′

= f (u) in (0, 1) ; u (0) = u (1) = 0

where ϕ is an odd increasing homeomorphism of R and f ∈ C (R, R) is odd.

Key words. Strongly nonlinear O.D.E’s, Sturm-liouville b.v.p’s, Rabinowitz global
bifurcation theory.

A.M.S. Subject Classifications: 34B15, 34C15

1 Introduction

The purpose of this paper is to give a complete description of the set of solutions to the
boundary value problem

{

− (ϕ (u′))′ = f (u) in (0, 1)
u (0) = u (1) = 0

(1)

where ϕ is an odd increasing homeomorphism of R and f is an odd function of C (R, R) .
By a solution of (1), we mean a function u ∈ C1 ([0, 1]) satisfying (ϕ (u′))′ = −f (u)

in (0, 1) and the Dirichlet conditions u (0) = u (1) = 0.
Note that the differential operator u → (ϕ (u′))′ is linear if and only the function

x→ ϕ (x) is linear, hence the ODE in (1) is said strongly nonlinear.
This work is motivated by the previous ones done in [13], [14], [15], [8] and essentially

by [16].
In [16] Garćıa-Huidobro & Ubilla study problem (1) under the following hypothesis

on the functions f and ϕ

lim
x→0

ϕ (σx)

ϕ (x)
= σq−1 for some q > 1 and for all σ ∈ (0, 1) ,
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lim
x→+∞

ϕ (σx)

ϕ (x)
= σp−1 for some p > 1 and for all σ ∈ (0, 1) ,

lim
x→0

f (x)

ϕ (x)
= a and lim

x→+∞

f (x)

ϕ (x)
= A.

Using time-maps approach they give a multiplicity result when a and A lie in some
resonance intervals.

In this work we will replace the growing conditions on ϕ and f at 0 and +∞ by global
conditions on the convexity of ϕ and f. These new conditions which will play significant
role in the proof of existence of solutions as well as in the proof of uniqueness of these
solutions in some areas of C1 ([0, 1]) , can appear very restrictive. However we think that
this condition is usual, indeed this kind of assumption is often met in the literature when
an exactitude result is aimed (see [3], [6] and [18]).

Our strategy is as follows:
In a first stage, we locate the possible solutions of problem (1) in some subsets Aν

k,
(where for k ∈ N∗ and ν = +,− Aν

k is defined in section 2) of C1 ([0, 1]) and we give some
properties of these solutions. An immediate consequence of these results is: u ∈ A+

k is
solution to problem (1) if and only if u is a positive solution to the problem

{

− (ϕ (u′))′ = f (u) in
(

0, 1
2k

)

u (0) = u′
(

1
2k

)

= 0.
(2)

Then we associate to problem (2) the auxiliary Sturm-Liouville problem

{

−v′′ (x) =
∼

f
(∫ x

0
ψ (v′ (t)) dt

)

in
(

0, 1
2k

)

v (0) = v′
(

1
2k

)

= 0.
(3)

such that u is positive solution to problem (2) if and only if v (x) =
∫ x

0
ϕ (u′ (t)) dt is a

positive solution to the auxiliary Sturm-Liouville problem (3). Thus we are brought to
investigate a nonlinear Sturm-Liouville problem for which after addition of a linear part
containing a real parameter existence of a positive solution will be proved by the use of
Rabinowitz global bifurcation theory (see [19], [20] and [21]).

At the end, we will use assumptions (5) and (7) to prove uniqueness of the solution in
each subset Aν

k.

The paper is organized as follows: Section 2 is devoted to the statement of the main
results and some necessary notations. In section 3 we expose some preliminary results we
need in the proof of the principal results. In the last section we give the proofs of main
results.

2 Notations and main results

In the following we denote by E = C1 ([a, b]) with its norm ‖u‖1 = ‖u‖0 + ‖u′‖0
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Let, for any integer k ≥ 1 and a < b

S+
k =

{

u ∈ E : u admits exactly (k − 1) zeros in ]a, b[
all are simple, u (a) = u (b) = 0 and u′ (a) > 0

}

S−
k = −S+

k and Sk = S+
k ∪ S−

k .

Let u be a function belonging to C ([a, b]) which vanishes at x1 and x2 (x1 < x2). If
u does not vanish at any point of the open interval I = ]x1, x2[ we call its restriction to
this interval I– hump of u. When there is no confusion we say a hump of u.

With this definition in mind, each function in S+
k has exactly k humps such that the

first one is positive, the second is negative, and so on with alterations.
Let A+

k (k ≥ 1) the subset of S+
k composed by the functions u satisfying:

• Every hump of u is symmetrical about the center of the interval of its definition.

• Every positive (resp. negative) hump of u can be obtained by translating the first
positive (resp. negative) hump.

• The derivative of each hump of u vanishes one and only one time.

Let A−
k = −A+

k and Ak = A+
k ∪ A−

k .

We recall that the boundary value problem:
{

−u′′ = λu in (a, b)
u (a) = u′ (b) = 0

has an increasing sequence of eigenvalues (µk ([a, b]))k≥1 with µk ([a, b]) =
(2k − 1)2

π2

4 (b− a)2 .

We will use in this work the so called Jensen inequality given by:

F





1

b− a

b
∫

a

u (t) dt



 ≥
1

b− a

b
∫

a

F (u (t)) dt

where F : R → R is a concave function and u is a function in C ([a, b]) .
Moreover if b− a < 1 and F (0) = 0 then

F





b
∫

a

u (t) dt



 ≥

b
∫

a

F (u (t)) dt (4)

Let S be the set of solutions to problem (1), then our main results are :

Theorem 1 ( Superlinear case ) :
Suppose the functions ϕ and f satisfy the following conditions:

ϕ is concave on R
+, (5)
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lim
x→0

f (x)

ϕ (x)
= 0 and lim

x→+∞

f (x)

ϕ (x)
= +∞, (6)

the function s→
f (s)

s
is increasing on (0,+∞) (7)

Then

S ⊂ {0} ∪

(

∪
k≥1

Ak

)

and for each integer k ≥ 1 there exists uk ∈ A+
k such that

S ∩ Ak = { uk ,−uk } .

Theorem 2 ( Sublinear case ) :
Suppose the functions ϕ and f satisfy the following conditions:

ϕ is convex on R
+, (8)

lim
x→0

f (x)

ϕ (x)
= +∞ and lim

x→+∞

f (x)

ϕ (x)
= 0, (9)

f is increasing and concave in R
+. (10)

Then

S ⊂ {0} ∪

(

∪
k≥1

Ak

)

and for each integer k ≥ 1 there exists uk ∈ A+
k such that

S ∩ Ak = { uk ,−uk } .

Remark 1 The above theorems give a complete description of the solution set of the
problem (1), indeed the theorems state that there is no solution except the trivial solution
and those belonging to ∪

k≥1
Ak, and in each A±

k there is exactly one solution.

Remark 2 Hypothesis (7) is similar to (3-3) assumed in [4]. To obtain the exact number
of solutions to the boundary value problem

{

−u′′ = λu+ f (u) in (0, 1)
u (0) = u (1) = 0

(11)

according λ in a resonance interval, the author assumed the function s →
f (s)

s
and

s→
−f (−s)

s
are increasing on (0,+∞) .

Note that, hypothesis (7) implies that f is increasing, and if f is convex then hypothesis
(7) is satisfied.

In the sublinear case, hypothesis (10) implies that the function s→
f (s)

s
is decreasing

on (0,+∞) .
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3 Some preliminary results:

In this section we give some lemmas which will be crucial for the proof of our main results.
Consider the boundary value problem

{

− (ϕ (u′))′ = g (u) in (a, b)
u (a) = u (b) = 0

(12)

where ϕ is an odd increasing homeomorphism of R and g is a function in C (R, R) satisfying

xg (x) > 0 for all x ∈ R
∗. (13)

We define a solution of problem (12) to be a function u ∈ E satisfying (ϕ (u′))′ =
−g (u) in (a, b) and u (a) = u (b) = 0.

If u is a solution to problem (12), then there exists a real constant C ≥ 0 such that

Ψ (ϕ (u′ (x))) +G (u (x)) = C for all x ∈ [a, b] (14)

where G (x) =

∫ x

0

g (t) dt , Ψ (x) =

∫ x

0

ψ (t) dt with ψ = ϕ−1.

Note that Ψ the Legendre transform of the convex function Φ where Φ (s) =
∫ s

0
ϕ (t) dt,

is even , Ψ (0) = 0 and Ψ (s) > 0 for all s 6= 0.
Then the first result in this section is:

Lemma 3 Suppose that hypothesis (13) holds true. If u is a nontrivial solution to problem
(12), then there exists an integer k ≥ 1 such that u ∈ Ak.

Proof. Let u be a nontrivial solution to problem (12). We begin the proof by showing
u′ (a) 6= 0.

Let us suppose the contrary. Then, if we put x = a in equation (14), we get C = 0.
Thus, for any x ∈ [0, 1], G (u (x)) = −Ψ (ϕ (u′ (x))) ≤ 0. Since G is strictly positive on
R∗ and G (0) = 0, u (x) = 0 for all x ∈ [a, b]. This is impossible since u is a nontrivial
solution.

Now, let us show that u has a finite number of zeros. Suppose the contrary and let
(zn) the infinite sequence of zeros of u and z∗ an accumulate point of (zn) . Then we have

u (z∗) = u′ (z∗) = lim
n→∞

u (zn) − u (z∗)

zn − z∗
= 0.

Again, putting x = z∗ in equation (14) we get the same contradiction as above.
Let z1 and z2 two consecutive zeros of u, and suppose that u > 0 in (z1, z2) and y∗

is a critical point of u in (z1, z2) . It follows from equation (12) that (ϕ (u′))′ = −g (u)
in (z1, z2). Since ϕ is an increasing odd homeomorphism of R, u′ > 0 in (z1, y∗), u

′ < 0
in (y∗, z2) and u′ (y∗) = 0. Thus y∗ is the unique critical point of u at which u reach its
maximum value.
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Let
ρ = u (y∗) = max

x∈(z1, z2)
u (x)

It follows from equation (14) that

u′ (t) = ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

)

for all t ∈ [z1, y∗] (15)

and
u′ (t) = −ψ

(

Ψ−1
+ (G (ρ) −G (u (t)))

)

for all t ∈ [y∗, z2] (16)

where Ψ−1
+ is the inverse of Ψ on R+. Then

x− z1 =

u(x)
∫

0

du (t)

u′ (t)
=

u(x)
∫

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

) for all x ∈ [z1, y∗] (17)

and

z2 − x = −

u(x)
∫

0

du (t)

u′ (t)
=

u(x)
∫

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

) for all x ∈ [y∗, z2] (18)

Putting x = y∗ in equations (17) and (18) we get

y∗ − z1 =

ρ
∫

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

) = z2 − y∗

which yields

y∗ =
z1 + z2

2
.

For the symmetry of the (z1, z2)−hump of u about
z1 + z2

2
, it suffices to show that for

all x ∈ [z1, z2] u ( z1 + z2 − x) = u (x) .This becomes very easy if we observe that x =
(z1 + z2) − (z1 + z2 − x) and make use of equations (17) and (18) , then we get: in each

of the cases x ∈

[

z1,
z1 + z2

2

]

or x ∈

[

z1 + z2

2
, z2

]

x− z1 = z2 − (z1 + z2 − x) =

u(x)
∫

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

)

=

u(z1+z2−x)
∫

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u (t)))

)
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which leads to u ( z1 + z2 − x) = u (x) for all x ∈ [ z1, z2]
1.

It remains to show that if z3 < z4 are two consecutive zeros of u and u > 0 in [ z3, z4],
then u[ z3, z4] is the translation of u

[ z1, z2]
.

To do this it suffices to prove that u (z3 + (x− z1)) = u (x) for all x ∈ [z1, z2].

Putting respectively x =
z1 + z2

2
and x =

z3 + z4

2
in equation (14) we deduce

C = G

(

u

(

z1 + z2

2

))

= G

(

u

(

z3 + z4

2

))

Since G is strictly increasing on (0,+∞) , u

(

z1 + z2

2

)

= u

(

z3 + z4

2

)

.

Making use of equations (17) and (18), we get :

z4 −
z3 + z4

2
=

z4 − z3

2

=

u( z3+z4
2 )

∫

0

du (t)

ψ
(

Ψ−1
+

(

G
(

u
(

z3+z4

2

))

−G (u (t))
))

=

u( z1+z2
2 )

∫

0

du (t)

ψ
(

Ψ−1
+

(

G
(

u
(

z1+z2

2

))

−G (u (t))
))

= z2 −
z1 + z2

2
=
z2 − z1

2

which yields z3 + (z2 − z1) = z4.

If we set v (x) = u ( z3 + ( x− z1)) for all x ∈ [z1, z2], then we have

v (z1) = u (z3) = 0

v (z2) = u (z4) = 0

Observe that u and v are solutions of the problem
{

− (ϕ (w′))′ = g (w) in (z1, z2)
w (z1) = w (z2) = 0

So, for any x ∈

[

z1,
z1 + z2

2

]

, we have:

x− z1 =

u(x)
∫

0

du (t)

ψ
(

Ψ−1
+

(

G
(

u
(

z1+z2

2

))

−G (u (t))
))

=

v(x)
∫

0

dv (t)

ψ
(

Ψ−1
+

(

G
(

v
(

z1+z2

2

))

−G (v (t))
))

1We have

∫

a

0

f (t) dt =

∫

b

0

f (t) dt with f > 0.
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which leads to v (x) = u (x) for all x ∈

[

z1,
z1 + z2

2

]

.

Using the symmetry of the function u we deduce that v (x) = u (x) for all x ∈ [z1, z2].
This completes the proof of the lemma.

Lemma 4 Suppose that hypothesis (13) holds true and g is odd. If u ∈ A+
k ( resp. A−

k )
is solution to problem (12) with k ≥ 2 then the first negative ( resp. positive ) hump of u
is a translation of the first negative ( resp. positive ) of (−u) .

Proof. Let u ∈ A+
k be a solution to problem (12) and (zi)

i=k

i=0 the finite sequence of zeros
of u such that 0 = z0 < z1 < z2 < · · · < zk = 1.

Since the positive ( resp. negative ) humps of u are translations of the first positive (
resp. negative ) hump one, it suffices to prove that u[z1,z2] is a translation of −u[0,z1].

Let us prove that the two humps have the the same length.. Putting x =
z1

2
and

x =
z1 + z2

2
in (14) we get

C = G
(

u
(z1

2

))

= G
(

u
(z1+z2

2

))

.

Since G is even and increasing in R+

u
(z1

2

)

= −u
(z1+z2

2

)

.

Set ρ = u
(z1

2

)

= −u
(z1+z2

2

)

, as in the proof of Lemma 3

z1

2
=

ρ
∫

0

ds

ψ
(

Ψ−1
+ (G (ρ) −G (s))

)

and
z2 − z1

2
=
z1 + z2

2
− z1 =

∫ 0

u(
z1+z2

2 )

ds

ψ
(

Ψ−1
+

(

G
(

u
(

z1+z2

2

))

−G (s)
))

=
∫ −u(

z1+z2
2 )

0

ds

ψ
(

Ψ−1
+

(

G
(

u
(

z1+z2

2

))

−G (s)
))

=

∫ ρ

0

ds

ψ
(

Ψ−1
+ (G (ρ) −G (s))

) =
z1

2

which leeds to
z2 − z1 = z1.

Setting v (x) = −u (z1 + x) for all x ∈ [0, z1] and arguing as in the proof of Lemma 3,
we get u (x) = v (x) = −u (z1 + x) for all x ∈ [0, z1] . So the lemma is proved

Lemma 5 Suppose that hypothesis (13) holds true. If u1 6= u2 are two positives solutions
of problem (12), then u1and u2 are ordered, namely u1<u2 in (a, b) or u1<u2 in (a, b).
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Proof. Let u1 and u2 be two solutions of the lemma.
We have
• either u′1 (a) = u′2 (a)
• or u′1 (a) 6= u′2 (a) .
Assume first that the first situation holds. We deduce from equation (14) :

G
(

u1

(

a+b
2

))

= Ψ (ϕ (u′1 (a))) = G
(

u2

(

a+b
2

))

= Ψ (ϕ (u′2 (a))) .

Since G is strictly increasing, we get u1

(

a + b

2

)

= u2

(

a+ b

2

)

.

Let ρ = u1

(

a+ b

2

)

= u2

(

a+ b

2

)

, then (17) written for u1 and u2 gives:

x− a =

∫ u1(x)

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u1 (t)))

)

=

∫ u2(x)

0

du (t)

ψ
(

Ψ−1
+ (G (ρ) −G (u2 (t)))

) for any x ∈

[

a,
a + b

2

]

.

Hence, u1 (x) = u2 (x) for all x ∈

[

a,
a + b

2

]

. Since u1 and u2 are in A+
1 ; namely u1

and u2 are symmetrical about a+b
2

, u1 (x) = u2 (x) for all x ∈ [a, b], which contradicts the
statement of the lemma.

Now, suppose that u′1 (a)<u′2 (a). Since u1 and u2 are symmetrical about
a+ b

2
, we

will prove that u1 (x) < u2 (x) for all x ∈

(

a,
a+ b

2

]

.

Let A =
{

x ∈
(

a, a+b
2

]

, u1 (x) = u2 (x)
}

. Assume A 6= ∅ and let x0 = inf A and
u = u1 − u2.

Then x0 >a, indeed if x0 = a and (xn) is a sequence such that lim xn = x0
n→+∞

, we get :

0<u′2 (a) − u′1 (a) = lim
n→+∞

u2 (xn) − u1 (xn)

xn − a
= 0

which is impossible.
Thus, let (yn) be a sequence in (a, x0) such that lim

n→+∞
yn = x0. We get:

u′ (x0) = lim
n→+∞

u (yn) − u (x0)

yn − x0
= lim

n→+∞

u (yn)

yn − x0
≤ 0

then,
0 ≤ u2 (x0) ≤ u1 (x0) .

Using again (14), we obtain:

Ψ (ϕ (u′1 (a))) − Ψ (ϕ (u′1 (x0))) = G (u1 (x0))
= G (u1 (x0)) = Ψ (ϕ (u′2 (a))) − Ψ (ϕ (u′2 (x0)))
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so
0>Ψ (ϕ (u′1 (a))) − Ψ (ϕ (u′2 (a))) = Ψ (ϕ (u′1 (x0))) − Ψ (ϕ (u′2 (x0))) ≥ 0

which is impossible, therefore A = ∅ .

4 Proof of the main results

Since the function f is odd and satisfies hypothesis (13) , it leads from lemma 3 any non
trivial solution to problem (1) belongs to ∪

k≥1
Ak.

4.1 Existence of solutions :

It arises from lemmas 3 and 4: to get a solution belonging to A+
k (resp. A−

k ) to problem
(1) it suffices to prove that the problem

{

− (ϕ (u′ (x)))′ = f (u (x)) in
(

0, 1
2k

)

u (0) = u′
(

1
2k

)

= 0.
(19)

admits a positive (resp. negative ) solution.2

Set f+ = max (f, 0) and consider the boundary value problem

{

−v′′ (x) = f+
(∫ x

0
ψ (v′ (t)) dt

)

in
(

0, 1
2k

)

v (0) = v′
(

1
2k

)

= 0.
(20)

Observe that if v is a positive solution to problem (20) if and only if u (x) =
∫ x

0
ψ (u′ (t)) dt is

a positive solution to the problem (19)3.

Hence, we are brought to look for positive solutions to the problem

{

−v′′ (x) = f+
(∫ x

0
ψ (v′ (t)) dt

)

in (0, a)
v (0) = v′ (a) = 0

(21)

where a ∈ (0, 1) .
Consider the boundary value problem

{

−v′′ (x) = λv (x) + f+ (u (x)) in (0, a)
v (0) = v′ (a) = 0.

(22)

where λ is a real parameter and u (x) =
∫ x

0
ψ (v′ (t)) dt.

We mean by a solution of problem (22) a pair (λ, v) ∈ R×C1 ([0, a]) satisfying −v′′ (x) =
λv (x) + f+

(∫ x

0
ψ (v′ (t)) dt

)

x ∈ (0, a) and the boundary conditions v (0) = v′ (a) = 0.

2Any positive solution of (19) is concave. to see that one can use (14) .
3Any solution of (20) is concave.
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4.1.1 Existence in the superlinear case:

Let ε > 0, we deduce from assumption (6) existence of δ > 0 such that

for all x ∈ R, |x| < δ implies |f (x)| < ε |ϕ (x)| = εϕ (|x|) .

Since ψ is an odd increasing function on R+, we have for v ∈ C1 ([0, a]) and for all
x ∈ [0, a]

∣

∣

∫ x

0
ψ (v′ (t)) dt

∣

∣ ≤
∫ x

0
|ψ (v′ (t))| dt =

∫ x

0
ψ (|v′ (t)|) dt
≤ ψ (‖v‖1)

Thus, if η := ϕ (δ) then for all v ∈ C1 ([0, a])

‖v‖1 < η implies

∣

∣

∣

∣

∫ x

0

ψ (v′ (t)) dt

∣

∣

∣

∣

≤ δ for all x ∈ [0, a]

then
∣

∣f
(∫ x

0
ψ (v′ (t)) dt

)∣

∣ = f
(∣

∣

∫ x

0
ψ (v′ (t))

∣

∣ dt
)

≤ εϕ
(∣

∣

∫ x

0
ψ (v′ (t)) dt

∣

∣

)

≤ εϕ (ψ (‖v‖1))
≤ ε ‖v‖1

which means f (u) = ◦ (‖v‖1) and f+ (u) = ◦ (‖v‖1)
Therefore, Rabinowitz global bifurcation theory (see [19] and [20]) states: the pair

(λ1, 0) is a bifurcation point for a component S
+
1 ⊂ R×

∼

S
+

1 of positive solutions to (22)
which is unbounded in R×C1 ([0, a]) where λ1 = µ1 ([0, a]) and

∼

S
+

1 =
{

v ∈ C1 ([0, a]) : v (0) = v′ (a) = 0 and v > 0 in (0, a)
}

.

Thus, to prove existence of a positive solution to problem (21) it suffices to show the
following

Theorem 6 S
+
1 crosses {0} × C1 ([0, a]) .

Before proving theorem 6, we need the following lemma:

Lemma 7 If (λ, v) ∈ S
+
1 then λ < λ1.

Proof. Let Φ be the first positive eigenfunction of
{

−Φ′′ = λ1Φ in (0, a)
Φ (0) = Φ′ (a) = 0.

Multiplying (22) by Φ and integrating on (0, a) we get:

−

a
∫

0

v′′Φ = λ

a
∫

0

vΦ +

a
∫

0

f+ (u)Φ
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Then, two integrations by parts give

(λ1 − λ)

a
∫

0

vΦ =

a
∫

0

f+ (u)Φ > 0

which leads to
λ < λ1.

Proof of theorem 6
Suppose the contrary, and let (λn, vn) ⊂ S

+
1 an unbounded sequence in R×C1 ([0, a])

and set un (x) =
∫ x

0
ψ (v′n (t)) dt. An immediate consequence of Lemma 7 is: 0 < λn < λ1

and (vn) is unbounded in C1 ([0, a]).
First Let us prove that vn is unbounded with the respect of the C0 norm. Suppose

the contrary; Since −v′′n = λnvn + f (un) and v′′n is unbounded4 with the respect of the C0

norm, un is unbounded with the respect of the C0 norm on [0, a] .
Let for any R > 0 Jn = {x ∈ [0, a] : ϕ (un (x)) ≥ R} .

We claim that there exist R0 > 0 such that l (Jn) ≤
1

2a
.This is due to:

Denote by θn the real number belonging to [0, a] such that ϕ (un (θn)) = R and let
Φn and λ1,n be respectively the first positive eigenfunction and the first eigenvalue of the
problem

{

−v′′ = λv in (θn, a)
v (θn) = v′ (a) = 0.

Multiplying (22) by Φn and integrating between θn and a we get

a
∫

θn

−v′′nΦn = λn

a
∫

θn

vnΦn +

a
∫

θn

f+ (un) Φn.

After two integrations by parts we obtain:

λ1,n

a
∫

θn

vnΦn ≥ λn

a
∫

θn

vnΦn +

a
∫

θn

f+ (un) Φn. (23)

We deduce from hypothesis (6) that lim
x→+∞

f+ (ψ (x))

x
= +∞, so for M =

π2

a2
there

exists R0 > 0 such that

x ≥ R0 implies f+ (ψ (x)) ≥Mx.

4Otherwise v′

n will be bounded on [0, a] with the respect of the C0 norm, and then vn with the respect
of the C1 norm.
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Thus, we deduce from (23):

(λ1,n − λn)

∫ a

θn

vnΦn ≥

∫ a

θn

(f+ ◦ ψ) (ϕ (un)) Φn

≥ M

∫ a

θn

ϕ (un)Φn

. (24)

Since ϕ is concave, Jensen inequality (4) leads to

ϕ (un (x)) ≥ vn (x) for all x ∈ [θn, a] .

Thus, we deduce from (24):

(λ1,n − (λn +M))

a
∫

θn

vnΦn ≥ 0.

then

π2

(a− θn)2 ≥ (λn +M)

finally

l (Jn) =

(

1

2
− θn

)

≤
1

2a
(25)

Now let us return to the equation satisfied by un. We have

− (ϕ (u′n))
′
= λnvn + f+ (un) in (0, a)

Multiplying by u′ and integrating [x, a] , we get

Ψ (ϕ (u′n (x))) = F+ (ρn) − F+ (un (x)) + λn

∫ a

x

vnu
′
n for all x ∈ [0, a]

where ρn = un (a) and F+ (x) =
∫ x

0
f+ (t) dt.

Then as in the proof of Lemma 3 we obtain

θn =

∫ R0

0

dun (t)

u′n (t)
=

∫ R0

0

ds

ψ
(

Ψ−1
+

(

F+ (ρn) − F+ (s) + λn

∫ 1
2

x
vnu′n

))

≤

∫ R0

0

ds

ψ
(

Ψ−1
+ (F+ (ρn) − F+ (s))

)

(26)

Thus, on one hand, since
1

ψ
(

Ψ−1
+ (F+ (ρn) − F+ (s))

) is bounded in [0, R0] and lim
n→∞

ρn = +∞.

lim
n→+∞

θn = lim
n→+∞

R0
∫

0

ds

ψ
(

Ψ−1
+ (F+ (ρn) − F+ (s))

) = 0
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and on the other hand it arises from (25) θn ≥
1

2a
which is impossible and vn is unbounded

in C0 ([0, a]) .
Now arguing as above, let for any R > 0 Jn = {x ∈ [0, a] : vn (x) ≥ R}, R0 > 0 such

that l (Jn) ≤
1

2a
and θn the real number belonging to [0, a] such that vn (θn) = R0.

Thus, in one hand

R0 =

θn
∫

0

v′n (t) dt ≥
1

2a
v′n (θn) (27)

and on the other hand,

vn

(

1

2

)

=

a
∫

0

v′n (t) dt =

θn
∫

0

v′n (t) dt+

a
∫

θn

v′n (t) dt (28)

≤ R0 +
1

2a
v′n (θn)

which is impossible because from (27) we deduce that v′n (θn) is bounded and (28) leads
to v′n (θn) is unbounded. This completes the proof of theorem 6.

4.1.2 Existence in the sublinear case:

Let ε > 0, we deduce from hypothesis (9) existence of χ > 0 such that

x > χ implies f+ (x) < εϕ (x) .

Note that since ψ is concave and increasing, and f is increasing

f+
(∫ x

0
ψ (v′ (t)) dt

)

≤ f+ (ψ (v (x)))
≤ f+ (ψ (‖v‖1)) for all x ∈ [0, a]

.

Thus if η = ϕ (χ), then for all v ∈ C1 ([0, a]) and for all x ∈ [0, a]

‖v‖1 > η implies f+

(
∫ x

0

ψ (v′ (t)) dt

)

< ε ‖v‖1

and f+
(∫ x

0
ψ (v′ (t)) dt

)

= ◦ (‖v‖1)
Therefore, Rabinowitz global bifurcation theory states (see [21]): the pair (λ1,+∞) is

a bifurcation point for a component S
+
1 ⊂ R×

∼

S
+

1 of positive solutions to (22) such that:
If Ω is a neighborhood of (λ1,+∞) whose projection on R is bounded and whose

projection on C1 ([0, a]) is bounded away from 0 then either

1. S
+
1 8Ω is bounded in R×C1 ([0, a]) , in which a case S

+
1 8Ω meets R×{0} or

2. S
+
1 8Ω is unbounded in R×C1 ([0, a]) . Moreover if S

+
1 8Ω has a bounded projection on

R then S
+
1 8Ω meets (µk ([0, a]) ,+∞) with k ≥ 2.
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Thus, to prove existence of a positive solution to problem (21) it suffices to show the
following

Theorem 8 S
+
1 crosses {0} × C1 ([0, a]) .

Proof of theorem 8:
To obtain theorem 8 it suffices to prove that if Ω is as above, then S

+
1 8Ω don’t meet

(µk ([0, a]) ,+∞) with k ≥ 2 and don’t meet R+ × {0} .
Let Φ be the first positive eigenfunction of

{

−Φ′′ = λ1Φ in (0, a)
Φ (0) = Φ′ (a) = 0.

and (λ, v) ∈ S
+
1 . Arguing as in the proof of lemma 7 we get

λ < λ1

which means that S
+
1 8Ω don’t meet (µk ([0, a]) ,+∞) with k ≥ 2.

Now suppose that (λn, vn) is a sequence in S
+
1 converging5 to (λ∗, 0) with λn > 0.

Multiplying (22) by Φ and integrating on (0, a) we get

(λ1 − λn)

a
∫

0

vnΦ =

a
∫

0

f+ (un) Φ

where un (x) =
∫ x

0
ψ (v′n (t)) dt.

Using the concavity of f we get

(λ1 − λn)

a
∫

0

vn (t) Φ (t) dt ≥

a
∫

0





t
∫

0

f+ (ψ (v′n (s))) Φ (s) ds



 dt.

We deduce from hypothesis (9) that lim
x→0

f+ (ψ (x))

x
= +∞ and for M =

π2

a2
, there

exist δ > 0 such that
0 ≤ x < δ implies f+ (ψ (x)) > Mx.

Hence, For n large
f+ (ψ (v′n (s))) ≥Mv′n (s)

and

(λ1 − λn −M)

a
∫

0

vn (t) Φ (t) dt ≥ 0.

This is impossible since

λ1 − λn −M < λ1 −M < 0.

which completes the proof of theorem 8.

5vn → 0 with the respect of the C1 norm.
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4.2 Uniqueness in A±
k

We will expose in this paragraph the proof of uniqueness in A±
k in the superlinear case.

The other case will be treated similarly.
We deduce from Lemma 3 and Lemma 4 that: to show uniqueness of the solution to

problem (1) in each A±
k , it suffices to show that the boundary value problem

{

− (ϕ (u′))′ = f (u) in (a, b)
u (a) = u (b) = 0

(29)

has a unique solution in A+
1 .

Now, if u and v are two solutions in A+
1 to problem (29) , then we have

b
∫

a

− (ϕ (u′))
′
v + (ϕ (v′))

′
u =

b
∫

a

f (u) v − f (v)u

or

2

a+b
2

∫

a

(

ϕ (u′)

u′
−
ϕ (v′)

v′

)

u′v′ =

b
∫

a

(

f (u)

u
−
f (v)

v

)

uv. (30)

First we deduce from Lemma 5 that u and v are ordered and from assumption (7)

that f is increasing in R+. Then, if we suppose u < v in (0, 1) we get (ϕ (u′) − ϕ (v′))
′

=

− (f (u) − f (v)) < 0 in

[

a,
a + b

2

)

, namely u′ < v′ in

[

a,
a+ b

2

)

.

In one hand, it follows from assumption (7) that

b
∫

a

(

f (u)

u
−
f (v)

v

)

uv < 0. (31)

In the other hand, the concavity of ϕ involve that the function s→
ϕ (s)

s
is decreasing

on (0,+∞) , then
a+b
2

∫

a

(

ϕ (u′)

u′
−
ϕ (v′)

v′

)

u′v′ > 0. (32)

Inequalities (31) and (32) contradict equation (32) , so uniqueness of the solution to
problem (29) is proved.
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[15] Garćıa-Huidobro M., R.F. Manásevich & F. Zanolin, Strongly nonlinear
second order O.D.E.’s with rapidly growing terms, J.Math. Anal. Appl. 202 (1996) ,
1-26.

EJQTDE, 2003 No. 9, p. 17
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