Ulam-Hyers stability for partial differential inclusions

Vasile L. Lazăr

"Vasile Goldiş" Western University Arad, Romania. M.Viteazul str., no.26, 440030, Satu Mare, Romania E-mail: vasilazar@yahoo.com

Abstract

Using the weakly Picard operator technique, we will present Ulam-Hyers stability results for integral inclusions of Fredholm and Volterra type and for the Darboux problem associated to a partial differential inclusion.

2010 Mathematics Subject Classification: 47H10, 54H25, 54C60

Keywords and phrases: Ulam-Hyers stability, generalized Ulam-Hyers stability, multivalued weakly Picard operator, fixed point, selection, integral inclusion, partial differential inclusion.

1 Introduction

The Ulam stability (Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourgin,...) of various functional equations has been investigated by many authors (see [14], [15], [6], [8], [3], [9], [13], [25], [30], [31]). There are

some results for differential equations ([16], [18], [19], [23], [36]), integral equations ([5], [17], [35]), for difference equations [4], [28], [29], [44]), etc. ([10], [11], [32]). For other results in the case of fixed point problems and coincidence point problems see [2], [26], [34], [37], [39].

The aim of this paper is to present existence and Ulam-Hyers stability results for some problems associated with integral inclusions and partial differential inclusions.

2 Ulam-Hyers stability via weakly Picard operators

Let (X, d) be a metric space and consider the following families of subsets of X:

$$P(X) := \{ Y \in \mathcal{P}(X) | Y \neq \emptyset \}, \ P_b(X) := \{ Y \in P(X) | Y \text{ is bounded} \},\$$

 $P_{cl}(X) := \{ Y \in P(X) | Y \text{ is closed} \}, P_{cp}(X) := \{ Y \in P(X) | Y \text{ is compact} \}.$

We will denote by $\overline{B}(x_0, r)$ the closure of $B(x_0, r)$ in (X, d), where $B(x_0, r) := \{x \in X | d(x_0, x) < r\}$ is the open ball centered at $x_0 \in X$ with radius r > 0 and by $\widetilde{B}(x_0, r)$ the closed ball centered at $x_0 \in X$ with radius r > 0, i.e., $\widetilde{B}(x_0, r) := \{x \in X | d(x_0, x) \le r\}$.

If (X, d) is a metric space, then the gap functional in P(X) is defined as

$$D_d: P(X) \times P(X) \to \mathbb{R}_+, \ D_d(A, B) = \inf\{d(a, b) \mid a \in A, \ b \in B\}.$$

In particular, if $x_0 \in X$ then $D_d(x_0, B) := D_d(\{x_0\}, B)$.

We will denote by H the generalized Pompeiu-Hausdorff functional on P(X), defined as

$$H_d: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ H_d(A, B) = \max\{\sup_{a \in A} D_d(a, B), \sup_{b \in B} D_d(b, A)\}$$

Let (X, d) be a metric space. If $F : X \to P(X)$ is a multivalued operator, then $x \in X$ is called a fixed point for F if and only if $x \in F(x)$. The

set $Fix(F) := \{x \in X | x \in F(x)\}$ is called the fixed point set of F, while $SFix(F) = \{x \in X | \{x\} = F(x)\}$ is called the strict fixed point set of F.

For a multivalued operator $F: X \to P(Y)$ the graph of F will be denoted by

$$Graph(F) := \{ (x, y) \in X \times Y : y \in F(x) \}.$$

Notice that $f: X \to Y$ is a selection for $F: X \to P(Y)$ if $f(x) \in F(x)$, for each $x \in X$.

In particular, when F is a singlevalued operator, we obtain the similar well-known concepts in fixed point theory.

For the following notions see I.A. Rus [33] and [37], I.A. Rus, A. Petruşel, A. Sîntămărian [40] and A. Petruşel [27].

Definition 2.1. Let (X, d) be a metric space and $f : X \to X$ be an operator. By definition, f is a weakly Picard operator (briefly WPO) if the sequence $(f^n(x))_{n \in \mathbb{N}}$ of successive approximations for f starting from $x \in X$ converges, for all $x \in X$ and its limit is a fixed point of f.

If f is a WPO, then we consider the operator

$$f^{\infty}: X \to X$$
 defined by $f^{\infty}(x) := \lim_{n \to \infty} f^n(x).$

Notice that $f^{\infty}(X) = Fix(f)$.

Definition 2.2. Let (X, d) be a metric space, $f : X \to X$ be a WPO and c > 0be a real number. By definition, the operator f is a c-weakly Picard operator (briefly c-WPO) if and only if

$$d(x, f^{\infty}(x)) \leq c \ d(x, f(x)), \text{ for all } x \in X.$$

In the multivalued case we have the following concepts.

Definition 2.3. Let (X, d) be a metric space, and $F : X \to P_{cl}(X)$ be a multivalued operator. By definition, F is a multivalued weakly Picard (briefly MWP) operator if for each $x \in X$ and each $y \in F(x)$ there exists a sequence

 $(x_n)_{n\in\mathbb{N}}$ such that:

(i) $x_0 = x, x_1 = y;$

(ii) $x_{n+1} \in F(x_n)$, for each $n \in \mathbb{N}$;

(iii) the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of F.

Remark 2.1. A sequence $(x_n)_{n \in \mathbb{N}}$ satisfying condition (i) and (ii) in the Definition 2.3 is called a sequence of successive approximations of F starting from $(x, y) \in Graph(F)$.

If $F: X \to P(X)$ is a MWP operator, then we define $F^{\infty}: Graph(F) \to P(FixF)$ by the formula $F^{\infty}(x,y) := \{ z \in Fix(F) \mid \text{there exists a sequence} \text{ of successive approximations of } F \text{ starting from } (x,y) \text{ that converges to } z \}.$

Definition 2.4. Let (X, d) be a metric space and let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous at 0 and $\psi(0) = 0$. Then $F : X \to P(X)$ is said to be a multivalued ψ -weakly Picard operator if it is a multivalued weakly Picard operator and there exists a selection $f^{\infty} : Graph(F) \to Fix(F)$ of F^{∞} such that

$$d(x, f^{\infty}(x, y)) \le \psi(d(x, y)), \text{ for all } (x, y) \in Graph(F).$$

If there exists c > 0 such that $\psi(t) = ct$, for each $t \in \mathbb{R}_+$, then F is called a multivalued c-weakly Picard operator.

Recall that, if (X, d) is a metric space, then $F : X \to P_{cl}(X)$ is said to be a multivalued α -contraction if $\alpha \in [0, 1)$ and

$$H_d(F(x), F(y)) \le \alpha d(x, y), \text{ for all } x, y \in X,$$

Example 2.1. Let (X, d) be a complete metric space and $F : X \to P_{cl}(X)$ be a multivalued α -contraction. Then F is a c-MWP operator, where $c = (1 - \alpha)^{-1}$.

For the theory of weakly Picard operators, see [33] for the singlevalued case and [40] and [27] for the multivalued one.

We present now some Ulam-Hyers stability concepts for the fixed point problem associated with a multivalued operator.

Definition 2.5. Let (X, d) be a metric space and $F : X \to P(X)$ be a multivalued operator. The fixed point inclusion

$$(2.1) x \in F(x), \ x \in X$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous at 0 and $\psi(0) = 0$ such that for each $\varepsilon > 0$ and for each solution $y^* \in X$ of the inequation

$$(2.2) D_d(y, F(y)) \le \varepsilon$$

there exists a solution x^* of the fixed point inclusion (2.1) such that

$$d(y^*, x^*) \le \psi(\varepsilon).$$

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$, then the fixed point inclusion (2.1) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers stability of the fixed point inclusion (2.1) for multivalued operators with compact values.

Theorem 2.1. (I.A. Rus [37]) Let (X, d) be a metric space and $F : X \to P_{cp}(X)$ be a multivalued ψ -weakly Picard operator. Then, the fixed point inclusion (2.1) is generalized Ulam-Hyers stable.

3 Existence and Ulam-Hyers stability for integral inclusions

We consider here some integral inclusion of Fredholm and Volterra type. Throughout this section we will denote by $\|\cdot\|$ the supremum norm in $C([a, b], \mathbb{R}^n)$ and by $|\cdot|$ a norm in \mathbb{R}^n .

Recall that $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be a comparison function (see [38]) if it is increasing and $\varphi^k(t) \to 0$, as $k \to +\infty$. As a consequence, we also have $\varphi(t) < t$, for each t > 0, $\varphi(0) = 0$ and φ is continuous at 0.

Recall also the notion of strict comparison function. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be a strict comparison function (see [38]) if it is strictly increasing and $\sum_{n=1}^{\infty} \varphi^n(t) < +\infty$, for each t > 0.

The mappings $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ given by $\varphi(t) = at$ (where $a \in [0, 1[)$ and respectively $\varphi(t) = \frac{t}{1+t}$, for each $t \in \mathbb{R}_+$ are examples of strict comparison functions.

The following result, a generalization of Covitz-Nadler fixed point principle (see [24], [7]) is known in the literature as Węgrzyk's fixed point theorem.

Theorem 3.2. Let (X, d) be a complete metric space and $F : X \to P_{cl}(X)$ be a multivalued φ -contraction, i.e., $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a strict comparison function and

$$H(F(x_1), F(x_2)) \le \varphi(d(x_1, x_2)), \text{ for all } x_1, x_2 \in X.$$

Then Fix(F) is nonempty and for any $x_0 \in X$ there exists a sequence of successive approximations of F starting from x_0 which converges to a fixed point of F.

Remark 3.2. It is worth noting that, in the conditions of above result, if additionally $SFix(F) \neq \emptyset$, then $Fix(F) = SFix(F) = \{x^*\}$, see Sîntămărian [42]. Moreover, in this case, if the function $\beta : \mathbb{R}_+ \to \mathbb{R}_+$, $\beta(t) := t - \varphi(t)$ is strictly increasing and onto, then, since

$$d(x, x^*) \le D(x, F(x)) + H(F(x), F(x^*)) \le D(x, F(x)) + \varphi(d(x, x^*)), \text{ for all } x \in X, x$$

we get that

$$d(x, x^*) \le \beta^{-1}(D(x, F(x)), \text{ for all } x \in X,$$

This immediately implies that the fixed point problem $x \in F(x)$, $x \in X$ is generalized Ulam-Hyers stable with function β^{-1} .

Another Ulam-Hyers stability result, more efficient for applications, was proved in [21].

Theorem 3.3. Let (X, d) be a complete metric space and $F : X \to P_{cl}(X)$ be a multivalued φ -contraction. Then:

(i) (existence of the fixed point) F is a MWP operator;

(ii) (Ulam-Hyers stability for the fixed point inclusion) If additonally $\varphi(qt) \leq q\varphi(t)$ for every $t \in \mathbb{R}_+$ (where q > 1) and t = 0 is a point of uniform convergence for the series $\sum_{n=1}^{\infty} \varphi^n(t)$, then F is a ψ -MWP operator, with $\psi(t) := t + s(t)$, for each $t \in \mathbb{R}_+$ (where $s(t) := \sum_{n=1}^{\infty} \varphi^n(t)$);

(iii) (data dependence of the fixed point set) Let $S : X \to P_{cl}(X)$ be a multivalued φ -contraction and $\eta > 0$ be such that $H(S(x), F(x)) \leq \eta$, for each $x \in X$. Suppose that $\varphi(qt) \leq q\varphi(t)$ for every $t \in \mathbb{R}_+$ (where q > 1) and t = 0 is a point of uniform convergence for the series $\sum_{n=1}^{\infty} \varphi^n(t)$. Then $H(Fix(S), Fix(F)) \leq \psi(\eta)$.

We will present now, using the above mentioned results, some existence and Ulam-Hyers stability theorems for multivalued operatorial inclusions.

Consider first the following Fredholm type integral inclusion.

(3.3)
$$x(t) \in \int_{a}^{b} K(t, s, x(s))ds + g(t), \ t \in [a, b]$$

The main result concerning the stability of the Fredholm integral inclusion (3.3) is the following.

Theorem 3.4. Let $K : [a, b] \times [a, b] \times \mathbb{R}^n \to P_{cl, cv}(\mathbb{R}^n)$ and $g : [a, b] \to \mathbb{R}^n$ such that:

(a) there exists an integrable function $M : [a, b] \to \mathbb{R}_+$ such that for each $t \in [a, b]$ and $u \in \mathbb{R}^n$ we have $K(t, s, u) \subset M(s)B(0; 1)$, a.e. $s \in [a, b]$;

(b) for each $u \in \mathbb{R}^n$ $K(\cdot, \cdot, u) : [a, b] \times [a, b] \to P_{cl,cv}(\mathbb{R}^n)$ is jointly measurable;

(c) for each $(s, u) \in [a, b] \times \mathbb{R}^n$ $K(\cdot, s, u) : [a, b] \to P_{cl, cv}(\mathbb{R}^n)$ is lower semi-continuous;

(d) there exists a continuous function $p : [a,b] \times [a,b] \to \mathbb{R}_+$ with $\sup_{t \in [a,b]} \int_{a}^{b} p(t,s) ds \leq 1 \text{ and a strict comparison function } \varphi : \mathbb{R}_+ \to \mathbb{R}_+ \text{ such}$ that for each $(t,s) \in [a,b] \times [a,b]$ and each $u, v \in \mathbb{R}^n$ we have that

(3.4)
$$H(K(t,s,u), K(t,s,v)) \le p(t,s) \cdot \varphi(|u-v|);$$

(e) g is continuous.

Then the following conclusions hold:

(a) the integral inclusion (3.3) has least one solution, i.e., there exists $x^* \in C([a, b], \mathbb{R}^n)$ which satisfies (3.3), for each $t \in [a, b]$.

(b) If additionally $\varphi(qt) \leq q\varphi(t)$ for every $t \in \mathbb{R}_+$ (where q > 1) and t = 0 is a point of uniform convergence for the series $\sum_{n=1}^{\infty} \varphi^n(t)$, then the integral inclusion (3.3) is generalized Ulam-Hyers stable with function ψ (where $\psi(t) := t + s(t)$, for each $t \in \mathbb{R}_+$ and $s(t) := \sum_{n=1}^{\infty} \varphi^n(t)$), i.e., for each $\varepsilon > 0$ and for any ε -solution y of (3.3), that is any $y \in C([a, b], \mathbb{R}^n)$ for which there exists $u \in C([a, b], \mathbb{R}^n)$ such that

$$u(t) \in \int_{a}^{b} K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b])$,

there exists a solution x^* of the integral inclusion (3.3) such that

$$|y(t) - x^*(t)| \le \psi(\varepsilon)$$
, for each $t \in [a, b]$.

Moreover, in this case the continuous data dependence of the solution set of the integral inclusion (3.4) holds.

Proof. (a) Define the multivalued operator $T: C([a, b], \mathbb{R}^n) \to \mathcal{P}(C([a, b], \mathbb{R}^n))$ by

$$T(x) := \left\{ v \in C([a, b], \mathbb{R}^n) | \ v(t) \in \int_a^b K(t, s, x(s)) ds + g(t), \ t \in [a, b] \right\}.$$

Then, (3.3) is equivalent to the fixed point inclusion

(3.5)
$$x \in T(x), \ x \in C([a, b], \mathbb{R}^n).$$

The proof is organized in several steps. We successively prove:

1. $T(x) \in P_{cp}(C([a, b], \mathbb{R}^n)).$

From (e) and Theorem 2 in Rybiński [41] we have that for each $x \in C([a, b], \mathbb{R}^n)$ there exists $k(t, s) \in K(t, s, x(s))$, for all $(t, s) \in [a, b]$, such that k(t, s) is integrable with respect to s and continuous with respect to t. Then $v(t) := \int_a^b k(t, s) ds + g(t)$, has the property $v \in T(x)$. Moreover, from (a) and (b), via Theorem 8.6.3. in Aubin and Frankowska [1], we get that T(x) is a compact set, for each $x \in C([a, b], \mathbb{R}^n)$.

2. $H(T(x_1), T(x_2)) \le \varphi(||x_1 - x_2||)$, for each $x_1, x_2 \in C([a, b], \mathbb{R}^n)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (3.4) is strict. Let $x_1, x_2 \in C([a, b], \mathbb{R}^n)$ and $v_1 \in T(x_1)$. Then $v_1(t) \in \int_a^b K(t, s, x_1(s))ds + g(t), t \in [a, b]$. It follows that $v_1(t) = \int_a^b k_1(t, s)ds + g(t), t \in [a, b]$, for some $k_1(t, s) \in K(t, s, x_1(s)),$ $(t, s) \in [a, b] \times [a, b].$

From (d) we have $H(K(t, s, x_1(s)), K(t, s, x_2(s)) < p(t, s)\varphi(|x_1(s) - x_2(s)|) \le p(t, s)\varphi(|x_1 - x_2||)$. Thus, there exists $w \in K(t, s, x_2(s))$ such that $|k_1(t, s) - w| \le p(t, s)\varphi(||x_1 - x_2||)$, for $t, s \in [a, b]$.

Let us define $U : [a, b] \times [a, b] \to P(\mathbb{R}^n)$, by $U(t, s) = \{w | |k_1(t, s) - w| \le p(t, s)\varphi(||x_1 - x_2||)\}$. Since the multi-valued operator $V(t, s) := U(t, s) \cap K(t, s, x_2(s))$ is jointly measurable and lower semi-continuous in t there exists $k_2(t, s)$ a selection for V, jointly measurable (and, hence, integrable in s) and continuous in t. Hence, $k_2(t, s) \in K(t, s, x_2(s))$ and $|k_1(t, s) - k_2(t, s)| \le p(t, s)\varphi(||x_1 - x_2||)$, for each $t, s \in [a, b]$.

Consider
$$v_2(t) = \int_a^{t} k_2(t,s)ds + g(t), t \in [a,b]$$
. Then, we have:

$$|v_1(t) - v_2(t)| \le \int_a^b |k_1(t,s) - k_2(t,s)| ds \le \int_a^b p(t,s)\varphi(||x_1 - x_2||) ds \le \varphi(||x_1 - x_2||).$$

A similar relation can be obtained by interchanging the roles of x_1 and x_2 . Thus the second step follows.

The first conclusion follows by the above mentioned Węgrzyk's fixed point theorem, see Theorem 3.3 (i) (see also [43]).

(b) We will prove that the fixed point inclusion problem (3.5) is generalized Ulam-Hyers stable. Indeed, let $\varepsilon > 0$ and $y \in C([a, b], \mathbb{R}^n)$ for which there exists $u \in C([a, b], \mathbb{R}^n)$ such that

$$u(t) \in \int_{a}^{b} K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and $||u - y|| \le \varepsilon$.

Then $D_{\|\cdot\|}(y, T(y)) \leq \varepsilon$. Moreover, by the above proof we have that T is a multivalued φ -contraction and using Theorem 3.3(i)-(ii), we obtain that T is a multivalued ψ -weakly Picard operator. Then, by Theorem 2.1 we obtain that the fixed point problem (3.5) is generalized Ulam-Hyers stable. Thus, the integral inclusion (3.4) is generalized Ulam-Hyers stable.

Concerning the last conclusion of the theorem, we apply Theorem 3.3 (iii).

A second application concerns an integral inclusion of Volterra type.

(3.6)
$$x(t) \in \int_{a}^{t} K(t, s, x(s))ds + g(t), \ t \in [a, b].$$

By a similar method, we can prove the following.

Theorem 3.5. Let $K : [a, b] \times [a, b] \times \mathbb{R}^n \to P_{cl, cv}(\mathbb{R}^n)$ and $g : [a, b] \to \mathbb{R}^n$ such that:

(a) there exists an integrable function $M : [a, b] \to \mathbb{R}_+$ such that for each $t \in [a, b]$ and $u \in \mathbb{R}^n$ we have $K(t, s, u) \subset M(s)B(0; 1)$, a.e. $s \in [a, b]$;

(b) for each $u \in \mathbb{R}^n$ $K(\cdot, \cdot, u) : [a, b] \times [a, b] \to P_{cl,cv}(\mathbb{R}^n)$ is jointly measurable;

(c) for each $(s, u) \in [a, b] \times \mathbb{R}^n$ $K(\cdot, s, u) : [a, b] \to P_{cl, cv}(\mathbb{R}^n)$ is lower semi-continuous;

(d) there exists a continuous function $p : [a, b] \to \mathbb{R}^*_+$ and a strict comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(\lambda t) \leq \lambda \varphi(t)$, for each $t \in \mathbb{R}_+$ and each $\lambda \geq 1$, such that for each $(t, s) \in [a, b] \times [a, b]$ and each $u, v \in \mathbb{R}^n$ we have that

(3.7)
$$H(K(t,s,u), K(t,s,v)) \le p(s) \cdot \varphi(|u-v|);$$

(e) g is continuous.

Then the following conclusions hold:

(a) the integral inclusion (3.6) has at least one solution, i.e., there exists $x^* \in C([a, b], \mathbb{R}^n)$ which satisfies (3.6) for each $t \in [a, b]$;

(b) If additionally $\varphi(qt) \leq q\varphi(t)$ for every $t \in \mathbb{R}_+$ (where q > 1) and t = 0 is a point of uniform convergence for the series $\sum_{n=1}^{\infty} \varphi^n(t)$, then the integral inclusion (3.3) is generalized Ulam-Hyers stable with function ψ (where $\psi(t) := t + s(t)$, for each $t \in \mathbb{R}_+$ and $s(t) := \sum_{n=1}^{\infty} \varphi^n(t)$), i.e., for each $\varepsilon > 0$ and for any ε -solution y of (3.6), that is, any $y \in C([a, b], \mathbb{R}^n)$ for which there exists $u \in C([a, b], \mathbb{R}^n)$ such that

$$u(t) \in \int_{a}^{t} K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b]$),

there exists a solution x^* of the integral inclusion (3.6) such that

$$|y(t) - x^*(t)| \le \psi(c\varepsilon)$$
, for each $t \in [a, b]$ and some $c > 0$.

Moreover, in this case the continuous data dependence of the solution set of the integral inclusion (3.7) holds.

Proof. We consider the multi-valued operator T : $C([a, b], \mathbb{R}^n)$ $\mathcal{P}(C([a,b],\mathbb{R}^n))$

$$T(x) := \left\{ v \in C([a, b], \mathbb{R}^n) | \ v(t) \in \int_a^t K(t, s, x(s)) ds + g(t), \ t \in [a, b] \right\}.$$

Then, (3.6) is equivalent to the fixed point inclusion

(3.8)
$$x \in T(x), \ x \in C([a, b], \mathbb{R}^n).$$

As in the proof of Theorem 3.4 we obtain $T(x) \in P_{cp}(C([a, b], \mathbb{R}^n))$. Next, we will prove that T is a multivalued φ -contraction on $C([a, b], \mathbb{R}^n)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (3.7) is strict. Let $x_1, x_2 \in C([a, b], \mathbb{R}^n)$ and $v_1 \in T(x_1)$. Then $v_1(t) \in \int_a K(t, s, x_1(s))ds + g(t), t \in [a, b]$. It follows that $v_1(t) = \int_{-\infty}^{0} k_1(t,s)ds + g(t), t \in [a,b]$, for some $k_1(t,s) \in K(t,s,x_1(s)),$ $(t,s) \in [a,b] \times [a,b].$

From (d) we have $H(K(t, s, x_1(s)), K(t, s, x_2(s))) < p(s)\varphi(|x_1(s) - x_2(s)|).$ Thus, there exists $w \in K(t, s, x_2(s))$ such that $|k_1(t, s) - w| \leq p(s)\varphi(|x_1(s) - w|)$ $x_2(s)|), \text{ for } t, s \in [a, b].$

Let us define $U : [a,b] \times [a,b] \rightarrow P(\mathbb{R}^n)$, by $U(t,s) = \{w \mid |k_1(t,s) - v_1(t,s)| \leq 1 \}$ $|w| \leq p(t,s)\varphi(|x_1(s) - x_2(s)|)\}$. Since the multivalued operator V(t,s) := $U(t,s) \cap K(t,s,x_2(s))$ is jointly measurable and lower semi-continuous in t there exists $k_2(t,s)$ a selection for V, jointly measurable (hence, integrable in s) and continuous in t. Hence, $k_2(t,s) \in K(t,s,x_2(s))$ and $|k_1(t,s)-k_2(t,s)| \leq 1$ $p(s)\varphi(|x_1(s) - x_2(s)|)$, for each $t, s \in [a, b]$. Consider $v_2(t) = \int_a^t k_2(t,s)ds + g(t), t \in [a,b]$. We denote by $\|\cdot\|_B$ a Bielecki-type norm in $C([a,b], \mathbb{R}^n)$, given by $\|x\|_B := \sup_{t \in [a,b]} (|x(t)|e^{-q(t)}))$, where q(t) :=

 $\int_{a}^{t} p(s) ds.$

Then, for each $t \in [a, b]$, we have:

$$|v_1(t) - v_2(t)| \leq \int_a^t |k_1(t,s) - k_2(t,s)| ds \leq \int_a^t p(s)\varphi(|x_1(s) - x_2(s)|) ds = \int_a^t p(s)\varphi(e^{q(s)}|x_1(s) - x_2(s)|e^{q(s)}) ds \leq \int_a^t p(s)e^{q(s)}\varphi(||x_1 - x_2||_B) ds = \varphi(||x_1 - x_2||_B)(e^{q(t)} - e^{q(a)}) \leq \varphi(||x_1 - x_2||_B)e^{q(t)}.$$
 Thus, we immediately get

$$||v_1 - v_2||_B \le \varphi(||x_1 - x_2||_B).$$

A similar relation can be obtained by interchanging the roles of x_1 and x_2 . Thus, we have that

$$H_{\|\cdot\|_B}(T(x_1), T(x_2)) \le \varphi(\|x_1 - x_2\|_B), \text{ for each } x_1, x_2 \in C([a, b], \mathbb{R}^n),$$

which proves that T is a multivalued φ -contraction. The conclusion (a) follows by the above mentioned Węgrzyk's fixed point theorem, see Theorem 3.3 (i) (see also [43]).

(b) We will prove that the fixed point inclusion problem (3.6) is generalized Ulam-Hyers stable. For this purpose, it is enough to prove that the fixed point inclusion problem (3.8) is generalized Ulam-Hyers stable. For this purpose, let $\varepsilon > 0$ and $y \in C([a, b], \mathbb{R}^n)$ for which there exists $u \in C([a, b], \mathbb{R}^n)$ such that

$$u(t) \in \int_{a}^{t} K(t, s, y(s))ds + g(t), \ t \in [a, b]$$

and

$$|u(t) - y(t)| \le \varepsilon$$
, for each $t \in [a, b]$.

Notice that

$$\|\cdot\|_{B} \le \|\cdot\| \le \|\cdot\|_{B} e^{\tau q(b)}.$$

Then, we obtain that $||u - y||_B \leq ||u - y|| \leq \varepsilon$. Thus, $D_{||\cdot||_B}(y, T(y)) \leq \varepsilon$. Moreover, by the above proof, T is a multivalued φ -contraction with respect to $||\cdot||_B$ and, thus, T is a MWP operator. Using Theorem 3.3(i)-(ii), we obtain that T is a multivalued ψ -MWP operator. Thus, conclusion (b) is a consequence of Theorem 2.1. Hence, there exists a solution x^* of the integral inclusion (3.6) such that

$$\|y - x^*\|_B \le \psi(\varepsilon).$$

Hence,

$$|y(t) - x^*(t)| \le \psi(e^{\tau q(b)}\varepsilon)$$
, for each $t \in [a, b]$.

Concerning the last conclusion of the theorem, we apply Theorem 3.3 (iii).

4 Existence and Ulam-Hyers stability for partial differential inclusions

Let us consider the following Darboux problem for a second order differential inclusion

(4.9)
$$\begin{cases} \frac{\partial^2 u}{\partial x \partial y} \in F(x, y, u(x, y)) \\ u(x, 0) = \lambda(x, 0), \ u(0, y) = \lambda(0, y) \end{cases}$$

where $F : I_1 \times I_2 \times \mathbb{R}^m \to P_{cl}(\mathbb{R}^m)$ (with $I_i = [0, T_i], i \in \{1, 2\}$) and $\lambda(x, y) = \alpha(x) + \beta(y) - \alpha(0)$ (with α, β continuous functions on I_1 respectively I_2 and $\alpha(0) = \beta(0)$).

Denote by $\Pi = I_1 \times I_2$ and let a > 0. By L^1 we will denote the Banach space of all measurable Lebesgue functions $\eta : \Pi \to \mathbb{R}^m$, endowed with the norm

$$\|\eta\|_1 = \int \int_{\Pi} e^{-a(x+y)} |\eta(x,y)| dx dy.$$

Let C be the Banach space of continuous functions $u : \Pi \to \mathbb{R}^m$, with the norm $||u||_C = \sup_{\substack{(x,y)\in\Pi\\(x,y)\in\Pi}} |u(x,y)|$ and let \tilde{C} be the linear subspace of C consisting of all $\lambda \in C$ such that there exist continuous functions $\alpha \in C(I_1, \mathbb{R}^m)$ and $\beta \in C(I_2, \mathbb{R}^m)$ with $\alpha(0) = \beta(0)$ satisfying $\lambda(x,y) = \alpha(x) + \beta(y) - \alpha(0)$, for all $x, y \in I_1 \times I_2$. Obviously, \tilde{C} with the norm of C is a separable Banach space.

By definition, the Darboux problem (4.9) is called Ulam-Hyers stable if for each $\varepsilon > 0$ and for any ε -solution w of (4.9), there exists a solution u^* of (4.9) such that $|w(x, y) - u^*(x, y)| \le c\varepsilon$, for each $(x, y) \in \Pi$ and for some c > 0.

EJQTDE, 2012 No. 21, p. 14

We have the following existence and Ulam-Hyers stability result.

Theorem 4.6. Consider the Darboux Problem (4.9) and suppose that the above mentioned conditions hold. Suppose also that the following assumptions hold:

i) for each $u \in \mathbb{R}^m$, $F(\cdot, \cdot, u)$ is measurable;

ii) there exists k > 0 such that a.e. $(x, y) \in I_1 \times I_2$ the multifunction $F(x, y, \cdot)$ is k-Lipschitz;

iii) $a > \sqrt{k}$.

Then, the Darboux Problem (4.9) has at least one solution and it is Ulam-Hyers stable.

Proof. For $\lambda \in \tilde{C}, \eta \in L^1$ define

$$T_{\lambda}(\eta) := \{ \mu \in L^1 : \mu(x, y) \in M_{\lambda, \eta}(x, y), \text{ a. e. on } \Pi \},\$$

where

$$M_{\lambda,\eta}(x,y) = F(x,y,\lambda(x,y) + \int_{0}^{x} \int_{0}^{y} \eta(s,t)dsdt), (s,t) \in \Pi.$$

Notice that $F_{T_{\lambda}}$ coincides with the solution set of the considered problem. Moreover, we have that $T_{\lambda} : L^1 \to P_{cl}(L^1)$ and it is a MWP operator. Indeed, we have

$$H_1(T_{\lambda}(\eta_1), T_{\lambda}(\eta_2)) \leq \frac{k}{a^2} \cdot \|\eta_1 - \eta_2\|_1, \text{ for all } \lambda \in \tilde{C} \text{ and } \eta_1, \eta_2 \in L^1.$$

Thus, T_{λ} is a $\frac{k}{a^2}$ -multivalued contraction on L^1 and hence is a MWP operator. Thus, there exists $u^* \in L^1$ a fixed point for T_{λ} , which is also a solution for the Darboux Problem (4.9). For the second part of our theorem it is enough to prove that T_{λ} is a multivalued *c*-weakly Picard operator. Since T_{λ} is a $\frac{k}{a^2}$ multivalued contraction on L^1 , we immediately get (see Example 2.1) that T_{λ} is a multivalued *c*-weakly Picard operator with $c := \frac{1}{1-ka^{-2}}$. Thus, the second conclusion follows by Theorem 2.1.

References

- [1] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Basel, 1990.
- [2] M.F. Bota-Boriceanu, A. Petruşel, Ulam-Hyers stability for operatorial equations, Analele Univ. Al. I. Cuza Iaşi, Math., 2011, to appear.
- [3] W.W. Breckner, and T. Trif, Convex Functions and Related Functional Equations, Cluj Univ. Press, Cluj-Napoca, 2008.
- [4] J. Brzdek, D. Popa, B. Xu, The Hyers-Ulam stability of nonlinear recurrences, J. Math. Anal. Appl., 335(2007), 443-449.
- [5] L.P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of Volterra integral equations, *Banach J. Math. Anal.*, 3(2009), no.1, 36-43.
- [6] L. Cădariu, Stabilitate Ulam-Hyers-Bourgin pentru ecuații funcționale, Ed. Univ. de Vest, Timişoara, 2007.
- [7] H. Covitz, S.B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, *Israel J. Math.*, 8(1970), 5-11.
- [8] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, 2002.
- [9] P. Găvruţă, On a problem of G. Isac and Th. Rassias concerning the stability of mapping, J. Math. Anal. Appl., 261(2001), 543-553.
- [10] P.M. Gruber, *Stability of isometries*, Trans. Amer. Math. Soc., 245(1978), 263-277.
- [11] G. Hirisawa, T. Miura, Hyers-Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc., 43(2006), No. 1, 107-117.
- [12] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997, 1999.

- [13] D.H. Hyers, The stability of homomorphism and related topics, in: Global Analysis-Analysis on Manifolds (Th.M. Rassias, ed.), Teubner, Leipzig, 1983, 140-153.
- [14] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [15] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [16] S.-M. Jung, Hyers-Ulam stability of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 320(2006), 549-561.
- [17] S.-M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications, Vol. 2007 (2007), Article ID 57064, 1-9, doi:10.1155/2007/57064.
- S.-M. Jung, K.-S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coefficients, Math. Ineq. Appl., 10(2007), no. 2, 261-266.
- [19] S.-M. Jung, Th.M. Rassias, Generalized Hyers-Ulam stability of Riccati differential equation, Math. Ineq. Appl., 11(2008), No. 4, 777-782.
- [20] T.A. Lazăr, A. Petruşel, N. Shahzad, Fixed points for non-self operators and domain invariance theorems, *Nonlinear Anal.*, 70 (2009), 117-125.
- [21] V.L. Lazăr, Fixed point theory for multivalued φ -contractions, Fixed Point Theory and Applications, vol. 2011:50, (2011), 1-12, doi:10.1186/1687-1812-2011-50.
- [22] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. (Rozprawy Mat.) 127(1975) 68 pp.

- [23] T. Miura, S.-M. Jung, S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equation $y' = \lambda y$, J. Korean Math. Soc., **41**(2004), 995-1005.
- [24] S.B. Nadler jr., Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
- [25] Zs. Páles, Generalized stability of the Cauchy functional equation, Aequationes Math., 56(1998), no. 3, 222-232.
- [26] T.P. Petru, A. Petruşel, J.-C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 2011, to appear.
- [27] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Japon., 59(2004), 167-202.
- [28] D. Popa, Hyers-Ulam-Rassias stability of linear recurrence, J. Math. Anal. Appl., 309(2005), 591-597.
- [29] D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Advances in Difference Equations, 2(2005), 101-107.
- [30] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003), No. 1, 91-96.
- [31] Th. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [32] S. Reich, A.J. Zaslavski, A stability result in fixed point theory, Fixed Point Theory, 6(2005), No. 1, 113-118.
- [33] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), No. 1, 191-219.

- [34] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 9(2008), No. 2, 541-559.
- [35] I.A. Rus, Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation, in: Nonlinear Analysis and Variational Problems, pp. 147-152 (P. Pardalos, Th. M. Rassias and A.A. Khan (Eds.)), Springer, 2009.
- [36] I.A. Rus, Ulam stability of ordinary differential equations, Studia Univ.
 Babeş-Bolyai, Math., 54(2009), No. 4, 125-133.
- [37] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), No. 2, 305-320.
- [38] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [39] I.A. Rus, A. Petruşel, G. Petruşel, *Fixed Point Theory*, Cluj University Press, 2008.
- [40] I.A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of some multivalued weakly Picard operators, *Nonlinear Anal.*, 2003, 52, 1947-1959.
- [41] L. Rybinski, On Carathédory type selections, Fund. Math., 125(1985), 187-193.
- [42] A. Sîntămărian, Data dependence of the fixed points of some Picard operators. (English) Semin. Fixed Point Theory Cluj-Napoca 2(2001), 81-86.
- [43] R. Węgrzyk, Fixed point theorems for multifunctions and their applications to functional equations, *Dissertationes Math.*, 201(1982), 28 pp.
- [44] M. Xu, Hyers-Ulam-Rassias stability of a system of first order linear recurrences, Bull. Korean Math. Soc., 44(2007), No. 4, 841-849.

(Received December 1, 2011)