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Abstract

We develop the harmonic analysis approach for parabolic operator with

one order term in the parabolic Kato class on C1,1-cylindrical domain Ω.

We study the boundary behaviour of nonnegative solutions. Using these

results, we prove the integral representation theorem and the existence of

nontangential limits on the boundary of Ω for nonnegative solutions. These

results extend some first ones proved for less general parabolic operators.
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1. INTRODUCTION

In this paper we are interested in some aspects of the theory of the differential
parabolic operator

L =
∂

∂t
− div(A(x, t)∇x) +B(x, t).∇x

defined on Ω = D×]0, T [, where D is a bounded C1,1-domain of Rn and
0 < T <∞. The matrix A(x, t) is assumed to be real, symmetric, uniformly
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elliptic, i.e. 1
µ
I ≤ A(x, t) ≤ µI for some µ ≥ 1, with Lipschitz coefficients.

The vector B(x, t) is assumed to be in the parabolic Kato class as introduced
by Zhang in [15], i.e. B ∈ L1

loc and satisfies lim
h→0

Nα
h (B) = 0, where

Nα
h (B) = sup

x,t

∫ t

t−h

∫

D
|B(y, s)|

1

(t− s)
n+1

2

exp

(
−α

|x− y|2

t− s

)
dyds

+ sup
y,s

∫ s+h

s

∫

D
|B(x, t)|

1

(t− s)
n+1

2

exp

(
−α

|x− y|2

t− s

)
dxdt

for some constant α > 0.

In fact, the real starting points of this work are the famous papers [10]
of Kemper, [5] of Fabes, Garofalo and Salsa, [9] of Heurteaux and [12] of
Nyström. We recall here that, as was initially studied for the Laplace oper-
ator by Hunt and Wheeden in [7] and [8], the notion of kernel function, the
integral representation theorem and the existence of nontangential limit at
the boundary for nonnegative solutions (Fatou’s theorem) for the heat equa-
tion have been developed by Kemper in [10] on Lipschitz domains. In his
work an important role was played by the invariance of the heat equation un-
der translations. The results of Hunt and Wheeden have been later extended
to more general elliptic equations by Ancona in [1] and Gaffarelli, Fabes,
Mortola and Salsa in [6]. In [5], Fabes, Garofalo and Salsa are interested in
the same problem for parabolic operators in divergence form with measurable
coefficients on Lipschitz cylinders. When they attempted to adapt the tech-
niques of [6] for their case, an interesting difficulty occurs, namely to prove
the “doubling” property, which was essential for the proof of Fatou’s theorem
and which is equivalent to the existence of a “backward” Harnack inequality
for nonnegative solutions (we refer the reader to [5] for more details). By
proving some boundary Harnack principles for nonnegative solutions, they
succeeded in resolving the problem for parabolic operators with time inde-
pendent coefficients and they established all of Kemper’s results in this case.
In [9], Heurteaux took up the same problem for parabolic operators in di-
vergence form with Lipschitz coefficients on more general Lipschitz domains,
and by a straightforward adaptation of the idea of Ancona [1], he was able
to extend the results of Fabes, Garofalo and Salsa to his situation. Recently,
Nyström studied in [12] parabolic operators in divergence form with mea-
surable coefficients on Lipschitz domains and he proved among other things,
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the existence and uniqueness of a kernel function and established the integral
representation theorem.

In this paper, our aim is to investigate the above mentioned results for
our operator. The main difficulty is created by the lower order term where
we cannot benefit from results proved for L having adjoint companions as is
the case of operators in divergence form in [5], [9], [10] and [12]. To overcome
this difficulty our idea is based on the Green function estimates proved by
the author in [13] and the Harnack inequality recently proved by Zhang in
[15], under the above assumptions. Our method seems to be new and applies
to similar parabolic operators and our results include their counterparts for
the elliptic operator div(A(x)∇x)+B(x).∇x with B in the elliptic Kato class,

i.e. B ∈ L1
loc(D) and satisfies lim

α→0
sup

x

∫

|x−y|≤α

|B(y)|

|x− y|n−1
dy = 0, which was

studied by several authors. Our paper is organized as follows.
In Section 1, we give some notations and we state some known results that
will be used throughout this paper. In Section 2, basing on the Green func-
tion estimates (Theorem 2.2, below), we prove a boundary Harnack principle
and a comparison theorem for nonnegative L-solutions vanishing on a part
of the parabolic boundary ∂pΩ of Ω. In Section 3, using the previous results
and the Harnack inequality (Theorem 2.1, below), we characterize the Martin
boundary of the cylinder Ω with respect to the class of parabolic operators
L that we deal with. More precisely, we prove that for every point Q ∈ ∂pΩ
there exists a unique (up to a multiplicative constant) minimal nonnegative
L-solution, and then the Martin boundary of Ω with respect to L is homo-
morphic (or identical) to the parabolic boundary ∂pΩ of Ω. In Section 4,
we are able to define the kernel function and prove, basing on the previous
results, the integral representation theorem for nonnegative L-solutions on
Ω. In particular, we deduce a Fatou type theorem for our operator by prov-
ing that any nonnegative L-solution on Ω has a nontangential limit at the
boundary except for a set of zero L-parabolic measure.

2. NOTATIONS AND KNOWN RESULTS

Let G be the L-Green function on Ω = D×]0, T [. We simply denote by GA

the function G(·, ·; y, s) if A = (y, s) ∈ Ω.

A point x ∈ Rn will be also denoted by (x′, xn) with x′ ∈ Rn−1 and xn ∈ R,
when we need.
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For x ∈ D, let d(x) denotes the distance from x to the boundary ∂D of D.

For an open set Ω of Rn+1, let ∂pΩ be the parabolic boundary of Ω, i.e. ∂pΩ
is the set of points on the boundary of Ω which can be connected to some
interior point of Ω by a closed curve having a strictly increasing t-coordinate.

For an arbitrary set Σ in Ω and a function u on Ω, we denote by RΣu the
nonnegative L-superparabolic envelope of u with respect to Σ which also
called the “reduct” of u with respect to Σ, and defined by

RΣu = inf {v : v nonnegative L− supersolution on Ω with v ≥ u on Σ} .

We next recall some known results that will be used in this work.

Theorem 2.1.(Harnack inequality [15]). Let 0 < α < β < α1 < β1 < 1 and

δ ∈ (0, 1) be given. Then there are constants C > 0 and r0 > 0 such that for

all (x, s) ∈ Rn × R, all positive r < r0 and all nonnegative weak L-solutions

u in B(x, r) × [s− r2, s], one has

sup
Ω−

u ≤ C inf
Ω+

u,

where Ω− = B(x, δr)×[s−β1r
2, s−α1r

2] and Ω+ = B(x, δr)×[s−βr2, s−αr2].
All constants depend on B only in terms of the rate of convergence of Nα

h (B)
to zero when h→ 0.

Theorem 2.2.(Green function estimates [13]). There exist positive constants

k, c1 and c2 depending only on n, µ, T, D and on B only in terms of the rate

of convergence of Nα
h (B) to zero when h→ 0 such that

1

k
ϕ(x, y, t−s)

exp
(
−c2

|x−y|2
t−s

)

(t− s)n/2
≤ G(x, t; y, s) ≤ kϕ(x, y, t−s)

exp
(
−c1

|x−y|2
t−s

)

(t− s)n/2

for all x, y ∈ D and 0 < s < t ≤ T , where ϕ(x, y, u) = min
(
1, d(x)√

u
,

d(y)√
u
,

d(x)d(y)
u

)
.

Theorem 2.3.(Minimum principle). Let Ω be a bounded open set of Rn+1

and u an L-supersolution in Ω satisfying lim inf
z→z0

u ≥ 0 for all z0 ∈ ∂pΩ. Then

u ≥ 0 in Ω.
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3. BOUNDARY BEHAVIOUR

We prove in this section a boundary Harnack principle and a comparison
theorem for nonnegative L-solutions vanishing on a part of the parabolic
boundary, which will be used in the next section to characterize the Martin
boundary of Ω = D×]0, T [.

D is a C1,1-bounded domain, then for each z ∈ ∂D there exists a local
coordinate system (ξ ′, ξn) ∈ Rn−1 ×R, a function ψ on Rn−1 and constants
c0 > 0 and r0 ∈]0, 1] such that

i) ∇ξ′ψ is c0-Lipschitz,

ii) D ∩ B(z, r0) = B(z, r0) ∩ {(ξ′, ξn) : ξn > ψ(ξ′)}, and

iii) ∂D ∩B(z, r0) = B(z, r0) ∩ {(ξ′, ξn) : ξn = ψ(ξ′)}.

By compactness of ∂D, the constants c0 and r0 can be chosen independent
of z ∈ ∂D.

For Q ∈ Rn+1, r > 0 and h > 0, we denote by TQ(r, h) the cylinder

TQ(r, h) = Q+
{
(x′, xn, t) ∈ Rn+1 : |x′| < r, |t| < r2, |xn| < h

}
.

We have the following result.

Theorem 3.1(Boundary Harnack principle). Let Q ∈ ∂D×]0, T [, r ∈]0, r0]
and λ > 0. Then there exists a constant C > 0 depending only on n, µ, λ, D, T

and on B in terms of the rate of convergence of Nα
h (B) to zero when h→ 0

such that for all nonnegative L-solutions u on Ω \ TQ( r
2
, λ r

2
) continuously

vanishing on ∂pΩ \ TQ( r
2
, λ r

2
), we have

u(M) ≤ C u(Mr)

for all M ∈ Ω \ TQ(r, λr), where Mr = Q+ (0, λr, r2).

Proof. Without loss of generality we assume Q = (0, 0, S) ≡ (0, ψ(0), S),
where ψ as defined above is the function which, after a suitable rotation,
describes ∂D as a graph around (0, 0). In view of the minimum principle, it
suffices to prove the theorem for M ∈ Ω ∩ ∂TQ(r, λr).
We first consider the particular case u = GA with A ∈ Ω ∩ TQ( r

2
, λ r

2
).

We write

A = Q+ (y, s) ≡ Q+ (y′, yn, s) with |y′| ≤
r

2
, 0 < yn ≤ λ

r

2
, |s| ≤

r2

4
,
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M = Q+ (x, t) ≡ Q + (x′, xn, t), and Mr = Q+ (0, λr, r2).

By Theorem 2.2, we have

GA(M)

GA(Mr)
≤ k2

(
r2 − s

t− s

)n/2+1
d(x)

λr
exp

(
c2
|λr − yn|

2 + |y′|2

r2 − s
− c1

|x− y|2

t− s

)
.

Using the fact that
|λr − yn|

2 + |y′|2

r2 − s
≤

4

3
λ2 + 1

and
d(x)

λr
≤
xn − ψ(x′)

λr
≤
xn + |∇x′ψ||x′|

λr
≤
λr + c0r

λr
=
λ+ c0

λ
,

we have
GA(M)

GA(Mr)
≤ k1

(
r2 − s

t− s

)n/2+1

exp

(
−c1

|x− y|2

t− s

)
.

From the inequality e−α ≤ ( m
αe

)m, for all m > 0, α > 0, it follows that

GA(M)

GA(Mr)
≤ k2 min



(
r2 − s

t− s

)n/2+1

,

(
r2 − s

|x− y|2

)n/2+1

 .

Since M ∈ Ω ∩ ∂TQ(r, λr), we need to study the following three cases:
If t = r2, 0 < xn ≤ λr, and |x′| ≤ r, then

GA(M)

GA(Mr)
≤ k2.

If xn = λr, |t| ≤ r2, and |x′| ≤ r, then

GA(M)

GA(Mr)
≤ k2

(
r2 − s

|xn − yn|2

)n/2+1

≤ k2

(
5

λ2

)n/2+1

= C.

If |x′| = r, 0 < xn < λr, and |t| ≤ r2, then

GA(M)

GA(Mr)
≤ k2

(
r2 − s

|x′ − y′|2

)n/2+1

≤ k25
n/2+1 = C.

Note that the same estimate holds when the pole A lies in Ω ∩ TQ(εr, λεr)
with 0 < ε < 1. The constant C then depends also on ε.
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For the general case, by considering the set Σ = Ω \ TQ(2
3
r, 2

3
λr) we see

that the function v = RΣu is an L-potential on Ω with support in Ω ∩ ∂Σ
and then there exists a positive measure µ supported in Ω ∩ ∂Σ such that
RΣu =

∫
Ω∩∂ΣGAdµ(A).

For all M ∈ Ω \ TQ(r, λr), we have

RΣu(M) =
∫

Ω∩∂Σ
GA(M)dµ(A)

≤ C

∫

Ω∩∂Σ
GA(Mr)dµ(A)

= CRΣu(Mr)

= Cu(Mr),

which completes the proof. 2

In the sequel, for λ > 0, we denote by Cλ the set

Cλ =

{
(x, t) ∈ Rn+1 : t > sup

(
|x′|2,

|xn|
2

λ2

)}
.

We next have the following result.

Theorem 3.2(Comparison theorem). Let Q ∈ ∂D×]0, T [, λ > 0, and for

ρ > 0 denote Mρ = Q + (0, λρ, ρ2). Then there exists a constant C > 0
depending only on n, µ, λ, D, T and on B in terms of the rate of convergence

of Nα
h (B) to zero when h → 0 such that for all r ∈]0,

r0

4
] and for any two

nonnegative L-solutions u, v on Ω\TQ(r, λr) continuously vanishing on ∂pΩ\
TQ(r, λr), we have

u(M)

u(M2r)
≤ C

v(M)

v(M2r)
,

for all M ∈ [Ω ∩ (Q+ Cλ) ∩ TQ(r0, λr0)] \ TQ(2r, 2λr).

Proof. Without loss of generality we assume Q = (0, 0, S). We first prove
the estimate for u = GA and v = GB with A,B ∈ Ω ∩ TQ(r, λr).
Let

M = Q+ (x′, xn, t) with |x′| ≤ r0, 0 < xn ≤ λr0, 4r2 < t ≤ r2
0,

and t ≥ sup

(
|x′|2,

|xn|
2

λ2

)
.
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Put
A = Q + (y′, yn, s) with |y′| ≤ r, 0 < yn ≤ λr, |s| ≤ r2,

and
B = Q + (z′, zn, ρ) with |z′| ≤ r, 0 < zn ≤ λr, |ρ| ≤ r2.

By Theorem 2.2, we have

GA(M)GB(M2r)

GA(M2r)GB(M)
≤ k

[
(t− ρ)(4r2 − s)

(t− s)(4r2 − ρ)

]n/2+1

× exp

(
c2(

|x− z|2

t− ρ
+

|y′|2 + |2λr − yn|
2

4r2 − s
)

)
.

Using the fact that

t− ρ

t− s
= 1 +

s− ρ

t− s
≤ 1 +

2r2

3r2
=

5

3
,

4r2 − s

4r2 − ρ
≤

5r2

3r2
=

5

3
,

|x− z|2

t− ρ
≤ 2

|x|2

t− ρ
+ 2

|z|2

t− ρ

= 2
t

t− ρ

|x|2

t
+ 2

|z|2

t− ρ

≤ 2(1 +
r2

3r2
)(1 + λ2) + 2

(1 + λ2)r2

3r2

=
10

3
(1 + λ2),

and
|y′|2 + |2λr − yn|

2

4r2 − s
≤
r2 + 4λ2r2

3r2
=

1 + 4λ2

3

hold, we obtain
GA(M)GB(M2r)

GA(M2r)GB(M)
≤ C.

For the general case, by considering the set Σ = Ω\TQ(r, λr) we see that the
functions RΣu and RΣv are two L-potentials on Ω with support in ∂TQ(r, λr)
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and then there exist two positive measures σ and ν supported in ∂TQ(r, λr)
such that RΣu =

∫
∂TQ(r,λr)GAdσ(A) and RΣv =

∫
∂TQ(r,λr)GBdν(B).

From the last inequality we then deduce

∫ ∫
GA(M)GB(M2r)dσ(A)dν(B) ≤ C

∫ ∫
GB(M)GA(M2r)dσ(A)dν(B),

which means

RΣu(M)RΣv(M2r) ≤ CRΣv(M)RΣu(M2r),

and so the required estimate follows from the equalities RΣu = u on Σ and
RΣv = v on Σ.

4. MINIMAL NONNEGATIVE L-SOLUTIONS

In this section we exploit the results of Section 2 to characterize the Martin
boundary of Ω. More precisely we show that for every point Q ∈ ∂pΩ there
exists a unique (up to a multiplicative constant) minimal nonnegative L-
solution, and then the Martin boundary is identical to ∂pΩ.
We first introduce the notion of minimal nonnegative L-solution.

Definition 4.1. A nonnegative L-solution u on a given domain Ω of Rn+1 is
called minimal if every L-solution v on Ω satisfying the inequalities 0 ≤ v ≤ u

is a constant multiple of u.

In view of a limiting argument given by Lemma 2.1 in [15], we may assume
that |B| ∈ L∞. We denote by H the set of L-solutions on Ω. We recall that
(Ω,H) is a P-Bauer space in the sense of [4] and any minimal nonnegative
L-solution is the limit of a sequence of extreme potentials (see [11], Lemma
1.1). Note that an extreme potential is a potential with point support, and
by Theorem III in [2] any two potentials in the whole space Rn×R with the
same point support are proportional. Since the hypothesis of proportionality
is satisfied if and only if it is satisfied locally (see [11] Lemma 1.3), this
property holds in Ω. It follows that every minimal nonnegative L-solution is
the limit of a sequence ckG(x, t; yk, sk) for some sequence of poles (yk, sk) ⊂ Ω
and constants ck ∈ R+. By compactness of Ω, it is clear that if h(x, t) =
lim

k→+∞
ckG(x, t; yk, sk) is a minimal nonnegative L-solution, then there exists

a subsequence of ((yk, sk))k which converges to a point (y, s) ∈ ∂pΩ. The
reverse of this result constitutes the object of the following theorem.
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Theorem 4.2. For each point Q = (y, s) ∈ ∂pΩ, there exist sequences

((yk, sk))k convergent to Q and (ck)k in R+ such that the function h(x, t) =
lim

k→+∞
ckG(x, t; yk, sk) is a minimal nonnegative L-solution.

Proof. Case 1: y ∈ ∂D and s > 0.

Consider a sequence (An)n ⊂ Ω convergent to Q and put ϕAn
=

GAn

GAn
(Mr0

)
,

where Mr0
= Q+ (0, λr0, r

2
0).

By Theorem 3.1, there exists a constant C = C(n, µ, λ, T, B) > 0 such that
for all r ∈]0, r0], n ≥ n(r) ∈ N, we have

ϕAn
(M) ≤ C ϕAn

(Mr),

for all M ∈ Ω \ TQ(r, λr).

On the other hand by the Harnack inequality (Theorem 2.1), there exists a
constant C ′ = C ′(n, µ, λ, T, B) > 0 such that

ϕAn
(Mr) ≤ C ′ϕAn

(Mr0
) = C ′.

Therefore, for all r ∈]0, r0], n ≥ n(r) ∈ N, we have

ϕAn
(M) ≤ CC ′,

for all M ∈ Ω \ TQ(r, λr).

This means that (ϕAn
)n is locally uniformly bounded and then it has a subse-

quence converging to a nonnegative L-solution ϕ on Ω vanishing on ∂Ω\{Q}.
To prove that ϕ is minimal, denote by CQ(Ω) the set of all nonnegative L-
solutions on Ω vanishing on ∂Ω\{Q}. We will show that CQ(Ω) is a half-line
generated by a minimal nonnegative L-solution. Using the Harnack inequal-
ity and Theorem 3.1 again we see that CQ(Ω) is a convex cone with compact
base B = {u ∈ CQ(Ω) : u(Mr0

) = 1}, and by the Krein-Milman theorem it is
generated by the extremal elements of B which are the minimal nonnegative
L-solutions. To complete the proof, it suffices to prove that two minimal
nonnegative L-solutions in Ω are proportional.

Recall that if h is a minimal nonnegative L-solution in Ω and E ⊂ Ω, then
R̂E

h = h or R̂E
h is an L-potential of Ω, where R̂E

h is the lower semi-continuous
regularization of RE

h . We say E is thin at h if R̂E
h is an L-potential of Ω.

Using Theorem 3.1 and Theorem 3.2 we prove as in [9] (Proposition 4.2) that
Ω ∩ (Q+ Cλ) is not thin at h.
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Let h1, h2 two minimal nonnegative L-solutions of CQ(Ω). By Theorem 3.2,
there exists C = C(n, λ, µ, T, B) > 0 such that

h1(M)

h1(M2r)
≤ C

h2(M)

h2(M2r)
,

for 0 < r ≤
r0

4
, M ∈ [Ω ∩ (Q + Cλ) ∩ TQ(r0, λr0)] \ TQ(2r, 2λr), and this also

gives
h1(M)

h1(Mr0
)
≤ C2 h2(M)

h2(Mr0
)
,

for all M ∈ Ω ∩ (Q+ Cλ) ∩ TQ(r0, λr0).
Using the non-thinness of Ω∩ (Q+Cλ) at h1 and h2 we see that the previous
inequality holds on Ω which means h1 ≤ αh2, α ≥ 0, and consequently h1, h2

are proportional.

Case 2: y ∈ ∂D and s = 0.
By the first case, there exists a minimal nonnegative L-solution h̃ on Ω̃ =
D×] − 1, T [ vanishing on ∂Ω̃ \ {Q}. In view of the minimum principle,
h̃(x, t) = 0 for t < 0. Clearly, the function h ≡ h̃/Ω is a minimal nonnegative
L-solution on Ω.

Case 3: y ∈ D and s = 0.
Let h(x, t) = G(x, t; y, s). We prove that h is a minimal nonnegative L-
solution on Ω. Let u be a nonnegative L-solution on Ω such that u ≤ h. We
define ũ by

ũ(x, t) =
{

u(x, t) if 0 < t < T

0 if − 1 ≤ t ≤ 0.

Denote by û the lower semi-continuous regularization of ũ, then û is a
nonnegative L-superparabolic function on Ω̃ = D×] − 1, T [ with harmonic
support {(y, 0)} and û(x, t) ≤ G̃(x, t; y, 0), where G̃ is the L-Green func-
tion of Ω̃. It follows that û is an L-potential of Ω̃ with support {(y, 0)}
and so there exists C ≥ 0 such that û(x, t) = C G̃(x, t; y, 0). This gives
u(x, t) = C G(x, t; y, 0) = C h(x, t), and then h is minimal.

5. INTEGRAL REPRESENTATION AND NONTANGENTIAL LIMITS

Following the characterization of the Martin boundary in Section 3, we are
now able to define the kernel function associated to our operator and the
cylinder Ω. Let Q0 = (x0, t0) be a given point in Ω.
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Definition 5.1. We say that a function K : Ω → [0,+∞] is an L-kernel

function at Q = (y, s) ∈ ∂pΩ normalized at Q0 if the following conditions are
fulfilled:
i)K(x, t) ≥ 0 for each (x, t) ∈ Ω and K(Q0) = 1,
ii)K(·, ·) is an L-solution in Ω,
iii)K(·, ·) ∈ C(Ω \ {Q}) and lim

(x,t)→(y0,s0)
K(x, t) = 0 if (y0, s0) ∈ ∂pΩ \ {Q},

iv)K(·, ·) ≡ 0, if s ≥ t0.

It is clear that by means of Theorem 4.2, for each point Q ∈ ∂pΩ, there exists
a unique L-kernel function at Q normalized at Q0. We denote this unique
kernel function by KQ.

Note that from the proof of Theorem 4.2, KQ =
GQ

GQ(Q0)
, when Q = (y, 0).

For p ∈ Ω ∩ {t < t0}, we also denote by Kp the function Kp =
Gp

Gp(Q0)
.

We have the following continuity property of the L-kernel function.

Proposition 5.2. Under the previous notations we have

lim
p→p0,p∈Ω

Kp(M) = Kp0
(M),

for all p0 ∈ ∂Ω ∩ {t < t0} and all M ∈ Ω.

Proof. Denote by p0 = (y, s). When y ∈ D and s = 0, i.e. p0 = (y, 0), the
proposition holds by the continuity of the Green function.
By considering Ω̃ = D×] − 1, T [ instead of Ω = D×]0, T [ it is enough to
prove the proposition for y ∈ ∂D and s > 0. In the sequel we treat this case.
Let (qn)n ⊂ Ω be a sequence convergent to p0. By Theorem 3.1 there exists
C > 0 such that for n sufficiently large and r sufficiently small we have

Kqn
(M) ≤ CKqn

(Mr),

for all M ∈ Ω \ Tp0
(r, λr), where Mr = p0 + (0, λr, r2).

We deduce from the minimum principle that

Kqn
(M) ≤ CKqn

(Mr)hr(M),

holds for all M ∈ Ω \ Tp0
(r, λr), where hr is the L-parabolic measure of

∂Tp0
(r, λr) in Ω \ T p0

(r, λr).
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On the other hand, there exists, by the Harnack inequality (Theorem 2.1), a
constant C ′ > 0 such that

Kqn
(Mr) ≤ C ′Kqn

(Q0) = C ′.

Combining the two previous inequalities, we obtain

Kqn
(M) ≤ CC ′hr(M),

for all M ∈ Ω \ Tp0
(r, λr).

This inequality proves that any adherence value of (Kqn
) is an element of

Cp0
(Ω), the cone of nonnegative L-solutions vanishing on ∂pΩ \ {p0} which

is a half-line generated by Kp0
. The sequence (Kqn

)n is locally uniformly
bounded, hence it has adherence values and by evaluating at Q0, we conclude
that Kp0

is the only adherence value of (Kqn
)n. Thus (Kqn

(M))n converges
to Kp0

(M) for all M ∈ Ω.

Theorem 5.3 (Integral representation). Let u be a nonnegative L-solution in

Ω = D×]0, T [. Then there exists two unique positive Borel measures µ1, µ2

on ∂D×]0, t0[ and D, respectively, such that

u(x, t) =
∫

∂D×]0,t[
K(y,s)(x, t)µ1(dy, ds) +

∫

D
G(x, t; y, 0)µ2(dy),

for all (x, t) ∈ Ω ∩ {t < t0}.

Proof. Let E be the real vector space generated by the differences of any
two nonnegative L-solutions on Ω. E endowed with the topology of uniform
convergence on compact subdomains is a locally convex vector space which
is metrizable. The set C = {u/{t≤t0} : u ∈ E, u ≥ 0} is a convex cone which
is reticulate for the natural order and B = {u ∈ C : u(Q0) = 1} is a base of
C which is compact and metrizable. Note that the extremal elements of B
are exactly the minimal nonnegative L-solutions on Ω ∩ {t ≤ t0} normalized
at Q0. To clarify this point, let u be an extremal element of B and v an
L-solution satisfying 0 ≤ v ≤ u with v 6= 0 and v 6= u. Then v(Q0) 6= 0 and
v(Q0) 6= 1 and the equality

u = v(Q0)
v

v(Q0)
+ (1 − v(Q0))

u− v

1 − v(Q0)
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implies

u =
v

v(Q0)
=

u− v

1 − v(Q0)
,

which means v = v(Q0)u.
Conversely, let u ∈ B be a minimal nonnegative L-solution and suppose
that there exist α ∈]0, 1[, u1, u2 ∈ B such that u = αu1 + (1 − α)u2; then
αu1 ≤ u and (1 − α)u2 ≤ u which implies u1 = β1u and u2 = β2u for some
β1, β2 ∈ R+. By evaluating at Q0, we have β1 = β2 = 1 and so u = u1 = u2.
Denote by E the set of extremal elements of B. By the Choquet theorem, for
any u ∈ B there exists a unique positive Radon measure µ supported in E
such that u =

∫
E hdµ(h). This also implies

u(M) =
∫

E
h(M)dµ(h),

for all M ∈ Ω, since the map h→ h(M) is a continuous linear form.
On the other hand, the Martin boundary of Ω∩{t ≤ t0} is ∆ = ∂pΩ∩{t ≤ t0}
and by Proposition 5.2, the kernel functions KQ are continuous as a functions
of Q. Therefore the map ∆ → E , Q → KQ, is a homeomorphism which
transforms µ into a positive Radon measure ν on ∆. Hence, the previous
equality gives

u(M) =
∫

∆
KQ(M)dν(Q),

for all M ∈ Ω ∩ {t ≤ t0}.

By proportionality this representation holds for any nonnegative L-solution
on Ω. Using the fact that ∆ = (∂D × [0, t0[) ∪ (D × {0}) and denoting

by µ1 = ν/(∂D×[0,t0[) and µ2 =
1

G(x0, t0; ·, ·)
ν/(D×{0}), we obtain the equality

asserted in the theorem. 2

At this point we have all the tools we need to study nontangential limits
for nonnegative L-solutions on the boundary of Ω. Basing on the integral
representation theorem and the abstract Fatou’s theorem [14] we may prove
in the same way as in [9] (Theorem 6.2) the existence of nontangential limits
for nonnegative L-solutions in Ω (Theorem 5.6, below). Since the theory is
by now standard we will not give the details of the proof but we only state
the result. We first introduce the notion of nontangential limit.
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Definition 5.4. Let Ω be an open set of Rn+1 and (Qn)n a sequence of points
in Ω. We say that (Qn)n converges nontangentially to a point Q ∈ ∂Ω, if

lim
n→+∞

Qn = Q and inf
n

d(Qn, ∂Ω)

d(Qn, Q)
> 0, where d is the parabolic distance which

is defined by d((x, t), (y, s)) = |x− y| + |t− s|1/2.

Definition 5.5. Let Ω be an open set of Rn+1 and u a function defined on Ω.
We say that u has a nontangential limit l ∈ R at Q ∈ ∂Ω, if for any sequence
(Qn)n ⊂ Ω converging nontangentially to Q, one has lim

n→+∞
u(Qn) = l.

We have the following interesting result.

Theorem 5.6. Let u be a nonnegative L-solution in Ω = D×]0, T [. Then

u has a finite nontangential limit for dµ(x0,t0)-almost every point Q ∈ ∂Ω,

where dµ(x0,t0) denotes the L-parabolic measure associated with a given point

(x0, t0) in Ω.
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