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Abstract: In this work, we prove a result on the local existence of mild so-
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1 Introduction

The aim of this work is to study the local existence and continuability of
solutions for some class of partial functional differential equations with infinite
delay and deviating argument in terms involving spatial partial derivatives.
As a model for this class we consider the following model





∂

∂t
v(t, x) =

∂2

∂x2
v(t, x) + a

∂

∂x
v(t − r, x) +

∫ 0

−∞
g(θ)v(t + θ, x)dθ

+f(
∂

∂x
v(t − r, x)) for t ≥ 0 and x ∈ [0, π],

v(t, 0) = v(t, π) = 0 for t ≥ 0,

v(θ, x) = v0(θ, x) for θ ≤ 0 and x ∈ [0, π],

(1)

1 Corresponding author.
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where a and r are positive constants, g :]−∞, 0] → R is a positive integrable
function, f : R → R is continuous and v0 is a given initial function. Equation
(1) can be written in the following abstract form





d

dt
u(t) = −Au(t) + F (t, ut) for t ≥ 0,

u0 = ϕ ∈ Bα,
(2)

where −A is the infinitesimal generator of an analytic semigroup on a Banach
space X.Bα is a subset of B,where B is a Banach space of functions mapping
from ]−∞, 0] into X and satisfying some axioms that will be introduced later,
and for 0 < α < 1, the operator Aα is the fractional power of A. This operator
(Aα, D(Aα)) will be described in Section 2. We suppose that F is a continuous
function from R+ × Bα with values in X, where Bα is defined by

Bα = {ϕ ∈ B : ϕ(θ) ∈ D(Aα) for θ ≤ 0 and Aαϕ ∈ B},

with the norm
‖ϕ‖Bα

:= ‖Aαϕ‖B for ϕ ∈ Bα.

For every t ≥ 0, the history function ut ∈ Bα is defined by

ut(θ) = u(t + θ) for θ ≤ 0.

In this paper, we will discuss the local and global existence of solutions for
Equation (2) where the nonlinear part F is just assumed to be continuous
with respect to a fractional power of A in the second variable. Recall that
when F is Lipschitz continuous in Bα, Equation (2) has been studied by [6].

The present paper is organized as follows. In Section 2, we study the local
existence of mild solutions in the α-norm for Eq. (2). In Section 3, we establish
a result about continuation of solutions. Finally, to illustrate our results, we
give in Section 4 an application.

2 Local existence of the mild solutions

In this section we study the existence of mild solutions for partial func-
tional differential equations (2). Before that, we collect some useful results. For
literature relating to semigroup theory, we suggest Pazy [14], Engel and Nagel
[9]. We denote by X a Banach space with norm ‖.‖ and −A is the infinites-
imal generator of a bounded analytic semigroup of linear operator (T (t))t≥0

on X. We assume without loss of generality that 0 ∈ ρ(A). Note that if the
assumption 0 ∈ ρ(A) is not satisfied, one can substitute the operator A by the
operator (A−σI) with σ large enough such that 0 ∈ ρ(A−σ). This allows us
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to define the fractional power Aα for 0 < α < 1, as a closed linear invertible
operator with domain D(Aα) dense in X. The closedness of Aα implies that
D(Aα), endowed with the graph norm of Aα, |x| = ‖x‖ + ‖Aαx‖, is a Ba-
nach space. Since Aα is invertible, its graph norm |.| is equivalent to the norm
‖x‖α = ‖Ax‖. Thus, D(Aα) equipped with the norm ‖.‖α, is a Banach space,
which is denoted by Xα. For 0 < β ≤ α < 1, the imbedding Xα →֒ Xβ is com-
pact if the resolvent operator of A is compact. Also, the following properties
are well known.

Theorem 1 [14] Let 0 < α < 1 and −A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0 on X satisfying 0 ∈ ρ(A). Then we have

i) T (t) : X −→ D(Aα) for every t > 0,
ii) T (t)Aαx = AαT (t)x for every x ∈ D(Aα) and t ≥ 0,
iii) For every t > 0, AαT (t) is bounded on X and there exists Mα > 0 such

that :

‖AαT (t)‖ ≤ Mαeωtt−α, (3)

iv) If 0 < α ≤ β < 1, then D(Aβ) →֒ D(Aα).
v) There exists Nα > 0 such that

‖(T (t) − I)A−α‖ ≤ Nαtα for t > 0.

Recall that A−α is given by the following formulas

A−α =
1

Γ(α)

∫ ∞

0
tα−1T (t)dt,

where the integral converges in the uniform operator topology for every α > 0.
Consequently, if T (t) is compact for each t > 0, then A−α is compact for every
0 < α < 1.

In all this paper, we suppose that (B, ‖.‖B) is a normed linear space of
functions mapping ]−∞, 0] into X, and satisfying the following fundamental
axioms which have been first introduced by Hale and Kato in [12]:

(A1) There exist a positive constant H and functions K(.), H(.) : R+ → R+,
with K continuous and M locally bounded, such that for any σ ∈ R and
a > 0, if x :] −∞, σ + a] → X, xσ ∈ B, and x(.) is continuous on [σ, σ + a],
then for all t in [σ, σ + a] the following conditions hold:
(i) xt ∈ B,
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t − σ) supσ≤s≤t ‖ x(s) ‖ +M(t − σ) ‖ xσ ‖B.

(A2) For the function x(.) in (A1), t 7→ xt is a B-valuded continuous function
for t in [σ, σ + a].
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(B) The space B is complete.

Now, we make the following hypothesis:

(H1) The operator −A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on the Banach space X satisfying 0 ∈ ρ(A).

(H2) The semigroup (T (t))t≥0 is compact on X. It means that T (t) is com-
pact on X for t > 0.

(H3) A−αϕ ∈ B for ϕ ∈ B, where the function A−αϕ is defined by

(A−αϕ)(θ) = A−α(ϕ(θ)) for θ ≤ 0.

Lemma 2 [6] Assume that (H1) and (H3) hold. Then Bα is a Banach space.

Definition 3 Let ϕ ∈ Bα. A function u :] − ∞, a] → Xα is called a mild
solution of Eq. (2) if the restriction of u(.) to the interval [0, a] is continuous
and

i) u(t) = T (t)ϕ(0) +
∫ t

0
T (t − s)F (s, us)ds for t ∈ [0, a],

ii) u0 = ϕ.

The main result of this section is the following theorem.

Theorem 4 Assume that the hypothesis (H1)-(H3) hold. Let U be an open
subset of the Banach space Bα and F : [0, a] × U → X be continuous. Then
for each ϕ ∈ U , there exist b := bϕ with 0 < b ≤ a and a mild solution
u ∈ C([0, b]; Xα) of Eq. (2).

Proof.— The proof of this result is based on the Schauder fixed-point theo-
rem.
Let ϕ ∈ U , there exist constants r > 0, b1 ∈]0, a] and N ≥ 0 such that
B(ϕ, r) := {φ ∈ Bα : ‖φ − ϕ‖Bα

≤ r} ⊆ U and ‖F (s, φ)‖ ≤ N for all
s ∈ [0, b1] and φ ∈ B(ϕ, r).
Consider the function w :] −∞, b1] → Xα defined by

w(t) =





T (t)ϕ(0) for t ∈ [0, b1]

ϕ(t) for t ≤ 0.
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By Axioms (A1)(i) and (A2), there exists 0 < b < b1 such that ‖wt−ϕ‖Bα
<

r
2

for all t ∈ [0, b]. We choose b small enough such that

KbMαN

∫ b

0

eωs

sα
ds <

r

2
, (4)

where Kb = sup0≤t≤b K(t). Let us introduce the space

Ωb := {u ∈ C([0, b]; Xα) : u(0) = ϕ(0)},

endowed with the uniform norm topology. Let u ∈ Ωb. We define the extension
ũ of u on ] −∞, b] by

ũ(t) =





u(t) for t ∈ [0, b]

ϕ(t) for t ≤ 0.

We define the set Ωb(ϕ) by

Ωb(ϕ) := {u ∈ Ωb : ‖ũt − ϕ‖Bα
≤ r for t ∈ [0, b]}.

Let v(t) = T (t)ϕ(0) for t ∈ [0, b]. Its extension ṽ :]−∞, b] → Xα is defined by

ṽ(t) =





v(t) for t ∈ [0, b]

ϕ(t) for t ≤ 0.

It is easy to see that ṽ is the restriction of w on ] −∞, b] and v is an element
of Ωb(ϕ). Then Ωb(ϕ) is a nonempty.
Ωb(ϕ) is closed convex in C([0, b], Xα). To prove that. Let (un)n≥0 be in Ωb(ϕ)
with lim

n→+∞
un = u in C([0, b]; Xα). The Axioms (A1)(iii) implies that for any

t ∈ [0, b], n ∈ N, we have

‖ũn
t − ũt‖Bα

≤K(t) sup
0≤s≤t

‖ũn(s) − ũ(s)‖α

≤Kb sup
0≤s≤b

‖un(s) − u(s)‖α → 0 as n → +∞.

From this together with the inequality

‖ũt − ϕ‖Bα
≤ ‖ũt − ũn

t ‖Bα
+ ‖ũn

t − ϕ‖Bα
for any n ∈ N,

we deduce that ‖ũt − ϕ‖Bα
≤ r. Consequently, u ∈ Ωb(ϕ).

By using the triangular inequality, it is clear that λu1 +(1−λ)u2 ∈ Ωb(ϕ), for
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any u1, u2 ∈ Ωb(ϕ) and λ ∈ [0, 1]. Then Ωb(ϕ) is closed bounded convex set.
Consider now the mapping defined on Ωb(ϕ) by

H(u)(t) = T (t)ϕ(0) +
∫ t

0
T (t − s)F (s, ũs)ds for t ∈ [0, b].

We claim that H maps Ωb(ϕ) into Ωb(ϕ). In fact, let u ∈ Ωb(ϕ) and 0 ≤ t0 <

t ≤ b. Then

Hu(t) − Hu(t0)= (T (t) − T (t0))ϕ(0) +
∫ t

t0

T (t − s)F (s, ũs)ds

+
∫ t0

0
(T (t − s) − T (t0 − s))F (s, ũs)ds

= (T (t) − T (t0))ϕ(0) +
∫ t

t0

T (t − s)F (s, ũs)ds

+(T (t − t0) − I)
∫ t0

0
T (t0 − s)F (s, ũs)ds.

We obtain that

‖Hu(t) − Hu(t0)‖α ≤‖(T (t) − T (t0))A
αϕ(0)‖ + MαN

∫ t

t0

eω(t−s)

(t − s)α
ds

+‖(T (t − t0) − I)
∫ t0

0
AαT (t0 − s)F (s, ũs)ds‖ → 0 as t → t0

+.

Using similar argument for 0 ≤ t < t0 ≤ b, we conclude that

‖Hu(t) − Hu(t0)‖α → 0 as t → t0
−.

This implies that Hu ∈ C([0, b]; Xα). Now, we claim that H̃(u)t ∈ B(ϕ, r) for
t ∈ [0, b]. Let u ∈ Ωb(ϕ) and t ∈ [0, b]. Then

H̃u(t) =





v(t) + y(t) for t ∈ [0, b]

ϕ(t) for t ≤ 0,

where

y(t) =





∫ t

0
T (t − s)F (s, ũs)ds for t ∈ [0, b]

0 for t ≤ 0.

Simple computations yield (̃Hu)t = ṽt − yt for t ∈ [0, b]. Then, we get for any
t ∈ [0, b]
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‖(̃Hu)t − ϕ‖Bα
≤‖ṽt − ϕ‖Bα

+ ‖yt‖Bα

≤
r

2
+ K(t) sup

0≤s≤t

‖y(s)‖α

≤
r

2
+ KbMαN

∫ b

0

eωτ

τα
dτ.

By the estimate (4), we deduce that

‖H̃(u)t − ϕ‖Bα
≤ r for all t ∈ [0, b].

Finally, we have proved that H(Ωb(ϕ)) ⊆ Ωb(ϕ).
We will prove now the continuity of H . Let (un)n≥1 be a convergent sequence
in Ωb(ϕ) with limn→∞ un = u, we obtain limn→∞ ũn = ũ. Then, for t ∈ [0, b]
we have

‖Hun(t) − Hu(t)‖α ≤ Mα

∫ t

0
eω(t−s)(t − s)−α‖F (s, ũn

s ) − F (s, ũs)‖ds. (5)

By Axioms (A1)(iii) and (A2) we have the mapping (s, u) 7→ ũs is continuous
in [0, b] × Ωb(ϕ). On the other hand the set {ũ} ∪ {ũn : n ≥ 1} is compact.
Hence, the set Λ = {(s, ũn

s ), (s, ũs) : s ∈ [0, b], n ≥ 1} is compact in [0, b]×Bα.
By Heine’s theorem implies that F is uniformly continuous in Λ. Accordingly,
since (un)n≥1 converge to u, we have

‖Hun − Hu‖∞ ≤ Mα

∫ b

0

eωs

sα
ds sup

s∈[0,b]
‖F (s, ũn

s ) − F (s, ũs)‖ → 0 as n → +∞.

(6)

Then, we obtain that (Hun)n≥1 converge to Hu. And this yields the continuity
of H .

We will prove now that, for each 0 < t ≤ b, the set
{ ∫ t

0
T (t−s)F (s, ũs)ds, u ∈

Ωb(ϕ)
}

is relatively compact in Xα.

Let t ∈]0, b] fixed, and β > 0 such that α < β < 1, we have

‖ Aβ
∫ t

0
T (t − s)F (s, ũs)ds ‖≤ MβN

∫ b

0

eωs

sβ
ds.

Then for fixed t ∈]0, b]

{
Aβ

∫ t

0
T (t − s)F (s, ũs)ds, u ∈ Ωb(ϕ)

}

is bounded in X. By (H2) and Theorem 1, we deduce that A−β : X → Xα is
compact. Consequently

{ ∫ t

0
T (t − s)F (s, ũs)ds, u ∈ Ωb(ϕ)

}

EJQTDE, 2012 No. 59, p. 7



is relatively compact set in Xα.
We will show that {Hu(t), u ∈ Ωb(ϕ)} is an equicontinuous family of func-
tions. Let u ∈ Ωb(ϕ) and 0 ≤ t1 < t2 ≤ b. Then

Hu(t2) − Hu(t1) = (T (t2) − T (t1))ϕ(0) +
∫ t2

t1

T (t2 − s)F (s, ũs)ds

+
∫ t1

0
(T (t2 − s) − T (t1 − s))F (s, ũs)ds

=(T (t2) − T (t1))ϕ(0) +
∫ t2

t1

T (t2 − s)F (s, ũs)ds

+(T (t2 − t1) − I)
∫ t1

0
T (t1 − s)F (s, ũs)ds.

We obtain that

‖Hu(t2) − Hu(t1)‖α ≤‖(T (t2) − T (t1))ϕ(0)‖α + MαN

∫ t2

t1

eωs

sα
ds

+‖(T (t2 − t1) − I)
∫ t1

0
AαT (t1 − s)F (s, ũs)ds‖.

We claim that the first part tend to zero as |t2 − t1| → 0, since for t1 > 0 the
set

{ ∫ t1

0
AαT (t1 − s)F (s, ũs)ds : u ∈ Ωb(ϕ)

}

is relatively compact in X, there is a compact set K̃ in X such that

∫ t1

0
AαT (t1 − s)F (s, ũs)ds ∈ K̃ for any u ∈ Ωb(ϕ).

By Banach-Steinhaus’s theorem, we have

∥∥∥∥(T (t2 − t1) − I)
∫ t1

0
AαT (t1 − s)F (s, ũs)ds

∥∥∥∥ → 0 as t2 → t1,

uniformly in u ∈ Ωb(ϕ). Using similar argument for 0 ≤ t2 < t1 ≤ b, we
can conclude that {Hu(t), u ∈ Ωb(ϕ)} is equicontinuous. By Ascoli-Arzela’s
theorem, we deduce {Hu(.), u ∈ Ωb(ϕ)} is relatively compact in C([0, b], Xα).
Now by Schauder’s fixed point theorem, we get that H has a fixed point u in
Ωb(ϕ), which implies that u is a mild solutions of Equation (2) on [0, b]. This
ends the proof of Theorem.
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3 Global continuation of the solutions

In order to define the mild solution in its maximal interval of existence, we
add the following condition

(H4) F : [0, +∞[×Bα → X is continuous and takes bounded sets of [0, +∞[×Bα

into bounded sets in X.

Theorem 5 Assume that (H1)-(H4) hold. Then there exists a maximal in-
terval [0, tmax[ and a mild solution of Eq. (2) defined on [0, tmax[. However, if
tmax < +∞, then lim sup

t→tmax

‖u(t, ϕ)‖α = +∞.

Proof.— On can see that the mild solution of Eq. (2) is defined on [0, tmax[.
Assume that tmax < +∞ and lim sup

t→tmax

‖u(t, ϕ)‖α < +∞. Then there exists

L > 0 such that ‖u(t, ϕ)‖α < L for t ∈ [0, tmax[. Then, from Axiom (A1)(iii)
there exists constant r > 0 such that ‖us(., ϕ)‖Bα

≤ r, for all s ∈ [0, tmax[ and
consequently by hypothesis (H4) there exists R > 0 such that ‖F (s, us)‖ ≤ R,
for all s ∈ [0, tmax[. Let u : [t0, tmax[→ Xα (t0 ∈]0, tmax[) be the restriction of
u(., ϕ) to [t0, tmax[. Consider t ∈ [t0, tmax[ and β such that α < β < 1. Then

‖u(t)‖β ≤‖Aβ−αT (t)Aαϕ(0)‖ + ‖
∫ t

0
AβT (t − s)F (s, us)ds‖

≤Mβ−α

eωt

tβ−α
‖ϕ(0)‖α + MβR

∫ t

0

eωs

sβ
ds.

Thus, ‖u(t)‖β is bounded on [t0, tmax[. Now, for t0 ≤ t < t+h < tmax, we have

u(t + h) − u(t)= T (t + h)ϕ(0) − T (t)ϕ(0) +
∫ t+h

0
T (t + h − s)F (s, us)ds

−
∫ t

0
T (t − s)F (s, us)ds

= T (t)[(T (h) − I)ϕ(0)] + (T (h) − I)
∫ t

0
T (t − s)F (s, us)ds

+
∫ t+h

t
T (t + h − s)F (s, us)ds

= (T (h) − I)u(t) +
∫ t+h

t
T (t + h − s)F (s, us)ds.

Taking the α-norm, we obtain
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‖u(t + h) − u(t)‖α ≤‖(T (h) − I)A−(β−α)Aβu(t)‖ + RMα

∫ t+h

t

eω(t+h−s)

(t + h − s)α
ds

≤Nβ−αhβ−α‖u(t)‖β + RMα

∫ t+h

t

eω(t+h−s)

(t + h − s)α
ds

≤Nβ−αhβ−α‖u(t)‖β + RMα

∫ h

0

eωs

sα
ds

≤Nβ−αhβ−α‖u(t)‖β + RMα max{1, eωtmax}
h1−α

1 − α
.

This implies that

‖u(t + h) − u(t)‖α → 0 as h → 0

uniformly with respect to t ∈ [t0, tmax[. Which implies that u is uniformly
continuous on [t0, tmax[. Consequently, u(., ϕ) can be extended to the right to
tmax, which contradicts the maximality of [0, tmax[. This completes the proof
of the theorem.
The following result provides sufficient conditions for global solutions to Eq.
(2).

Corollary 6 Under the same assumptions as in Theorem 4, if there exist
k1, k2 ∈ C(R+, R+) such that ‖F (t, ϕ)‖ ≤ k1(t)‖ϕ‖Bα

+ k2(t) for ϕ ∈ Bα and
t ≥ 0, then Eq. (2) admits global solutions.

The proof of this corollary is based on the following lemma, whose proof can
be found in Lemma 6.7 of [14].

Lemma 7 [14] Let v : [0, a] → [0,∞[ be continuous. If there are positive
constants A, B, 0 < α < 1 such that

v(t) ≤ A + B

∫ t

0

v(s)

(t − s)α
ds for t ∈ [0, a]

then, there is a constant C such that

v(t) ≤ C for t ∈ [0, a].

Proof.— Assume that tmax < +∞. Let M := sup0≤t≤tmax
‖T (t)‖. Then for

every t ∈ [0, tmax[, we have

‖u(t)‖α ≤‖T (t)Aαϕ(0)‖ + ‖
∫ t

0
AαT (t − s)F (s, us)ds‖

≤MH‖ϕ‖Bα
+ Mα

∫ t

0

eω(t−s)

(t − s)α

(
k1(s)‖us‖Bα

+ k2(s)
)
ds.
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Therefore, by (A1)(iii),

‖u(t)‖α ≤ A + B

∫ t

0

1

(t − s)α
sup

0≤σ≤s

‖u(σ)‖αds, (7)

where

A = MH‖ϕ‖Bα
+Mα

[
sup

0≤s≤tmax

k2(s)+‖ϕ‖Bα
sup

0≤s≤tmax

(
k1(s)M(s)

)] ∫ tmax

0

eωs

sα
ds,

and

B = Mα max{1, eωtmax} sup
0≤s≤tmax

(
k1(s)K(s)

)
.

We claim that the function g : s 7→
∫ s

0

1

(s − σ)α
sup

0≤τ≤σ

‖u(τ)‖αdσ is nonde-

creasing on [0, t]. Let s, s′ ∈ [0, t] be such that s < s′. Then

g(s) =
∫ s

0

1

(s − σ)α
sup

0≤τ≤σ

‖u(τ)‖αdσ

=
∫ s

0

1

σα
sup

0≤τ≤s−σ

‖u(τ)‖αdσ

≤
∫ s

0

1

σα
sup

0≤τ≤s′−σ

‖u(τ)‖αdσ

≤
∫ s′

0

1

σα
sup

0≤τ≤s′−σ

‖u(τ)‖αdσ = g(s′).

Therefore g is nondecreasing on [0, t] and sup0≤s≤t g(s) = g(t). Then by the
inequality (7), we obtain

sup
0≤s≤t

‖u(s)‖α ≤ A + B

∫ t

0

1

(t − s)α
sup

0≤σ≤s

‖u(σ)‖αds,

By Lemma 7, there is a constant C such that

sup
0≤s≤t

‖u(s)‖α ≤ C,

which implies that sup
0≤s<tmax

‖u(s)‖α < ∞, and the proof is complete.

4 Application

Consider the following functional differential equation
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∂

∂t
v(t, x) =

∂2

∂x2
v(t, x) + a

∂

∂x
v(t − r, x) +

∫ 0

−∞
g(θ)v(t + θ, x)dθ

+f(
∂

∂x
v(t − r, x)) for t ≥ 0 andx ∈ [0, π],

v(t, 0) = v(t, π) = 0 for t ≥ 0,

v(θ, x) = v0(θ, x) for θ ≤ 0 and x ∈ [0, π],

(8)

where a and r are positive constants, g :]−∞, 0] → R is a positive integrable
function, f : R → R and v0 :] − ∞, 0] × [0, π] → R are continuous. Let
X = L2([0, π]; R) and A : D(A) ⊂ X → X defined by Ay = −y

′′

with domain

D(A) = H2[0, π] ∩ H1
0 [0, π]. Then Ay =

∞∑

n=1

n2(y, en)en for y ∈ D(A), where

{en(s) =
√

2
π
sin ns, n ≥ 1}, is the orthonormal set of eigenvectors of A. For

each y ∈ D(A
1

2 ) := {y ∈ X :
∞∑

n=1

n(y, en)en ∈ X} the operator A
1

2 is given by

A
1

2 y =
∑∞

n=1 n(y, en)en.

Lemma 8 [17] If y ∈ D(A
1

2 ), then y is absolutly continuous, y′ ∈ X and

‖y′‖X = ‖A
1

2 y‖X .

It is well known that −A is the infinitesimal generator of an analytic semigroup

(T (t))t≥0 on X given by T (t)x =
∞∑

n=1

e−n2t(x, en)en, x ∈ X. It follows from

this last expression that (T (t))t≥0 is a compact semigroup on X. This implies
that Assumption (H1) and (H2) are satisfied. Let, for γ > 0,

B = Cγ = {ϕ ∈ C(] −∞, 0]; X) : lim
θ→−∞

eγθϕ(θ) exists in X},

with the norm

‖ϕ‖γ = sup
θ≤0

eγθ‖ϕ(θ)‖ for ϕ ∈ Cγ.

This space satisfies axioms (A1), (A2) and (B). The norm in B 1

2

is given by

‖ϕ‖B 1

2

= sup
θ≤0

eγθ‖A
1

2 ϕ(θ)‖ = sup
θ≤0

eγθ

√∫ π

0

(
∂

∂x
(ϕ)(θ)(x)

)2

dx

Assume that,

(H5) : e−2γg ∈ L2(R−).
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Let





u(t)(x) = v(t, x) for t ≥ 0 and x ∈ [0, π],

ϕ(θ)(x) = v0(θ, x) for θ ≤ 0 and x ∈ [0, π],

(F (ϕ))(x) = aϕ(−r)′(x) +
∫ 0

−∞
g(θ)ϕ(θ)(x)dθ + f(ϕ(−r)′(x)) for ϕ ∈ B 1

2

and x ∈ [0, π].

Then, Eq. (8) takes the following abstract form





d

dt
u(t) = −Au(t) + F (t, ut) for t ≥ 0,

u0 = ϕ ∈ B 1

2

.
(9)

F can be decomposed as follows: F = F1 + F2 + F3, where





(F1(ϕ))(x) = aϕ(−r)′(x),

(F2(ϕ))(x) =
∫ 0

−∞
g(θ)ϕ(θ)(x)dθ,

(F3(ϕ))(x) = f(ϕ(−r)′(x)).

Let ϕ ∈ B 1

2

, we consider a sequence (ϕn)n convergent to ϕ in B 1

2

, then we have

‖F1(ϕn) − F1(ϕ)‖2
X = a2

∫ π

0

∣∣∣∣ϕn(−r)(x) − ϕ(−r)(x)
)∣∣∣∣

2

dx

= a2‖A
1

2 (ϕn(−r) − ϕ(−r))‖2

≤ a2e2γr sup
θ≤0

e2γθ‖A
1

2 (ϕn(−r) − ϕ(−r))‖2

≤ a2e2γr‖ϕn − ϕ‖2
B 1

2

, (10)

and

‖F2(ϕn)−F2(ϕ)‖2
X =

∫ π

0

∣∣∣∣
∫ 0

−∞
g(θ)

(
ϕn(θ)(x) − ϕ(θ)(x)

)
dθ

∣∣∣∣
2

dx

≤
∫ π

0

( ∫ 0

−∞
g(θ)2e−4γθdθ

) ∫ 0

−∞
e4γθ

(
ϕn(θ)(x) − ϕ(θ)(x)

)2

dθdx

≤
( ∫ 0

−∞
g(θ)2e−4γθdθ

) ∫ π

0

∫ 0

−∞
e4γθ

(
ϕn(θ)(x) − ϕ(θ)(x)

)2

dθdx

≤
1

2γ

( ∫ 0

−∞
g(θ)2e−4γθdθ

)
sup
θ≤0

{e2γθ
∫ π

0

(
ϕn(θ)(x) − ϕ(θ)(x)

)2

dx}

≤
1

2γ

( ∫ 0

−∞
g(θ)2e−4γθdθ

)
‖ϕn − ϕ‖2

B 1

2

. (11)
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Then (10) and (11) imply that F1 + F2 is continuous on B 1

2

.
Since

‖F3(ϕn) − F3(ϕ)‖2
X =

∫ π

0
|f(ϕn(−r)′(x)) − f(ϕ(−r)′(x))|2dx.

And

‖A
1

2 (ϕn(−r) − ϕ(−r))‖≤ eγr sup
θ≤0

eγθ‖A
1

2 (ϕn(θ) − ϕ(θ))‖

= eγr‖ϕn − ϕ‖2
B 1

2

→ 0 as n → ∞.

Then
∂

∂x
ϕn(−r) →

∂

∂x
ϕ(−r) as n → ∞

in L2[0, π]. We conclude by the following well known result in Lp spaces con-
vergence. More details can be found in Theorem IV.9 of [7].

Theorem 9 [7] Let 1 < p < ∞, Ω an open set in Rn and (fn)n≥0 a sequence
in Lp(Ω). Suppose that fn → f as n → ∞ in Lp(Ω). Then, there exist a
subsequence (fnk

)k≥0 of (fn)n≥0 and h ∈ Lp(Ω) such that

i) fnk
→ f a.e. in Ω,

ii) |fnk
(x)| ≤ |h(x)| ∀k a.e. in Ω.

Then using Theorem 9, we deduce that there exists a subsequence (ϕnk
)k and

g1 ∈ L2(0, π) such that

∂

∂x
ϕnk

(−r)(x) →
∂

∂x
ϕ(−r)(x) as k → ∞ a.e,

and

|
∂

∂x
ϕnk

(−r)(x)| ≤ |g1(x)| a.e.

By the continuity of f , we obtain

f

(
∂

∂x
ϕnk

(−r)(x)
)
→ f

(
∂

∂x
ϕ(−r)(x)

)
as k → ∞.

If we suppose that |f(t)| ≤ a|t| + b. By the Lebesgue dominated convergence
theorem, we deduce

f

(
∂

∂x
ϕnk

(−r)
)
→ f

(
∂

∂x
ϕ(−r)

)
as k → ∞

in L2[0, π]. Since the limit does not depend on the subsequence (ϕnk
)k, then

we obtain
F3(ϕn) → F3(ϕ) as n → ∞
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in L2[0, π]. We deduce that F3 is continuous on B 1

2

, which implies that F is
continuous on B 1

2

. Consequently, Theorem 4 ensures the existence of a maxi-

mal interval of existence [0, tmax[ and a mild solution v(t, x) on [0, tmax[×[0, π].
Also, under the assumption that |f(t)| ≤ a|t|+ b, we establish that tmax = ∞
by applying Corollary 6.
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