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EXISTENCE OF PERIODIC SOLUTIONS FOR A SECOND ORDER

NONLINEAR NEUTRAL DIFFERENTIAL EQUATION WITH

FUNCTIONAL DELAY

ABDELOUAHEB ARDJOUNI∗, AHCENE DJOUDI

Abstract. In this article we study the existence of periodic solutions of the second order
nonlinear neutral differential equation with functional delay

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t) x3 (t) =

d

dt
g (t, x (t− τ (t))) + f

`

t, x3 (t) , x3 (t− τ (t))
´

.

The main tool employed here is the Burton-Krasnoselskii’s hybrid fixed point theorem
dealing with a sum of two mappings, one is a large contraction and the other is compact.

1. INTRODUCTION

Due to their importance in numerous applications, for example, physics, population dynam-
ics, industrial robotics, and other areas, many authors are studying the existence, uniqueness,
stability and positivity of solutions for delay differential equations, see [1]-[23] and references
therein.

In this paper, we are interested in the analysis of qualitative theory of periodic solutions of
delay differential equations. Motivated by the papers [1]-[6], [9]-[11], [16]-[18], [21]-[23] and the
references therein, we concentrate on the existence of periodic solutions for the second order
nonlinear neutral differential equation

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x3 (t) =

d

dt
g (t, x (t− τ (t))) + f

(

t, x3 (t) , x3 (t− τ (t))
)

, (1.1)

where p, q are positive continuous real-valued functions. The function g : R × R → R is
differentiable and f : R×R×R → R is continuous in their respective arguments. To reach our
desired end we transform (1.1) into an integral equation and then use Burton-Krasnoselskii’s
fixed point theorem to show the existence of periodic solutions. The obtained integral equation
splits in the sum of two mappings, one is a large contraction and the other is compact.

Note that in our consideration the neutral term d
dt
g (t, x (t− τ (t))) of (1.1) produces non-

linearity in the derivative term d
dt
x (t− τ (t)). The neutral term d

dt
x (t− τ (t)) in [2] enters

linearly. As a consequence, our analysis is different form that in [2].
The organization of this paper is as follows. In Section 2, we introduce some notations and

lemmas, and state some preliminary results needed in later sections, then we give the Green’s
function of (1.1), which plays an important role in this paper. Also, we present the inversion of
(1.1) and Burton-Krasnoselskii’s fixed point theorem. In Section 3, we present our main result
on existence.
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2. PRELIMINARIES

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period T .
Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| .

Since we are searching for the existence of periodic solutions for equation (1.1), it is natural to
assume that

p (t+ T ) = p (t) , q (t+ T ) = q (t) , τ (t+ T ) = τ (t) , (2.1)

where τ is a continuous scalar function, and τ (t) ≥ τ∗ > 0. Also, we assume
∫ T

0

p (s) ds > 0,

∫ T

0

q (s) ds > 0. (2.2)

Functions g (t, x) and f (t, x, y) are periodic in t with period T . They are globally Lipschitz
continuous in x and in x and y, respectively. That is,

g (t+ T, x) = g (t, x) , f (t+ T, x, y) = f (t, x, y) , (2.3)

and there are positive constants k1, k2, k3 such that

|g (t, x) − g (t, y)| ≤ k1 ‖x− y‖ , (2.4)

and
|f (t, x, y) − f (t, z, w)| ≤ k2 ‖x− z‖ + k3 ‖y − w‖ . (2.5)

Lemma 2.1. ([17]) Suppose that (2.1) and (2.2) hold and

R1

[

exp
(

∫ T

0 p (u) du
)

− 1
]

Q1T
≥ 1, (2.6)

where

R1 = max
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫ t+T

t

exp
(∫ s

t
p (u) du

)

exp
(

∫ T

0 p (u) du
)

− 1
q (s) ds

∣

∣

∣

∣

∣

∣

, Q1 =

(

1 + exp

(

∫ T

0

p (u) du

))2

R2
1.

Then there are continuous T -periodic functions a and b such that b (t) > 0,
∫ T

0 a (u) du > 0 and

a (t) + b (t) = p (t) ,
d

dt
b (t) + a (t) b (t) = q (t) , for t ∈ R.

Lemma 2.2. ([22]) Suppose the conditions of Lemma 2.1 hold and φ ∈ PT . Then the equation

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) = φ (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x (t) =

∫ t+T

t

G (t, s)φ (s) ds,

where

G (t, s) =

∫ s

t
exp

[∫ u

t
b (v) dv +

∫ s

u
a (v) dv

]

du+
∫ t+T

s
exp

[

∫ u

t
b (v) dv +

∫ s+T

u
a (v) dv

]

du
[

exp
(

∫ T

0
a (u) du

)

− 1
] [

exp
(

∫ T

0
b (u) du

)

− 1
] .
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Corollary 2.3. ([22]) Green’s function G satisfies the following properties

G (t, t+ T ) = G (t, t) , G (t+ T, s+ T ) = G (t, s) ,

∂

∂s
G (t, s) = a (s)G (t, s) − exp

(∫ s

t
b (v) dv

)

exp
(

∫ T

0 b (v) dv
)

− 1
,

∂

∂t
G (t, s) = −b (t)G (t, s) +

exp
(∫ s

t
a (v) dv

)

exp
(

∫ T

0 a (v) dv
)

− 1
.

The following lemma is fundamental to our results.

Lemma 2.4. Suppose (2.1)-(2.3) and (2.6) hold. If x ∈ PT , then x is a solution of equation
(1.1) if and only if

x (t) =

∫ t+T

t

G (t, s) q (s)
[

x (s) − x3 (s)
]

ds

+

∫ t+T

t

g (s, x (s− τ (s))) [E (t, s) − a (s)G (t, s)] +G (t, s) f
(

s, x3 (s) , x3 (s− τ (s))
)

ds,

(2.7)

where

E (t, s) =
exp

(∫ s

t
b (v) dv

)

exp
(

∫ T

0 b (v) dv
)

− 1
. (2.8)

Proof. Let x ∈ PT be a solution of (1.1). Rewrite (1.1) as

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) = q (t)

[

x (t) − x3 (t)
]

+
d

dt
g (t, x (t− τ (t))) + f

(

t, x3 (t) , x3 (t− τ (t))
)

.

From Lemma 2.2, we have

x (t) =

∫ t+T

t

G (t, s) q (s)
[

x (s) − x3 (s)
]

ds

+

∫ t+T

t

G (t, s)

[

∂

∂s
g (s, x (s− τ (s))) + f

(

s, x3 (s) , x3 (s− τ (s))
)

]

ds. (2.9)

Performing an integration by parts, we have
∫ t+T

t

G (t, s)
∂

∂s
g (s, x (s− τ (s))) ds

= −
∫ t+T

t

[

∂

∂s
G (t, s)

]

g (s, x (s− τ (s))) ds

=

∫ t+T

t

g (s, x (s− τ (s))) [E (t, s) − a (s)G (t, s)] ds, (2.10)

where E is given by (2.8). We obtain (2.7) by substituting (2.10) in (2.9). Since each step is
reversible, the converse follows easily. This completes the proof. �
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Lemma 2.5. ([22]) Let A =
∫ T

0
p (u)du, B = T 2 exp

(

1

T

∫ T

0
ln (q (u)) du

)

. If

A2 ≥ 4B, (2.11)

then we have

min

{

∫ T

0

a (u) du,

∫ T

0

b (u)du

}

≥ 1

2

(

A−
√

A2 − 4B
)

:= l,

max

{

∫ T

0

a (u) du,

∫ T

0

b (u)du

}

≤ 1

2

(

A+
√

A2 − 4B
)

:= m.

Corollary 2.6. ([22]) Functions G and E satisfy

T

(em − 1)
2 ≤ G (t, s) ≤

T exp
(

∫ T

0 p (u) du
)

(el − 1)
2 , |E (t, s)| ≤ em

el − 1
.

In the analysis, we employ a fixed point theorem in which the notion of a large contraction
is required as one of the sufficient conditions. The following definition, due to T. A. Burton,
can be found in [5], [6].

Definition 2.7 (Large Contraction). Let (M, d) be a metric space and consider B : M → M.
Then B is said to be a large contraction if given φ, ϕ ∈ M with φ 6= ϕ then d (Bφ,Bϕ) ≤ d (φ, ϕ)
and if for all ε > 0, there exists a δ < 1 such that

[φ, ϕ ∈ M, d (φ, ϕ) ≥ ε] ⇒ d (Bφ,Bϕ) ≤ δd (φ, ϕ) .

The next theorem is also a result of T. A. Burton. This captivating theorem, which con-
stitutes a basis for our main result, is a reformulated version of Krasnoselskii’s fixed point
theorem and has been used successfully in existence and stability in differential equations (see
[[5], Theorem 3] and [6]).

Theorem 2.8 (Burton-Krasnoselskii). Let M be a closed bounded convex nonempty subset of
a Banach space (B, ‖.‖) . Suppose that A and B map M into M such that

(i) x, y ∈ M, implies Ax + By ∈ M,
(ii) A is compact and continuous,
(iii) B is a large contraction mapping.

Then there exists z ∈ M with z = Az + Bz.
We will use this theorem to prove the existence of periodic solutions for equation (1.1). We

begin with the following proposition (see [5], [6]) and for convenience we present its proof.

Proposition 2.9. If ‖.‖ is the maximum norm,

M =
{

ϕ ∈ PT : ‖ϕ‖ ≤
√

3/3
}

,

and (Bϕ) (t) = ϕ (t) − ϕ3 (t) , then B is a large contraction of the set M.

Proof. For each t ∈ R we have for the real functions ϕ, ψ

|(Bϕ) (t) − (Bψ) (t)|
= |ϕ (t) − ψ (t)|

∣

∣1 −
(

ϕ2 (t) + ϕ (t)ψ (t) + ψ2 (t)
)∣

∣ .
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On the other hand,

|ϕ (t) − ψ (t)|2 = ϕ2 (t) − 2ϕ (t)ψ (t) + ψ2 (t)

≤ 2
(

ϕ2 (t) + ψ2 (t)
)

.

Using ϕ2 (t) + ψ2 (t) < 1 we have

|(Bϕ) (t) − (Bψ) (t)|
≤ |ϕ (t) − ψ (t)|

[

1 −
(

ϕ2 (t) + ψ2 (t)
)

+ |ϕ (t)ψ (t)|
]

≤ |ϕ (t) − ψ (t)|
[

1 −
(

ϕ2 (t) + ψ2 (t)
)

+
ϕ2 (t) + ψ2 (t)

2

]

≤ |ϕ (t) − ψ (t)|
[

1 − ϕ2 (t) + ψ2 (t)

2

]

≤ ‖ϕ− ψ‖ .
Then

‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖ .
Now, let ǫ ∈ (0, 1) be given and let ϕ, ψ ∈ M with ‖ϕ− ψ‖ ≥ ǫ.
a) Suppose that for some t we have

ǫ/2 ≤ |ϕ (t) − ψ (t)| .
Then

(ǫ/2)
2 ≤ |ϕ (t) − ψ (t)|2 ≤ 2

(

ϕ2 (t) + ψ2 (t)
)

,

that is

ϕ2 (t) + ψ2 (t) ≥ ǫ2/8.

For all such t we have

|(Bϕ) (t) − (Bψ) (t)| ≤ |ϕ (t) − ψ (t)|
[

1 − ǫ2

16

]

≤
[

1 − ǫ2

16

]

‖ϕ− ψ‖ .

b) Suppose that for some t we have

|ϕ (t) − ψ (t)| ≤ ǫ/2,

then

|(Bϕ) (t) − (Bψ) (t)| ≤ |ϕ (t) − ψ (t)| ≤ (1/2) ‖ϕ− ψ‖ .
So, for all t we have

|(Bϕ) (t) − (Bψ) (t)| ≤ max

{

1/2, 1− ǫ2

16

}

‖ϕ− ψ‖ .

Hence, for each ǫ > 0, if δ = max

{

1/2, 1− ǫ2

16

}

< 1, then

‖Bϕ− Bψ‖ ≤ δ ‖ϕ− ψ‖ .
Consequently, B is a large contraction. �
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3. EXISTENCE OF PERIODIC SOLUTIONS

To apply Theorem 2.8, we need to define a Banach space B, a bounded convex subset M of
B and construct two mappings, one is a large contraction and the other is compact. So, we let
(B, ‖.‖) = (PT , ‖.‖) and M = {ϕ ∈ B : ‖ϕ‖ ≤ L} , where L =

√
3/3. We express equation (2.7)

as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Hϕ) (t) ,

where A,B : M → B are defined by

(Aϕ) (t) =

∫ t+T

t

g (s, ϕ (s− τ (s))) [E (t, s) − a (s)G (t, s)]+G (t, s) f
(

s, ϕ3 (s) , ϕ3 (s− τ (s))
)

ds,

(3.1)
and

(Bϕ) (t) =

∫ t+T

t

G (t, s) q (s)
[

ϕ (s) − ϕ3 (s)
]

ds. (3.2)

To simplify notations, we introduce the following constants

α =
T exp

(

∫ T

0
p (u) du

)

(el − 1)
2 , β =

em

el − 1
, σ = max

t∈[0,T ]
|q (t)| , λ = max

t∈[0,T ]
|b (t)| ,

µ = max
t∈[0,T ]

|a (t)| , ρ1 = max
t∈[0,T ]

|g (t, 0)| , ρ2 = max
t∈[0,T ]

|f (t, 0, 0)| . (3.3)

We need the following assumptions

ασT ≤ 1, (3.4)

JT
[

(k1L+ ρ1) (β + µα) + α
(

(k2 + k3)L
3 + ρ2

)]

≤ L, (3.5)

where J is constants with J ≥ 3.
We shall prove that the mapping H has a fixed point which solves (1.1), whenever its deriv-

ative exists.

Lemma 3.1. Suppose that conditions (2.1)-(2.6), (2.11) and (3.5) hold. Then A : M → M is
compact.

Proof. Let A be defined by (3.1). Obviously, Aϕ is continuous and it is easy to show that
(Aϕ) (t+ T ) = (Aϕ) (t). Observe that in view of (2.4) and (2.5), we have

|g (t, x)| ≤ |g (t, x) − g (t, 0) + g (t, 0)|
≤ |g (t, x) − g (t, 0)| + |g (t, 0)|
≤ k1 ‖x‖ + ρ1.

Similarly,

|f (t, x, y)| ≤ |f (t, x, y) − f (t, 0, 0) + f (t, 0, 0)|
≤ |f (t, x, y) − f (t, 0, 0)| + |f (t, 0, 0)|
≤ k2 ‖x‖ + k3 ‖y‖ + ρ2.
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So, for any ϕ ∈ M, we have

|(Aϕ) (t)|

≤
∫ t+T

t

|g (s, ϕ (s− τ (s)))| [|E (t, s)| + |a (s)| |G (t, s)|] + |G (t, s)|
∣

∣f
(

s, ϕ3 (s) , ϕ3 (s− τ (s))
)∣

∣ ds

≤
∫ t+T

t

(k1L+ ρ1) (β + µα) + α
(

(k2 + k3)L
3 + ρ2

)

ds

≤ T
[

(k1L+ ρ1) (β + µα) + α
(

(k2 + k3)L
3 + ρ2

)]

≤ L

J
< L.

That is Aϕ ∈ M.
To see that A is continuous, we let ϕ, ψ ∈ M. Given ε > 0, take η = ε/N with N =

T
[

k1 (βθ + µα) + 3α (k2 + k3)L
2
]

where k1, k2 and k3 are given by (2.4) and (2.5). Now, for
‖ϕ− ψ‖ < η, we obtain

‖Aϕ−Aψ‖ ≤
∫ t+T

t

[

k1 (β + µα) ‖ϕ− ψ‖ + α (k2 + k3)
∥

∥ϕ3 − ψ3
∥

∥

]

ds

≤ N ‖ϕ− ψ‖ < ε.

This proves that A is continuous.
To show that the image of A is contained in a compact set. Let ϕn ∈ M, where n is a positive

integer. Then, as above, we see that

‖Aϕn‖ ≤ L.

Next we calculate d
dt

(Aϕn) (t) and show that it is uniformly bounded. By making use of (2.1),
(2.2) and (2.3) we obtain by taking the derivative in (3.1) that

d

dt
(Aϕn) (t)

=
exp

(

∫ t+T

t
b (v) dv

)

− 1

exp
(

∫ T

0 b (v) dv
)

− 1
g (t, ϕn (t− τ (t)))

+

∫ t+T

t

g (s, ϕn (s− τ (s)))



−b (t)E (t, s) − a (s)



−b (t)G (t, s) +
exp

(∫ s

t
a (v) dv

)

exp
(

∫ T

0
a (v) dv

)

− 1







 ds

+

∫ t+T

t



−b (t)G (t, s) +
exp

(∫ s

t
a (v) dv

)

exp
(

∫ T

0
a (v) dv

)

− 1



 f
(

s, ϕ3
n (s) , ϕ3

n (s− τ (s))
)

ds.

Consequently, by invoking (2.4), (2.5) and (3.3), we obtain
∣

∣

∣

∣

d

dt
(Aϕn) (t)

∣

∣

∣

∣

≤ β (k1L+ ρ1) + T
[

(k1L+ ρ1) (λβ + µ (λα+ β)) + (λα+ β)
(

(k2 + k3)L
3 + ρ2

)]

≤ D,

for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded and equicon-
tinuous. The Ascoli-Arzela theorem implies that a subsequence (Aϕnk

) of (Aϕn) converges
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uniformly to a continuous T -periodic function. Thus A is continuous and A (M) is contained
in a compact subset of M. �

Lemma 3.2. For B defined in (3.2), suppose that (3.4) holds. Then B : M → M is a large
contraction.

Proof. Let B be defined by (3.2). Obviously, Bϕ is continuous and it is easy to show that
(Bϕ) (t+ T ) = (Bϕ) (t). So, for any ϕ ∈ M, we have

|(Bϕ) (t)| ≤
∫ t+T

t

|G (t, s)| |q (s)|
∣

∣ϕ (s) − ϕ3 (s)
∣

∣ ds

≤ ασT
∥

∥ϕ− ϕ3
∥

∥ .

Since ‖ϕ‖ ≤ L, we have
∥

∥ϕ− ϕ3
∥

∥ ≤
(

2
√

3
)

/9 < L. So, for any ϕ ∈M, we have

‖Bϕ‖ ≤ L.

Thus Bϕ ∈ M. Consequently, we have B : M → M.
It remains to show that B is large contraction. From the proof of Proposition 2.9 we have

for ϕ, ψ ∈ M, with ϕ 6= ψ

|(Bϕ) (t) − (Bψ) (t)| ≤ ασT ‖ϕ− ψ‖ ≤ ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖. Now, let ǫ ∈ (0, 1) be given and let ϕ, ψ ∈ M with ‖ϕ− ψ‖ ≥ ε.
From the proof of the Proposition 2.9 we have found δ < 1 such that

|(Bϕ) (t) − (Bψ) (t)| ≤ ασTδ ‖ϕ− ψ‖ ≤ δ ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ δ ‖ϕ− ψ‖. Consequently, B is a large contraction. �

Theorem 3.3. Let (PT , ‖.‖) be the Banach space of continuous T -periodic real valued functions

and M = {ϕ ∈ PT : ‖ϕ‖ ≤ L} , where L =
√

3/3. Suppose (2.1)-(2.6), (2.11), (3.4) and (3.5)
hold. Then equation (1.1) has a T -periodic solution ϕ in the subset M.

Proof. By Lemma 3.1, the operator A : M → M is compact and continuous. Also, from Lemma
3.2, the operator B : M → M is a large contraction. Moreover, if ϕ, ψ ∈M, we see that

‖Aϕ+ Bψ‖ ≤ ‖Aϕ‖ + ‖Bψ‖ ≤ L/J +
(

2
√

3
)

/9 ≤ L.

Thus Aϕ+ Bψ ∈ M.
Clearly, all the hypotheses of the Burton-Krasnoselskii theorem are satisfied. Thus there

exists a fixed point ϕ ∈ M such that ϕ = Aϕ+Bϕ. By Lemma 2.4 this fixed point is a solution
of (1.1) and the proof is complete. �
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