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1. Introduction

Fractional calculus has played a very significant role in engineering, science, economy, and many other

fields. Recently, some works have been done to study the existence of solutions of nonlinear fractional

differential equations (see[1-5]). In [3], El-Shahed considered the following nonlinear fractional boundary

value problem





Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, a : (0, 1) → [0, +∞) is continuous

with
∫ 1

0
a(t)dt > 0, and f ∈ C([0, +∞), [0, +∞)). He used the Krasnosel’skii fixed point theorem on cone

expansion and compression to show the existence and non-existence of positive solutions for the above

fractional boundary value problem.

Zhao et al. [5], by using the lower and upper solution method, Leggett-Williams fixed point theorem,

Krasnosel’skii fixed point theorem and Leray-Schauder nonlinear alternative theorem, investigated the
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existence of positive solutions for the following boundary value problem




Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,

where 2 < α ≤ 3 is a real number, Dα
0+ is the Riemann-Liouville fractional derivative, f : [0, 1]× [0,∞) →

[0,∞) is continuous and f(t, x) is nondecreasing with respect to x.

On the other hand, the study of differential systems is also important as this kind of systems occur

in various problems of applied nature, we refer the readers to [6-12] and the reference therein for integer

order systems, and [13-16] for fractional order systems. Recently, Goodrich [17] discussed a system of

(continuous) fractional boundary value problems given by





− Dν1

0+y1(t) = λ1a1(t)f(y1(t), y2(t)), 0 < t < 1,

− Dν2

0+y2(t) = λ2a2(t)g(y1(t), y2(t)),

where ν1, ν2 ∈ (n − 1, n] for n > 3 and n ∈ N, subject to the boundary conditions





y
(i)
1 (0) = y

(i)
2 (0) = 0, for 0 ≤ i ≤ n − 2,

[Dα
0+y1(t)]t=1 = φ1(y), [Dα

0+y2(t)]t=1 = φ2(y), for 1 ≤ α ≤ n − 2.

He obtained the existence of at least one positive solution by means of Krasnosel’skii fixed point theorem

under the local boundary conditions (φ1 = φ2 ≡ 0) and the nonlocal boundary conditions (φ1, φ2 ∈

C([0, 1], (−∞, +∞))). It should be noted that the nonlinearity in most of the previous works needs to be

nonnegative to get the positive solutions [1-12,14-17].

Inspired by the work of the above papers and many known results in [18,19], we study the existence

of positive solutions for the following singular differential system of fractional order




− Dαi

0+yi(t) = pi(t)fi(t, y1(t), y2(t)) − qi(t), 0 < t < 1, i = 1, 2,

yi(0) = y′
i(0) = 0, y′

i(1) = λi[yi], i = 1, 2,

(1.1)

where 2 < αi ≤ 3 are real numbers, Dαi

0+ are the standard Riemann-Liouville derivative, fi : [0, 1] ×

[0, +∞) × [0, +∞) → [0, +∞) are continuous, qi : (0, 1) → [0, +∞)(i = 1, 2) are Lebesgue integrable.

Here λi[·] (i = 1, 2) are linear functionals on C[0, 1] given by

λi[yi] =

∫ 1

0

yi(t)dAi(t), i = 1, 2,

involving Stieltjes integrals with signed measures, that is, A1, A2 are suitable functions of bounded vari-

ation. A vector (y1, y2) ∈ C[0, 1] × C[0, 1] is said to be a positive solution of system (1.1) if and only if

Dαi

0+yi(t) ∈ L(0, 1)(i = 1, 2), (y1, y2) satisfies (1.1) and y1(t) ≥ 0, y2(t) > 0 or y1(t) > 0, y2(t) ≥ 0 for any

t ∈ (0, 1).

The method we adopt, which has been widely used, is based on the ideas in [18]. The perturbed

terms qi (i = 1, 2) are Lebesgue integrable and may be singular at some zero measures set of [0, 1], which
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implies the nonlinear terms may change sign. When the nonlinearity is allowed to take on both positive

and negative values, such problems, e.g. system (1.1), are called semipositone problems in the literature.

Semipositone problems have been studied by many authors using a variety of methods, see for example

[18-23] and references therein. Meanwhile, λ1[·] and λ2[·] in (1.1) denote linear functionals on C[0, 1]

involving Stieltjes integrals, this implies the case of boundary conditions (1.1) covers the multi-point

boundary conditions and also integral boundary conditions in a single framework. For a comprehensive

study of the case when there is a Stieltjes integral boundary condition at both ends, for the case of a

differential equation of order two, see [24]. There are also other works for other order equations, see

[19,25].

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas

that are to be used later to prove our main results. In Section 3, we discuss the existence of positive

solutions of the system (1.1). In Section 4, we give an example to illustrate the application of our main

results.

2. Preliminaries and lemmas

For the convenience of the reader, we also present here some necessary definitions from fractional

calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of a function u : (0, +∞) → R with order α > 0 is given by

Iα
0+u(t) =

1

Γ(α)

∫ t

0

(t − s)α−1u(s)ds

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.2. The fractional derivative of a continuous function u : (0, +∞) → R with order α > 0 is

given by

Dα
0+u(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

0

(t − s)n−α−1u(s)ds,

where n − 1 < α ≤ n, provided that the right-hand side is pointwise defined on (0, +∞).

Lemma 2.1. Let α > 0, u(t) is integrable, then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cntα−n

where ci ∈ R (i = 1, 2, · · · , n), n is the smallest integer greater than or equal to α.

For i = 1, 2, set

Gi(t, s) =
1

Γ(αi)





tαi−1(1 − s)αi−2, 0 ≤ t ≤ s ≤ 1,

tαi−1(1 − s)αi−2 − (t − s)αi−1, 0 ≤ s ≤ t ≤ 1.

(1)

Lemma 2.2. The function Gi(t, s) defined by (2.1) have the following properties:

(1) Gi(t, s) > 0, for t, s ∈ (0, 1), i = 1, 2.
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(2) ̺i(t)Gi(1, s) ≤ Gi(t, s) ≤ Gi(1, s), for t, s ∈ [0, 1].

(3) Γ(αi)Gi(t, s) ≤ ̺i(t), for t, s ∈ [0, 1], where ̺i(t) = tαi−1, i = 1, 2.

Proof. For the proof of (1) and (2) see [3]. The proof of (3) is clear, so we omit it. �

Lemma 2.3 (See [3]). Given h(t) ∈ C(0, 1) ∩ L(0, 1), then the problem




Dαi

0+yi(t) + h(t) = 0, 0 < t < 1, 2 < αi ≤ 3,

yi(0) = y′
i(0) = 0, y′

i(1) = 0, i = 1, 2,

(2)

has the unique solution

yi(t) =

∫ 1

0

Gi(t, s)h(s)ds. (3)

By Lemma 2.1, the unique solution of the problem




Dαi

0+yi(t) = 0, 0 < t < 1, i = 1, 2,

yi(0) = y′
i(0) = 0, y′

i(1) = 1

is γi(t) = tαi−1

αi−1 (i = 1, 2). As in [26], we see the Green function (H1(t, s), H2(t, s)) for the nonlocal system

(1.1) is given by

Hi(t, s) = Gi(t, s) +
γi(t)

1 − Λi

GAi
(s), i = 1, 2, (4)

where Λi = λi[γi] 6= 1, GAi
(s) =

∫ 1

0
Gi(t, s)dAi(t), s ∈ [0, 1] (i = 1, 2).

Lemma 2.4. Let Λi ∈ [0, 1) and GAi
(s) ≥ 0 for s ∈ [0, 1] (i = 1, 2), the functions defined by (2.4) satisfy:

(1) Hi(t, s) ≥ Gi(t, s) > 0, for t, s ∈ (0, 1), i = 1, 2.

(2) ̺i(t)Gi(1, s) ≤ Hi(t, s) ≤ κiGi(1, s), for t, s ∈ [0, 1], i = 1, 2.

(3) Γ(αi)Hi(t, s) ≤ κi̺i(t) ≤ κi, for t, s ∈ [0, 1], where

κi = 1 +
λi[1]

1 − Λi

, i = 1, 2. (5)

Proof. It is obvious that (1) and the left hand side of (2) hold. In the following, we will prove the right

hand side of (2) and (3).

(i) By (2) of Lemma 2.2, since 1 < αi − 1 ≤ 2, we have

Hi(t, s) = Gi(t, s) +
γi(t)

1 − Λi

∫ 1

0

Gi(t, s)dAi(t)

≤ Gi(1, s) +
Gi(1, s)

(αi − 1)(1 − Λi)

∫ 1

0

dAi(t)

≤
(

1 +
λi[1]

1 − Λi

)
Gi(1, s) = κiGi(1, s).

(ii) By (3) of Lemma 2.2, we have

Γ(αi)Hi(t, s) = Γ(αi)Gi(t, s) +
γi(t)

1 − Λi

Γ(αi)GAi
(s)

≤ tαi−1 +
tαi−1

(αi − 1)(1 − Λi)

∫ 1

0

Γ(αi)Gi(t, s)dAi(t)
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≤ tαi−1

(
1 +

1

1 − Λi

∫ 1

0

tαi−1dAi(t)

)

≤ ̺i(t)

(
1 +

λi[1]

1 − Λi

)
= κi̺i(t) ≤ κi.

This completes the proof. �

For the convenience of presentation, we list here the hypotheses to be used later:

(H1) Λi ∈ [0, 1) (i = 1, 2), where Λi = λi[γi] for γi(t) = tαi−1

αi−1 .

(H2) Ai are functions of bounded variation, and GAi
(s) ≥ 0 (i = 1, 2), s ∈ [0, 1].

(H3) p1, p2 ∈ C((0, 1), [0, +∞)) and q1, q2 ∈ L1([0, 1], [0, +∞)) such that

0 <

∫ 1

0

Gi(1, s)[pi(s) + qi(s)]ds < +∞, 0 <

∫ 1

0

qi(s)ds <
Γ(αi)

2κ2
i

, i = 1, 2. (6)

(H4) f1, f2 : [0, 1]× [0, +∞)× [0, +∞) → [0, +∞) are continuous, p1(t)f1(t, y1, y2) ≥ q1(t), ∀ (t, y1, y2) ∈

[0, 1]× [0, 1] × [0, +∞), p2(t)f2(t, y1, y2) ≥ q2(t), ∀ (t, y1, y2) ∈ [0, 1] × [0, +∞) × [0, 1].

Remark 2.1. It follows from (H3) that there exists an interval [ξ, η] ⊂ (0, 1) such that

0 <

∫ η

ξ

Gi(1, s)pi(s)ds < +∞, i = 1, 2.

Lemma 2.5. Assume that (H1) − (H3) hold, then the boundary value problems






− Dαi

0+ωi(t) = 2qi(t), 0 < t < 1,

ωi(0) = ω′
i(0) = 0, ω′

i(1) = λi[ωi], i = 1, 2

have unique solution

ωi(t) = 2

∫ 1

0

Hi(t, s)qi(s)ds, i = 1, 2, (7)

which satisfy

ωi(t) ≤
2κi̺i(t)

Γ(αi)

∫ 1

0

qi(s)ds, t ∈ [0, 1], i = 1, 2. (8)

Proof. It follows from Lemma 2.4 and (H1) − (H3) that (2.7)-(2.8) hold. �

Let E = C[0, 1] × C[0, 1], then E is a Banach space with the norm

‖(u, v)‖1 := ‖u‖ + ‖v‖, ‖u‖ = max
0≤t≤1

|u(t)|, ‖v‖ = max
0≤t≤1

|v(t)|

for any (u, v) ∈ E. Let

P =
{
(u, v) ∈ E : u(t) ≥ κ−1

1 ̺1(t)‖u‖, v(t) ≥ κ−1
2 ̺2(t)‖v‖ for t ∈ [0, 1]

}
,

then P is a cone of E.
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Define a modified function [z(t)]+ for any z ∈ C[0, 1] by

[z(t)]+ =





z(t), z(t) ≥ 0,

0, z(t) < 0.

Next we consider the following singular nonlinear system:




− Dαi

0+xi(t) = pi(t)fi(t, [x1(t) − ω1(t)]
+, [x2(t) − ω2(t)]

+) + qi(t), 0 < t < 1,

xi(0) = x′
i(0) = 0, x′

i(1) = λi[xi], i = 1, 2.

(9)

Lemma 2.6. If (x1, x2) ∈ C[0, 1] × C[0, 1] with x1(t) > ω1(t), x2(t) ≥ ω2(t) or x1(t) ≥ ω1(t), x2(t) >

ω2(t) for any t ∈ (0, 1) is a positive solution of system (2.9), then (x1 −ω1, x2 −ω2) is a positive solution

of singularly system (1.1).

Proof. In fact, if (x1, x2) ∈ C[0, 1]×C[0, 1] is a positive solution of system (2.9) such that x1(t) > ω1(t),

x2(t) ≥ ω2(t) or x1(t) ≥ ω1(t), x2(t) > ω2(t) for any t ∈ (0, 1), then from (2.9) and the definition of [·]+,

we have 




− Dαi

0+xi(t) = pi(t)fi(t, x1(t) − ω1(t), x2(t) − ω2(t)) + qi(t), 0 < t < 1,

xi(0) = x′
i(0) = 0, x′

i(1) = λi[xi], i = 1, 2.

(10)

Let yi = xi − ωi (i = 1, 2), then Dαi

0+yi(t) = Dαi

0+xi(t) − Dαi

0+ωi(t) (i = 1, 2) for t ∈ (0, 1), which imply

that

−Dαi

0+yi(t) = −Dαi

0+xi(t) + Dαi

0+ωi(t) = −Dαi

0+xi(t) − 2qi(t), t ∈ (0, 1), i = 1, 2.

Thus (2.10) becomes





− Dαi

0+yi(t) = pi(t)fi(t, y1(t), y2(t)) − qi(t), 0 < t < 1,

yi(0) = y′
i(0) = 0, y′

i(1) = λi[yi], i = 1, 2,

i.e., (x1 − ω1, x2 − ω2) is a positive solution of singularly system (1.1). This proves Lemma 2.6. �

Define an operator T : P → P by

T (x1, x2) = (T1(x1, x2), T2(x1, x2)),

where operators T1, T2 : P → C[0, 1] are defined by

Ti(x1, x2)(t) =

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds, i = 1, 2.

Clearly, if (x1, x2) ∈ P is a fixed point of T , then (x1, x2) is a solution of system (2.9).

Lemma 2.7. Assume that (H1) − (H4) hold, then T : P → P is a completely continuous operator.

Proof. For any (x1, x2) ∈ P , Lemma 2.4 implies that

‖Ti(x1, x2)‖ = max
0≤t≤1

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≤ κi

∫ 1

0

Gi(1, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds, i = 1, 2.
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On the other hand, from Lemma 2.4, we also have

Ti(x1, x2)(t) =

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≥ ̺i(t)

∫ 1

0

Gi(1, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds, i = 1, 2.

So

Ti(x1, x2)(t) ≥ κ−1
i ̺i(t)‖Ti(x1, x2)‖, t ∈ [0, 1], i = 1, 2. (11)

(2.11) yields that T (P ) ⊂ P .

According to the Ascoli-Arzela theorem and the Lebesgue dominated convergence theorem, we can

easily get that T : P → P is a completely continuous operator. �

Lemma 2.8 (Krasnosel’skii’s theorem, see [27]). Let E be a real Banach space, P ⊂ E be a cone. Assume

that Ω1 and Ω2 are two bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, and T : P ∩ (Ω2\Ω1) → P is a

completely continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Main results

For convenience, we denote:

Li = κi

∫ 1

0

Gi(1, s)[pi(s) + qi(s)]ds, li = ̺i(ξ)

∫ η

ξ

Gi(1, s)pi(s)ds, i = 1, 2,

f∞
i = lim

y1+y2→+∞

y1≥0,y2≥0

max
t∈[0,1]

fi(t, y1, y2)

y1 + y2
, fi∞ = lim

y1+y2→+∞

y1≥0,y2≥0

min
t∈[ξ,η]

fi(t, y1, y2)

y1 + y2
, i = 1, 2.

Theorem 3.1 Assume that conditions (H1) − (H4) are satisfied. Further assume that the following

conditions hold:

(C1) There exists a constant

r1 > max

{
2, 2L1, 2L2,

4κ2
1

Γ(α1)

∫ 1

0

q1(s)ds,
4κ2

2

Γ(α2)

∫ 1

0

q2(s)ds

}
(1)

such that for any (t, y1, y2) ∈ [0, 1]× [0, r1] × [0, r1],

fi(t, y1, y2) <
r1

2Li

− 1, i = 1, 2.

(C2) f1∞ = +∞ or f2∞ = +∞.

Then the system (1.1) has at least one positive solution.

Proof. Let Ω1 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < r1} and ∂Ω1 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 = r1}. Then

for any (x1, x2) ∈ P ∩ ∂Ω1, s ∈ [0, 1], we have

[xi(s) − ωi(s)]
+ ≤ xi(s) ≤ ‖xi‖ ≤ r1, i = 1, 2.
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It follows from (C1) that

‖Ti(x1, x2)‖ = max
0≤t≤1

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

< κi

∫ 1

0

Gi(1, s)

[
pi(s)

(
r1

2Li

− 1

)
+ qi(s)

]
ds

≤ κi

∫ 1

0

Gi(1, s)[pi(s) + qi(s)]ds × r1

2Li

=
r1

2
=

‖(x1, x2)‖1

2
, i = 1, 2.

(2)

Consequently,

‖T (x1, x2)‖1 = ‖T1(x1, x2)‖ + ‖T2(x1, x2)‖ < ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω1. (3)

On the other hand, choose a real number M > 0 big enough such that

1

4
Mτ min{l1, l2} > 1,

where

τ = min{κ−1
1 ̺1(ξ), κ

−1
2 ̺2(ξ)}. (4)

By f1∞ = +∞ of (C2), there exists N > r1 such that, for any x1 ≥ 0, x2 ≥ 0 and x1 + x2 ≥ N , for any

t ∈ [ξ, η], we have

f1(t, x1, x2) ≥ M(x1 + x2). (5)

Set r2 = max{2r1, 4τ−1N}, then r2 > r1.

Now let Ω2 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < r2} and ∂Ω2 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 = r2}. Then

for any (x1, x2) ∈ P ∩ ∂Ω2, there exists some component xj (1 ≤ j ≤ 2) such that ‖xj‖ ≥ r2

2 ≥ r1. So for

any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], by (2.8) and (3.1), we have

xj(t) − ωj(t) ≥ xj(t) −
2κj̺j(t)

Γ(αj)

∫ 1

0

qj(s)ds ≥ xj(t) −
2κj

Γ(αj)

∫ 1

0

qj(s)ds × κjxj(t)

r1

≥ 1

2
xj(t) ≥

1

2κj

̺j(t)‖xj‖ ≥ ̺j(ξ)r2

4κj

≥ 1

4
τr2 ≥ N,

and then

[x1(t) − ω1(t)]
+ + [x2(t) − ω2(t)]

+ ≥ [xj(t) − ωj(t)]
+ = xj(t) − ωj(t) ≥

1

4
τr2 ≥ N. (6)

Thus for any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], by (3.5) and (3.6), we have

f1(t, [x1(t) − ω1(t)]
+, [x2(t) − ω2(t)]

+) ≥ M([x1(t) − ω1(t)]
+ + [x2(t) − ω2(t)]

+). (7)
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So for any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], by (3.6) and (3.7), we have

T1(x1, x2)(t) =

∫ 1

0

H1(t, s)[p1(s)f1(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + q1(s)]ds

≥
∫ 1

0

G1(t, s)p1(s)f1(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺1(t)

∫ 1

0

G1(1, s)p1(s)f1(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺1(t)

∫ η

ξ

G1(1, s)p1(s)f1(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺1(ξ)

∫ η

ξ

G1(1, s)p1(s)M([x1(s) − ω1(s)]
+ + [x2(s) − ω2(s)]

+)ds

≥ Mτr2̺1(ξ)

4

∫ η

ξ

G1(1, s)p1(s)ds

≥ 1

4
Mτ min{l1, l2}r2

> r2 = ‖(x1, x2)‖1.

(8)

Thus

‖T (x1, x2)‖1 ≥ ‖T1(x1, x2)‖ > ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω2. (9)

Obviously, if f2∞ = +∞ holds, (3.9) is still valid.

By (3.3), (3.9) and Lemma 2.8, T has a fixed point (x̃1, x̃2) ∈ P ∩(Ω2\Ω1) such that r1 ≤ ‖(x̃1, x̃2)‖1 ≤

r2. Next we shall show x̃1(t) > ω1(t), x̃2(t) ≥ ω2(t) (or x̃1(t) ≥ ω1(t), x̃2(t) > ω2(t)) for t ∈ (0, 1). For

‖(x̃1, x̃2)‖1 ≥ r1 > 2, we shall divide the rather long proof into three cases: (i) ‖x̃1‖ > 1, ‖x̃2‖ > 1; (ii)

‖x̃1‖ > 1, ‖x̃2‖ ≤ 1; (iii) ‖x̃1‖ ≤ 1, ‖x̃2‖ > 1.

Case i. If ‖x̃1‖ > 1, then from (2.6) and (2.8), we have

x̃1(t) ≥ κ−1
1 ̺1(t)‖x̃1‖ ≥ κ−1

1 · Γ(α1)ω1(t)

2κ1

∫ 1

0
q1(s)ds

· ‖x̃1‖ >
Γ(α1)ω1(t)

2κ2
1

∫ 1

0
q1(s)ds

≥ ω1(t), t ∈ (0, 1).

Similarly, from ‖x̃2‖ > 1 we have x̃2(t) > ω2(t), t ∈ (0, 1).

Case ii. If ‖x̃1‖ > 1, similar to (i), we have x̃1(t) > ω1(t), t ∈ (0, 1). If ‖x̃2‖ ≤ 1, then [x̃2(s)−ω2(s)]
+ ≤

x̃2(s) ≤ ‖x̃2‖ ≤ 1. Set J1 = {t ∈ [0, 1] : x̃2(t) ≥ ω2(t)}, J2 = {t ∈ [0, 1] : x̃2(t) < ω2(t)}. Obviously,

J1 ∪ J2 = [0, 1]. Because (x̃1, x̃2) is a solution of (2.9), we have

x̃2(t) =

∫ 1

0

H2(t, s)[p2(s)f2(s, [x̃1(s) − ω1(s)]
+, [x̃2(s) − ω2(s)]

+) + q2(s)]ds

=

(∫

J1

+

∫

J2

)
H2(t, s)[p2(s)f2(s, [x̃1(s) − ω1(s)]

+, [x̃2(s) − ω2(s)]
+) + q2(s)]ds.

As t ∈ J1, x̃1(t) > ω1(t), x̃2(t) ≥ ω2(t), then by the definition of [·]+, we have

∫

J1

H2(t, s)[p2(s)f2(s, [x̃1(s) − ω1(s)]
+, [x̃2(s) − ω2(s)]

+) + q2(s)]ds

=

∫

J1

H2(t, s)[p2(s)f2(s, x̃1(s) − ω1(s), x̃2(s) − ω2(s)) + q2(s)]ds.
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As t ∈ J2, x̃1(t) > ω1(t), x̃2(t) < ω2(t), then by the definition of [·]+, we have

∫

J2

H2(t, s)[p2(s)f2(s, [x̃1(s) − ω1(s)]
+, [x̃2(s) − ω2(s)]

+) + q2(s)]ds

=

∫

J2

H2(t, s)[p2(s)f2(s, x̃1(s) − ω1(s), 0) + q2(s)]ds.

By assumption (H4), we have

p2(t)f2(t, y1, y2) ≥ q2(t), ∀ (t, y1, y2) ∈ [0, 1] × [0, r2] × [0, 1].

Then by the above discussion, we have

x̃2(t) =

(∫

J1

+

∫

J2

)
H2(t, s)[p2(s)f2(s, [x̃1(s) − ω1(s)]

+, [x̃2(s) − ω2(s)]
+) + q2(s)]ds

≥ 2

∫ 1

0

H2(t, s)q2(s)ds = ω2(t), t ∈ [0, 1].

Then x̃2(t) ≥ ω2(t), t ∈ [0, 1].

Case iii. If ‖x̃1‖ ≤ 1 and ‖x̃2‖ > 1, similar to (ii), we have x̃1(t) ≥ ω1(t), x̃2(t) > ω2(t), t ∈ (0, 1).

So by Lemma 2.6 we know that (ỹ1, ỹ2) = (x̃1 − ω1, x̃2 − ω2) is the positive solution for the system

(1.1). The proof is completed. �

Theorem 3.2 Assume that conditions (H1)−(H4) are satisfied. In addition, assume that the following

conditions hold:

(C3) There exists a constant

R0 > max

{
1,

4κ2
1

Γ(α1)

∫ 1

0

q1(s)ds,
4κ2

2

Γ(α2)

∫ 1

0

q2(s)ds

}
(10)

such that

fi(t, y1, y2) >
R0

li
, for any t ∈ [ξ, η],

1

2
τR0 ≤ y1 + y2 ≤ 2R0, i = 1, 2,

where κi(i = 1, 2) and τ are defined by (2.5) and (3.4), respectively.

(C4) f∞
i = 0, i = 1, 2.

Then the system (1.1) has at least one positive solution.

Proof. Let R1 = 2R0 and Ω1 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < R1}. Then for any (x1, x2) ∈ P ∩∂Ω1, there

exists some component xj (1 ≤ j ≤ 2) such that ‖xj‖ ≥ R0. So for any (x1, x2) ∈ P ∩ ∂Ω1, t ∈ [ξ, η], by

(2.8) and (3.10), we have

xj(t) − ωj(t) ≥ xj(t) −
2κj̺j(t)

Γ(αj)

∫ 1

0

qj(s)ds ≥ xj(t) −
2κj

Γ(αj)

∫ 1

0

qj(s)ds × κjxj(t)

R0

≥ 1

2
xj(t) ≥

1

2κj

̺j(t)‖xj‖ ≥ ̺j(ξ)R0

2κj

≥ 1

2
τR0 > 0,

(11)

and

[xi(t) − ωi(t)]
+ ≤ xi(t) ≤ ‖xi‖, i = 1, 2.
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So for any (x1, x2) ∈ P ∩ ∂Ω1, t ∈ [ξ, η], we have

1

2
τR0 ≤ [x1(t) − ω1(t)]

+ + [x2(t) − ω2(t)]
+ ≤ R1 = 2R0. (12)

It follows from (C3) and (3.12) that, for any (x1, x2) ∈ P ∩ ∂Ω1, t ∈ [ξ, η],

Ti(x1, x2)(t) =

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≥
∫ 1

0

Gi(t, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺i(t)

∫ 1

0

Gi(1, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺i(t)

∫ η

ξ

Gi(1, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

> ̺i(ξ)

∫ η

ξ

Gi(1, s)pi(s)ds × R0

li
= R0, i = 1, 2.

(13)

This means that

‖Ti(x1, x2)‖ > R0 =
‖(x1, x2)‖1

2
, i = 1, 2.

Thus we get

‖T (x1, x2)‖1 > ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω1. (14)

Next, let us choose ε > 0 such that

2εκi

∫ 1

0

Gi(1, s)pi(s)ds < 1, i = 1, 2.

Then for the above ε, by (C4), there exists X0 > R1 > 0 such that, for any x1 ≥ 0, x2 ≥ 0 and

x1 + x2 > X0, for any t ∈ [0, 1], we have

fi(t, x1, x2) ≤ ε(x1 + x2), i = 1, 2.

Take

R∗
i =

2MiLi + 2κi

∫ 1

0
Gi(1, s)qi(s)ds

1 − 2εκi

∫ 1

0
Gi(1, s)pi(s)ds

+ X0, i = 1, 2,

where Mi = max{fi(t, x1, x2) + 1 : t ∈ [0, 1], x1 + x2 ≤ X0}(i = 1, 2). Let R2 = max{R∗
1, R

∗
2}, then

R2 > X0 > R1.

Now let Ω2 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < R2} and ∂Ω2 = {(x1, x2) ∈ E : (x1, x2)‖1 = R2}. Then

for any (x1, x2) ∈ P ∩ ∂Ω2, we have

‖Ti(x1, x2)‖ = max
0≤t≤1

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≤κi

∫ 1

0

Gi(1, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≤κi

(
max

t∈[0,1],x1+x2≤X0

fi(t, x1, x2) + 1

)∫ 1

0

Gi(1, s)[pi(s) + qi(s)]ds

+ κi

∫ 1

0

Gi(1, s)
[
pi(s)ε

(
[x1(s) − ω1(s)]

+ + [x2(s) − ω2(s)]
+

)
+ qi(s)

]
ds

≤MiLi + κi

∫ 1

0

Gi(1, s)
[
pi(s)ε(‖x1‖ + ‖x2‖) + qi(s)

]
ds
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≤MiLi + κi

∫ 1

0

Gi(1, s)qi(s)ds + εκiR2

∫ 1

0

Gi(1, s)pi(s)ds

<

(
1

2
− εκi

∫ 1

0

Gi(1, s)pi(s)ds

)
R∗

i + εκiR2

∫ 1

0

Gi(1, s)pi(s)ds

≤R2

2
=

‖(x1, x2)‖1

2
, i = 1, 2.

(15)

Thus

‖T (x1, x2)‖1 < ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω2. (16)

By (3.14), (3.16) and Lemma 2.8, T has a fixed point (x̂1, x̂2) ∈ P ∩ (Ω2\Ω1) such that R1 ≤

‖(x̂1, x̂2)‖1 ≤ R2. By the same method of Theorem 3.1, we can obtain

x̂1(t) > ω1(t), x̂2(t) ≥ ω2(t), t ∈ (0, 1),

or

x̂1(t) ≥ ω1(t), x̂2(t) > ω2(t), t ∈ (0, 1).

Then let ŷi = x̂i − ωi (i = 1, 2), by Lemma 2.6 we know that the system (1.1) has at least one positive

solution (ŷ1, ŷ2). This completes the proof of Theorem 3.2. �

Theorem 3.3 Assume that conditions (H1) − (H4) and (C1), (C4) are satisfied. Further assume that

the following condition holds:

(C5) There exists a constant R̃0 > 2τ−1r1 such that

fi(t, y1, y2) >
R̃0

li
, for any t ∈ [ξ, η],

1

2
τR̃0 ≤ y1 + y2 ≤ 2R̃0, i = 1, 2.

where κi(i = 1, 2), r1 and τ are defined by (2.5), (3.1) and (3.4), respectively.

Then the system (1.1) has at least two positive solutions.

Proof. Set Ω1 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < r1}. From (C1) and proceeding as in (3.2), we have

‖T (x1, x2)‖1 < ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω1. (17)

On the other hand, let R = 2R̃0, Ω2 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < R} and ∂Ω2 = {(x1, x2) ∈ E :

‖(x1, x2)‖1 = R}. Then for any (x1, x2) ∈ P ∩ ∂Ω2, there exists some component xj (1 ≤ j ≤ 2) such

that ‖xj‖ ≥ R̃0. So for any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], by (2.8), we have

xj(t) − ωj(t) ≥ xj(t) −
2κj̺j(t)

Γ(αj)

∫ 1

0

qj(s)ds ≥ xj(t) −
2κj

Γ(αj)

∫ 1

0

qj(s)ds × κjxj(t)

R̃0

≥ 1

2
xj(t) ≥

1

2κj

̺j(t)‖xj‖ ≥ ̺j(ξ)R̃0

2κj

≥ τ

2
R̃0 > 0,

and

[xi(t) − ωi(t)]
+ ≤ xi(t) ≤ ‖xi‖, i = 1, 2.

So for any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], we have

τ

2
R̃0 ≤ [x1(t) − ω1(t)]

+ + [x2(t) − ω2(t)]
+ ≤ R = 2R̃0. (18)
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By (C5) and (3.18), for any (x1, x2) ∈ P ∩ ∂Ω2, t ∈ [ξ, η], we have

Ti(x1, x2)(t) =

∫ 1

0

Hi(t, s)[pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+) + qi(s)]ds

≥
∫ 1

0

Gi(t, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺i(t)

∫ 1

0

Gi(1, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

≥ ̺i(t)

∫ η

ξ

Gi(1, s)pi(s)fi(s, [x1(s) − ω1(s)]
+, [x2(s) − ω2(s)]

+)ds

> ̺i(ξ)

∫ η

ξ

Gi(1, s)pi(s)ds × R̃0

li
= R̃0, i = 1, 2,

this yields that

‖Ti(x1, x2)‖ > R̃0 =
‖(x1, x2)‖1

2
, i = 1, 2.

Thus we get

‖T (x1, x2)‖1 > ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω2. (19)

Next, let us choose ε > 0 such that 2εκi

∫ 1

0
Gi(1, s)pi(s)ds < 1 (i = 1, 2). Then for the above ε, by

(C4), there exists N > R > 0 such that, for any t ∈ [0, 1] and for any x1 ≥ 0, x2 ≥ 0 and x1 + x2 > N,

fi(t, x1, x2) ≤ ε(x1 + x2), i = 1, 2.

Take

R∗
i =

2MiLi + 2κi

∫ 1

0
Gi(1, s)qi(s)ds

1 − 2εκi

∫ 1

0 Gi(1, s)pi(s)ds
+ N, i = 1, 2,

where Mi = max{fi(t, x1, x2) + 1 : t ∈ [0, 1], x1 + x2 ≤ N} (i = 1, 2). Let R∗ = max{R∗
1, R

∗
2}, then

R∗ > N > R.

Now let Ω3 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < R∗}. Similar to (3.15), we have

‖T (x1, x2)‖1 < ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω3. (20)

By (3.17), (3.19), (3.20) and Lemma 2.8, T has two fixed points (x̂1, x̂2), (x̄1, x̄2) in P and r1 <

‖(x̂1, x̂2)‖1 < R < ‖(x̄1, x̄2)‖1. Let ŷi = x̂i −ωi, ȳi = x̄i −ωi (i = 1, 2). By arguments similar to Theorem

3.1, we can show that (ŷ1, ŷ2) and (ȳ1, ȳ2) are two positive solutions of the system (1.1). �

Theorem 3.4 Assume that conditions (H1) − (H4) and (C2), (C3) are satisfied. In addition, assume

that the following condition holds:

(C6) There exists a constant R > max
{
2R0, 2L1(1 + R0

l1
), 2L2(1 + R0

l2
)
}

such that for any (t, y1, y2) ∈

[0, 1]× [0, R]× [0, R],

fi(t, y1, y2) <
R

2Li

− 1, i = 1, 2,

where κi(i = 1, 2) and R0 are defined by (2.5) and (3.10), respectively.

Then the system (1.1) has at least two positive solutions.
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Proof. Firstly, let R1 = 2R0 and Ω1 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 < R1}. From (C3) and proceeding as

in (3.11)-(3.13), we obtain

‖T (x1, x2)‖1 > ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω1. (21)

Next, by (C6), we have R > R1 and R
2Li

−1 > R0

li
> 0(i = 1, 2). Let Ω2 = {(x1, x2) ∈ E : ‖(x1, x2)‖1 <

R}. Then for any (x1, x2) ∈ P ∩ ∂Ω2, s ∈ [0, 1], we have

[xi(s) − ωi(s)]
+ ≤ xi(s) ≤ ‖xi‖ ≤ R, i = 1, 2.

It follows from (C6), proceeding as in (3.2), we have

‖T (x1, x2)‖1 < ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω2. (22)

On the other hand, choose a real number M > 0 big enough such that 1
4Mτ min{l1, l2} > 1, where τ

is defined by (3.4). From (C2), there exists N > R such that, for any x1 ≥ 0, x2 ≥ 0 and x1 +x2 ≥ N , for

any t ∈ [ξ, η], there is (3.5) holds. Set R∗ = max
{
2R, 4τ−1N

}
, then R∗ > R > R1. Let Ω3 = {(x1, x2) ∈

E : ‖(x1, x2)‖1 < R∗}. Similar to the proof of (3.6), for any (x1, x2) ∈ P ∩ ∂Ω3, t ∈ [ξ, η], we have

f1(t, [x1(t) − ω1(t)]
+, [x2(t) − ω2(t)]

+) ≥ M([x1(t) − ω1(t)]
+ + [x2(t) − ω2(t)]

+). (23)

Combing with (3.23) and proceeding as in (3.8), we have

‖T (x1, x2)‖1 > ‖(x1, x2)‖1, for all (x1, x2) ∈ P ∩ ∂Ω3. (24)

By (3.21), (3.22), (2.24) and Lemma 2.8, T has two fixed points (x̂1, x̂2), (x̄1, x̄2) in P and R1 <

‖(x̂1, x̂2)‖1 < R < ‖(x̄1, x̄2)‖1. Let ŷi = x̂i −ωi, ȳi = x̄i −ωi (i = 1, 2). By arguments similar to Theorem

3.1, we can show that (ŷ1, ŷ2) and (ȳ1, ȳ2) are two positive solutions of the system (1.1). �

4. An Example

Example 4.1. Consider the following problem





− D
5
2

0+y1(t) =

√
π

t
√

(1 − t)
f1(t, y1, y2) −

√
π

48
√

t(1 − t)
, 0 < t < 1,

− D
9
4

0+y2(t) =
Γ(9

4 )

t 4
√

(1 − t)
f2(t, y1, y2) −

Γ(9
4 )

12 4
√

1 − t
, 0 < t < 1,

y1(0) = y′
1(0) = 0, y′

1(1) =
96

97
y1

(
1

16

)
,

y2(0) = y′
2(0) = 0, y′

2(1) =
40

41
y2

(
1

16

)
.

(1)

Let

p1(t) =

√
π

t
√

(1 − t)
, q1(t) =

√
π

48
√

t(1 − t)
,

p2(t) =
Γ(9

4 )

t 4
√

1 − t
, q2(t) =

Γ(9
4 )

12 4
√

1 − t
.
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Take [ 1
16 , 9

16 ] ⊂ (0, 1), by direct calculation, we have

̺1(t) = t
3
2 , ̺2(t) = t

5
4 , γ1(t) =

2

3
t

3
2 , γ2(t) =

4

5
t

5
4 , t ∈ [0, 1],

Λ1 = λ1[γ1] =

∫ 1

0

γ1(t)dA1(t) =
96

97
× 2

3
·
(

1

16

) 3
2

=
1

97
,

Λ2 = λ2[γ2] =

∫ 1

0

γ2(t)dA2(t) =
40

41
× 4

5
·
(

1

16

) 5
4

=
1

41
,

GA1
(s) =

96

97
G1

( 1

16
, s

)
≥ 0, GA2

(s) =
40

41
G2

( 1

16
, s

)
≥ 0,

∫ 1

0

G1(1, s)[p1(s) + q1(s)]ds =

∫ 1

0

s(1 − s)
1
2

Γ(5
2 )

[p1(s) + q1(s)]ds =
73

54
,

∫ 1

0

G2(1, s)[p2(s) + q2(s)]ds =

∫ 1

0

s(1 − s)
1
4

Γ(9
4 )

[p2(s) + q2(s)]ds =
25

24
,

κ1 = 2, κ2 = 2, L1 =
73

27
, L2 =

25

12
, l1 =

1

96
, l2 =

1

64
,

∫ 1

0

q1(t)dt =
π
√

π

48
≈ 0.1160 <

Γ(α1)

2κ2
=

Γ(5
2 )

8
≈ 0.1662,

∫ 1

0

q2(t)dt =
Γ(9

4 )

9
≈ 0.1259 <

Γ(α2)

2κ2
=

Γ(9
4 )

8
≈ 0.1416.

So conditions (H1) − (H3) hold.

Next, in order to demonstrate the application of our main results obtained in section 3, we choose

two different sets of functions fi(t, y1, y2) (i = 1, 2) such that f1 and f2 satisfy the conditions of Theorem

3.1 and Theorem 3.4, respectively.

Case 1. Let f1(t, y1, y2) = 1
685 [(y1 − 34)2 + y2

2 ], f2(t, y1, y2) = 1
685 [y2

1 + (y2 − 39)2], (t, y1, y2) ∈

[0, 1]× [0, +∞)× [0, +∞). Obviously, fi(t, y1, y2) (i = 1, 2) are continuous on [0, 1]× [0, +∞)× [0, +∞),

and

p1(t)f1(t, y1, y2) ≥ q1(t), (t, y1, y2) ∈ [0, 1] × [0, 1]× [0, +∞),

p2(t)f2(t, y1, y2) ≥ q2(t), (t, y1, y2) ∈ [0, 1] × [0, +∞) × [0, 1].

So condition (H4) holds.

Take r1 = 73, then r1 > max
{
2, 2L1, 2L2,

4κ2
1

Γ(α1)

∫ 1

0
q1(s)ds,

4κ2
2

Γ(α2)

∫ 1

0
q2(s)ds

}
. For any (t, y1, y2) ∈

[0, 1]× [0, 73]× [0, 73], we have

f1(t, y1, y2) ≤
1

685
× [(r1 − 34)2 + r2

1 ] = 10 <
r1

2L1
− 1 = 12.5,

f2(t, y1, y2) ≤
1

685
× [r2

1 + (0 − 39)2] = 10 <
r1

2L2
− 1 = 16.52.

In addition, we can easily to check that f1∞ = +∞, f2∞ = +∞, so conditions (C1) and (C2) of Theorem

3.1 are satisfied. Then by Theorem 3.1, the system (4.1) has at least one positive solution.

Case 2. Let f1(t, y1, y2) = [10−8 + g1(y1)] × h1(y2), f2(t, y1, y2) = g2(y1) × [10−8 + h2(y2)], where

g1(y1) =





433, 0 ≤ y1 ≤ 128,

− 1

84
y1 +

9125

21
, 128 ≤ y1 ≤ 36500,

(y1 − 36500)2, y1 ≥ 36500,

h1(y2) =





15, 0 ≤ y2 ≤ 36500,

15(y2 − 36499)2, y2 ≥ 36500,
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g2(y1) =





1

9125
y1 + 77, 0 ≤ y1 ≤ 36500,

(y1 − 36491)2, y1 ≥ 36500,

h2(y2) =





1

8
y2 + 68, 0 ≤ y2 ≤ 128,

− 1

433
(y2 − 36500), 128 ≤ y2 ≤ 36500,

(y2 − 36500)2, y2 ≥ 36500.

Obviously, fi(t, y1, y2) (i = 1, 2) are continuous on [0, 1]× [0, +∞) × [0, +∞), and

p1(t)f1(t, y1, y2) ≥ q1(t), (t, y1, y2) ∈ [0, 1] × [0, 1]× [0, +∞),

p2(t)f2(t, y1, y2) ≥ q2(t), (t, y1, y2) ∈ [0, 1] × [0, +∞) × [0, 1].

So condition (H4) holds.

Take R0 = 64, then R0 > max
{
1,

4κ2
1

Γ(α1)

∫ 1

0 q1(s)ds,
4κ2

2

Γ(α2)

∫ 1

0 q2(s)ds
}

, and for any t ∈ [ 1
16 , 9

16 ], 1
4 =

1
2τR0 ≤ y1 + y2 ≤ 2R0 = 128, we have

f1(t, y1, y2) = [10−8 + g1(y1)] × h1(y2) > 433 × 15 = 6495 >
R0

l1
= 6144,

f2(t, y1, y2) = g2(y1) × [10−8 + h2(y2)] >

(
1

9125
y1 + 77

)
×

(
1

8
y2 + 68

)
≥ 5236 >

R0

l2
= 4096.

Choose R = 36500, then R > max
{
2R0, 2L1(1 + R0

l1
), 2L2(1 + R0

l2
)
}
, and for any (t, y1, y2) ∈ [0, 1] ×

[0, 36500]× [0, 36500], we have

f1(t, y1, y2) ≤
[
1 + max

0≤y2≤36500
g1(y1)

]
× 15 = 434 × 15 = 6510 <

R

2L1
− 1 = 6749,

f2(t, y1, y2) ≤
(

1

9125
y1 + 77

)
×

[
1 + max

0≤y2≤36500
h2(y2)

]
≤ 81 × 85 = 6885 <

R

2L2
− 1 = 8759.

In addition, it is not difficult to show that f1∞ = +∞ or f2∞ = +∞. So all conditions of Theorem

3.4 are satisfied. By Theorem 3.4, the system (4.1) has at least two positive solutions.
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