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EXISTENCE AND UNIQUENESS OF SOLUTIONS OF

FRACTIONAL QUASILINEAR MIXED INTEGRODIFFERENTIAL

EQUATIONS WITH NONLOCAL CONDITION IN BANACH

SPACES

MABROUK BRAGDI∗ MOHAMMED HAZI

Abstract. In this paper, we discuss the existence and uniqueness of mild
and classical solutions of quasilinear mixed integrodifferential equations of frac-
tional orders with nonlocal condition in Banach spaces. Furthermore, we study
continuous dependence of mild solutions. Our analysis is based on fractional
calculus, resolvent operators and Banach’s fixed point theorem.

1. Introduction

In recent years a considerable interest has been shown in the so-called fractional
calculus, which allows us to consider integration and differentiation of any order,
not necessarily integer. To a large extent this is due to the applications of the
fractional calculus to problems in different areas of physics and engineering. The
fractional calculus can be considered an old and yet novel topic. Starting from
some speculations of Leibniz and Euler, followed by the works of other eminent
mathematicians including Laplace, Fourier, Abel, Liouville and Riemann, it has
undergone a rapid development especially during the past two decades. One of the
emerging branches of this study is the theory of fractional quasilinear equations, i.e.
quasilinear equations where the integer derivative with respect to time is replaced
by a derivative of fractional order. The increasing interest in this class of equations
is motivated both by their application to problems from viscoelasticity, heat con-
duction in materials with memory, electrodynamics with memory, and also because
they can be employed to approach nonlinear conservation laws [1, 6, 7, 8, 9, 10, 27].

Recently, the existence of solutions of fractional abstract differential equations
with nonlocal initial condition was investigated by [30]. Much attention has been
paid to existence results for the nonlinear mixed integrodifferential equations with
nonlocal condition in Banach spaces, see Dhakne et al. [20]. Several authors have
studied the existence of solutions of abstract nonlocal problems by using different
techniques, see [3, 12, 21, 25, 26, 36, 37] and the references given therein.
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Motivated by the work in [16, 20, 28, 35], we consider the quasilinear fractional
integrodifferential equation

dαx(t)

dtα
+ A(t, x(t))x(t) = f(t, x(t),

∫ t

0

k(t, s, x(s))ds,

∫ T

0

h(t, s, x(s))ds), t ∈ J,

(1.1)

x(0) + g(t1, t2, . . . , tp, x(·)) = x0, x0 ∈ X, (1.2)

where J = [0, T ], 0 < α ≤ 1 and 0 ≤ t1 < t2 < · · · < tp ≤ T , −A(t, ·) is a closed
linear operator defined on a dense domain D(A) in X into X such that D(A) is
independent of t. It is assumed also that −A(t, ·) generates resolvent operator in the
Banach space X . The nonlinear functions f : J×X×X×X → X , g : Jp×X → X ,
k, h : J × J × X → X are given. The operator dα

dtα denotes the Caputo fractional
derivative of order α.

In this paper our aims is to study the existence, uniqueness and other properties
of solutions of the problem (1.1)–(1.2). The main tool employed in our analysis
is based on the Banach fixed point theorem, resolvent operators and fractional
calculus. Our results generalizes the correspondence results in [20] to nonlocal
quasilinear mixed integrodifferential equations of arbitrary orders. We indicate
that the definition of resolvent operators used in this paper is different from that
in [16].

The rest of this article is organized as follows: In section 2 we recall briefly some
basic definitions and preliminary facts which are used throughout this paper. The
existence and uniqueness theorems for the problem (1.1)–(1.2) and their proofs
are arranged in section 3. Finally in section 4 we give example to illustrate the
application of our results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.

Here we recall the following known definition, for more details see [23, 29, 33].

Definition 2.1. The Riemann–Liouville fractional integral operator of order β > 0
of a function x : [0,∞) → R is defined as

Iβx(t) =
1

Γ(β)

∫ t

0

(t − s)β−1x(s)ds. (2.1)

where Γ(·) is the gamma function.

Definition 2.2. The Caputo derivative of order α, for a function x : [0,∞) → R

can be written as

dαx (t)

dtα
=

1

Γ (1 − α)

∫ t

0

x′ (s)

(t − s)
α ds, 0 < α ≤ 1, (2.2)

where x′ (s) = dx(s)
ds

.

If x is an abstract function with values in X , then the integrals and derivatives
which appear in (2.1) and (2.2) are taken in Bochner’s sense.
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Definition 2.3 (Compare[35] with [16]). A family of bounded linear operators
Rz(t, s) ∈ B(X), 0 ≤ s ≤ t ≤ T is called resolvent operator for equations (1.1) and
(1.2) if the following conditions hold:

(a) Rz(t, s) is strongly continuous in t and s, Rz(t, t) = I, t ∈ J .
(b) For each x ∈ X , Rz(t, s)x is a continuously differentiable function in t and

s such that

∂αRz

∂tα
(t, s)x = −A(t, z(t))Rz (t, s)x.

Here Rz(t, s) can be extracted from the evolution operator of the generator
−A(t, z).

Next we introduce the so-called ”Mild Solution” and ”Classical Solution” for
(1.1)–(1.2).

Definition 2.4 (Compare[35] with [16]). A continuous solution x of the integral
equation

x(t)

= Rx(t, 0)x0 − Rx(t, 0)g(t1, t2, . . . , tp, x(·))

+
1

Γ(α)

∫ t

0

(t − s)α−1Rx(t, s)f(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,

∫ T

0

h(s, τ, x(τ))dτ)ds,

(2.3)
with t ∈ J , is said to be a mild solution of (1.1)–(1.2) on J .

Definition 2.5 ([16, 18]). By a classical solution of (1.1)–(1.2) on J , we mean a
function x with values in X such that:

(i) x is continuous function on J and x(t) ∈ D(A),

(ii) dαx
dtα exists and is continuous on (0, T ), and satisfying (1.1)–(1.2) on J .

Also, we need the following lemma

Lemma 2.6. [16, Lemma 3.1] Let Ω ⊂ X, Y be a densely and continuously imbed-
ded Banach space in X and let Rz(t, s) be the resolvent operator for the problem
(1.1)–(1.2), there exists a constant C0 > 0 such that

‖Rz1
(t, s)ω − Rz2

(t, s)ω‖ ≤ C0‖ω‖Y

∫ t

s

‖z1(τ) − z2(τ)‖dτ,

for every z1, z2 ∈ E with values in Ω and every ω ∈ Y .

Now, we list the following hypotheses for our convenience. For the rest of paper,
let Z be taken as both X and Y . Also, we denote by E the Banach space C(J ; X)
of X-valued continuous functions on J equipped with the sup-norm.

(H1) There exists a constant G > 0 such that

‖g(t1, t2, . . . , tp, x1(·)) − g(t1, t2, . . . , tp, x2(·))‖ ≤ G‖x1 − x2‖E

for x1, x2 ∈ E.
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(H2) There are constants L1, K1, H1, G1 and M0 such that

L1 = max
0≤t≤T

‖f(t, 0, 0, 0)‖Z,

K1 = max
0≤s≤t≤T

‖k(t, s, 0)‖,

H1 = max
0≤s,t≤T

‖h(t, s, 0)‖,

G1 = max
x∈E

‖g(t1, t2, . . . , tp, x(·))‖Z ,

M0 = max
0≤s≤t≤T

‖Rz(t, s)‖.

(H3) The constants ‖x0‖, M, G1, L, K, K1, H, H1, T and r satisfy the following
two inequalities:

[C0‖x0‖Y T +M0G+C0GT ]+ T α+1C0

Γ(α+1) [Lr+LT (Kr+K1)+LT (Hr+H1)+

L1] + T αM0L
Γ(α+1) [1 + KT + HT ] < 1,

and
M0‖x0‖+M0G1 + M0T α

Γ(α+1) [Lr +TLKr+TLK1 +TLHr+TLH1 +L1] ≤ r.

With these preparations we are now in a position to state our main results to be
proved in the present paper.

3. Main Results

Theorem 3.1. Assume that

(i) hypotheses (H1)–(H3) hold,
(ii) f : J ×X ×X ×X → Z is continuous in t on J and there exists a constant

L > 0 such that

‖f(t, x1, y1, z1) − f(t, x2, y2, z2)‖Z ≤ L(‖x1 − x2‖ + ‖y1 − y2‖ + ‖z1 − z2‖),

for xi, yi, zi ∈ Br, i = 1, 2, where Br = {x ∈ X : ‖x‖ ≤ r}.
(iii) k, h : J × J × X → X are continuous in s, t on J and there exist positive

constants K, H such that

‖k(t, s, x1) − k(t, s, x2)‖ ≤ K(‖x1 − x2‖),

‖h(t, s, x1) − h(t, s, x2)‖ ≤ H(‖x1 − x2‖),

for xi, yi ∈ Br, i = 1, 2.

Then problem (1.1)–(1.2) has a unique mild solution on J .

Proof of Theorem 3.1. We shall use the notions and notations introduced in the
preceding section. We define an operator F : E → E by

(Fz)(t)

= Rz(t, 0)x0 − Rz(t, 0)g(t1, t2, . . . , tp, z(·))

+
1

Γ(α)

∫ t

0

(t − s)α−1Rz(t, s)f(s, z(s),

∫ s

0

k(s, τ, z(τ))dτ,

∫ T

0

h(s, τ, z(τ))dτ)ds,

(3.1)
for t ∈ J . It follows from assumption on the functions f , h and k that F : E → E

and for every z ∈ E, Fz(0) = x0 − g(t1, t2, . . . , tp, z(·)).
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Let S be the nonempty closed and bounded set given by

S = {z ∈ E : z(0) = x0 − g(t1, t2, . . . , tp, z(·)), ‖z(t)‖ ≤ r}. (3.2)

Then for z ∈ S we have

‖(Fz)(t)‖

≤ ‖Rz(t, 0)x0‖ − ‖Rz(t, 0)g(t1, t2, . . . , tp, z(·))‖

+ ‖
1

Γ(α)

∫ t

0

(t − s)α−1Rz(t, s)f(s, z(s),

∫ s

0

k(s, τ, z(τ))dτ,

∫ T

0

h(s, τ, z(τ))dτ)ds‖

≤ M0‖x0‖ + M0G1 +
M0

Γ(α)

∫ t

0

(t − s)α−1[‖f(s, z(s),

∫ s

0

k(s, τ, z(τ))dτ,

∫ T

0

h(s, τ, z(τ))dτ) − f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖]ds

≤ M0‖x0‖ + M0G1 +
M0

Γ(α)

∫ t

0

(t − s)α−1[L(‖z(s) − 0‖ + ‖

∫ s

0

k(s, τ, z(τ))dτ − 0‖

+ ‖

∫ T

0

h(s, τ, z(τ))dτ − 0‖) + ‖f(s, 0, 0, 0)‖]ds

≤ M0‖x0‖ + M0G1

+
M0

Γ(α)

∫ t

0

(t − s)α−1[Lr + L

∫ s

0

‖k(s, τ, z(τ)) − k(s, τ, 0) + k(s, τ, 0)‖dτ

+ L

∫ T

0

‖h(s, τ, z(τ)) − h(s, τ, 0) + h(s, τ, 0)‖dτ + L1]ds

≤ M0‖x0‖ + M0G1

+
M0

Γ(α)

∫ t

0

(t − s)α−1[Lr + LT (Kr + K1) + LT (Hr + H1) + L1]ds

≤ M0‖x0‖ + M0G1

+
M0T

α

Γ(α + 1)
[Lr + TLKr + TLK1 + TLHr + TLH1 + L1] ≤ r.

Thus, we have F : S → S.
Now, for every z1, z2 ∈ S and t ∈ J , we have

‖(Fz1)(t) − (Fz2)(t)‖

≤ ‖Rz1
(t, 0)x0 − Rz2

(t, 0)x0‖

+ ‖Rz1
(t, 0)g(t1, t2, . . . , tp, z1(·)) − Rz2

(t, 0)g(t1, t2, . . . , tp, z2(·))‖

+
1

Γ(α)

∫ t

0

(t − s)α−1

× [‖Rz1
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

−Rz2
(t, 0)f(s, z2(s),

∫ s

0

k(s, τ, z2(τ))dτ,

∫ T

0

h(s, τ, z2(τ))dτ)‖]ds
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≤ ‖Rz1
(t, 0)x0 − Rz2

(t, 0)x0‖

+ ‖Rz1
(t, 0)g(t1, t2, . . . , tp, z1(·)) − Rz2

(t, 0)g(t1, t2, . . . , tp, z2(·))‖

+
1

Γ(α)

∫ t

0

(t − s)α−1

×

[

‖Rz1
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

− Rz2
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)‖

+ ‖Rz2
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

−Rz2
(t, 0)f(s, z2(s),

∫ s

0

k(s, τ, z2(τ))dτ,

∫ T

0

h(s, τ, z2(τ))dτ)‖

]

ds

≤ I1 + I2 + I3,

where

I1 = ‖Rz1
(t, 0)x0 − Rz2

(t, 0)x0‖

+ ‖Rz1
(t, 0)g(t1, t2, . . . , tp, z1(·)) − Rz2

(t, 0)g(t1, t2, . . . , tp, z2(·))‖,

I2 =
1

Γ(α)

∫ t

0

(t − s)α−1

× [‖Rz1
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

− Rz2
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)‖]ds,

and

I3 =
1

Γ(α)

∫ t

0

(t − s)α−1

+ [‖Rz2
(t, 0)f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

− Rz2
(t, 0)f(s, z2(s),

∫ s

0

k(s, τ, z2(τ))dτ,

∫ T

0

h(s, τ, z2(τ))dτ)‖]ds.

Using Lemma (2.6) and hypotheses (H1), (H2), we obtain

I1 ≤ ‖Rz1
(t, 0)x0 − Rz2

(t, 0)x0‖

+ ‖Rz1
(t, 0)g(t1, t2, . . . , tp, z1(·)) − Rz1

(t, 0)g(t1, t2, . . . , tp, z2(·))‖

+ ‖Rz1
(t, 0)g(t1, t2, . . . , tp, z2(·)) − Rz2

(t, 0)g(t1, t2, . . . , tp, z2(·))‖

≤ C0‖x0‖Y

∫ t

0

‖z1(τ) − z2(τ)‖dτ
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+ ‖Rz1
(t, 0)‖‖g(t1, t2, . . . , tp, z1(·)) − g(t1, t2, . . . , tp, z2(·))‖

+ C0‖g(t1, t2, . . . , tp, z2(·))‖Y

∫ t

0

‖z1(τ) − z2(τ)‖dτ

≤ C0‖x0‖Y ‖z1 − z2‖E

∫ t

0

dτ + M0G‖z1 − z2‖E

+ C0‖g(t1, t2, . . . , tp, z2(·))‖Y ‖z1 − z2‖E

∫ t

0

dτ

Thus

I1 ≤ [C0‖x0‖Y T + M0G + C0GT ]‖z1 − z2‖E . (3.3)

Applying Lemma (2.6), hypotheses (H2), and assumptions (ii), (iii), we get

I2 ≤
1

Γ(α)

∫ t

0

(t − s)α−1C0

∫ t

0

‖z1(τ) − z2(τ)‖dτ

× [‖f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ) − f(s, 0, 0, 0)‖Y

+ ‖f(s, 0, 0, 0)‖Y ]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1C0‖z1 − z2‖E

∫ t

0

dτ

× [L(‖z(s) − 0‖ + ‖

∫ s

0

k(s, τ, z1(τ))dτ − 0‖

+ ‖

∫ T

0

h(s, τ, z1(τ))dτ − 0‖) + ‖f(s, 0, 0, 0)‖Y ]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1C0‖z1 − z2‖ET

× [Lr + L

∫ s

0

‖k(s, τ, z1(τ)) − k(s, τ, 0) + k(s, τ, 0)‖dτ

+ L

∫ T

0

‖h(s, τ, z1(τ)) − h(s, τ, 0) + h(s, τ, 0)‖dτ + L1]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1C0‖z1 − z2‖ET

× [Lr + LT (Kr + K1) + LT (Hr + H1) + L1]ds

≤
T α+1C0

Γ(α + 1)
[Lr + LT (Kr + K1) + LT (Hr + H1) + L1]‖z1 − z2‖E ,

I2 ≤
T α+1C0

Γ(α + 1)
[Lr + LT (Kr + K1) + LT (Hr + H1) + L1]‖z1 − z2‖E . (3.4)

Again by using Lemma (2.6), hypotheses (H2), and assumptions (ii), (iii), we obtain

I3 ≤
1

Γ(α)

∫ t

0

(t − s)α−1‖Rz2
(t, 0)‖
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× [‖f(s, z1(s),

∫ s

0

k(s, τ, z1(τ))dτ,

∫ T

0

h(s, τ, z1(τ))dτ)

− f(s, z2(s),

∫ s

0

k(s, τ, z2(τ))dτ,

∫ T

0

h(s, τ, z2(τ))dτ)‖]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1M0L[‖z1(s) − z2(s)‖

+

∫ s

0

‖k(s, τ, z1(τ)) − k(s, τ, z2(τ))‖dτ

+

∫ T

0

‖h(s, τ, z1(τ)) − h(s, τ, z2(τ))‖dτ ]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1M0L‖z1 − z2‖E[1 + K

∫ s

0

dτ + H

∫ T

0

dτ ]ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1M0L‖z1 − z2‖E[1 + KT + HT ]ds,

I3 ≤
T αM0L

Γ(α + 1)
[1 + KT + HT ]‖z1 − z2‖E . (3.5)

Hence from (3.3)–(3.5), we have

‖Fz1 − Fz2‖E ≤ q‖z1 − z2‖E ,

where q = [C0‖x0‖Y T +M0G+C0GT ]+ T α+1C0

Γ(α+1) [Lr+LT (Kr+K1)+LT (Hr+H1)+

L1] + T αM0L
Γ(α+1) [1 + KT + HT ], with 0 < q < 1. Thus F is a strict contraction map

from S into S and therefore by Banach contraction principle there exists unique
fixed point x of F in S and this point is the mild solution of problem (1.1)–(1.2)
on J . This completes the proof of the Theorem 3.1. �

To establish the existence of unique classical solution to (1.1)–(1.2), we shall
require the following lemma.

Lemma 3.2. Assume that |t̃2 − t̃1| ≤ 1 and 0 < α ≤ 1. Then, there exists a
constant N0 > 0 such that

‖[Rz(t̃2, s) − Rz(t̃1, s)]x‖ ≤ N0‖x‖|t̃2 − t̃1|
α for every x, z ∈ D(A). (3.6)

Proof. It follows from (b) of Definition 2.3 that Rz(t, s)x is continuously differen-
tiable in t ∈ J . Using mean value theorem for derivatives, we obtain

‖[Rz(t̃2, s) − Rz(t̃1, s)]x‖ ≤ sup
t∈J

∥

∥

∥

∥

∂Rz

∂t
(t, s)x

∥

∥

∥

∥

|t̃2 − t̃1|

≤ N0‖x‖|t̃2 − t̃1|

≤ N0‖x‖|t̃2 − t̃1|
α,

(3.7)

where |t̃2 − t̃1| ≤ 1, 0 < α ≤ 1 and sup
t∈J

∥

∥

∂Rz

∂t
(t, s)x

∥

∥ ≤ N0‖x‖ for some N0 > 0.

�

Theorem 3.3. Assume that
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(i) hypotheses (H1)–(H3) hold,
(ii) X is a reflexive Banach space with norm ‖ · ‖ and x0 ∈ D(A), the domain

of A(t, ·),
(iii) g(t1, t2, . . . , tp, x(·)) ∈ D(A),
(iv) There exists a constant L > 0 such that

‖f(t1, x1, y1, z1) − f(t2, x2, y2, z2)‖Z ≤ L(|t1 − t2| + ‖x1 − x2‖ + ‖y1 − y2‖

+ ‖z1 − z2‖),

(v) There exist constants K, H > 0 such that

‖k(t1, s, x1) − k(t2, s, x2)‖ ≤ K(|t1 − t2| + ‖x1 − x2‖),

‖h(t1, s, x1) − h(t2, s, x2)‖ ≤ H(|t1 − t2| + ‖x1 − x2‖),

Then x is a unique classical solution of (1.1)–(1.2) on J .

Proof of Theorem 3.3. All the assumptions of Theorem 3.1 are being satisfied, then
problem (1.1)–(1.2) has a unique mild solution belonging to S and given by

x(t)

= Rx(t, 0)x0 − Rx(t, 0)g(t1, t2, . . . , tp, x(·))

+
1

Γ(α)

∫ t

0

(t − s)α−1Rx(t, s)f(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,

∫ T

0

h(s, τ, x(τ))dτ)ds.

(3.8)
Since J is compact it is easy to check that x is Hölder continuous on J if it is

locally Hölder continuous. Now we will show that x is locally Hölder continuous.
For simplification, set

f̃(t) = f(t, x(t),

∫ t

0

k(t, s, x(s))ds,

∫ T

0

h(t, s, x(s))ds). (3.9)

Then (3.8) can be written as

x(t) = Rx(t, 0)x0 −Rx(t, 0)g(t1, t2, . . . , tp, x(·)) +
1

Γ(α)

∫ t

0

(t− s)α−1Rx(t, s)f̃(s)ds.

(3.10)
Since x is continuous on J and the map f satisfy the assumptions (iv) and (v),

it fellows that f̃ is continuous, and therefore bounded on J , set N1 := sup
t∈J

‖f̃(t)‖.
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Next, let t ∈ J be fixed and let t̃1, t̃2 be in (t − δ, t + δ) with t̃1 ≤ t̃2 and δ > 0,
we have

x(t̃2) − x(t̃1)

= [Rx(t̃2, 0) − Rx(t̃1, 0)]x0 − [Rx(t̃2, 0) − Rx(t̃1, 0)]g(t1, t2, . . . , tp, x(·))

+
1

Γ(α)

∫ t̃2

t̃1

(t̃2 − s)α−1Rx(t̃2, s)f̃(s)ds

−
1

Γ(α)

∫ t̃1

0

[(t̃1 − s)α−1 − (t̃2 − s)α−1]Rx(t̃2, s)f̃(s)ds

+
1

Γ(α)

∫ t̃1

0

(t̃1 − s)α−1[Rx(t̃2, s) − Rx(t̃1, s)]f̃(s)ds.

(3.11)

‖x(t̃2) − x(t̃1)‖ ≤ Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4. (3.12)

Using Lemma (3.2) for a small enough δ > 0, we get

Ĩ1 ≤ ‖[Rx(t̃2, 0) − Rx(t̃1, 0)]x0 − [Rx(t̃2, 0) − Rx(t̃1, 0)]g(t1, t2, . . . , tp, x(·))‖

≤ [N0‖x0‖ + N0G1]|t̃2 − t̃1|
α,

(3.13)

for Ĩ2, we have

Ĩ2 ≤
1

Γ(α)

∫ t̃2

t̃1

(t̃2 − s)α−1‖Rx(t̃2, s)f̃(s)‖ds

≤
M0N1

Γ(α + 1)
|t̃2 − t̃1|

α,

(3.14)

and for Ĩ3, we have

Ĩ3 ≤
1

Γ(α)

∫ t̃1

0

|(t̃1 − s)α−1 − (t̃2 − s)α−1|‖Rx(t̃2, s)f̃(s)‖ds

≤
M0N1

Γ(α)

∫ t̃1

0

|(t̃1 − s)−µ − (t̃2 − s)−µ|ds,

(3.15)

with µ = 1 − α. Here we can use the calculation presented in [31, Theorem 3.2] to
find the upper bound of integral and thus we get

Ĩ3 ≤
M0N1

Γ(α)
µδ

µ−1
1 (1 − c)(µ−1)−1|t̃2 − t̃1|

1−µ, (3.16)

where c = (1 − µ)
1
µ and 0 < δ1 ≤ 1.

Using again (3.6), we may calculate the bound of Ĩ4 as
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Ĩ4 ≤
1

Γ(α)

∫ t̃1

0

(t̃1 − s)α−1‖[Rx(t̃2, s) − Rx(t̃1, s)]f̃(s)‖ds

≤
N0‖f̃(s)‖

Γ(α)

∫ t̃1

0

(t̃1 − s)α−1|t̃2 − t̃1|
αds

≤
T α

Γ(α + 1)
N0‖f̃(s)‖|t̃2 − t̃1|

α

≤
T α

Γ(α + 1)
N0N1|t̃2 − t̃1|

α,

(3.17)

Hence from (3.13)–(3.17), locally Hölder continuity of x(t) follows.
As pointed out earlier in this proof, we may deduce that x(t) is Hölder continuous

on J . The Hölder continuity of x(t) on J combined with (iv) and (v) of Theorem

(3.3) implies f̃(t) is Hölder continuous on J . According to [16, Theorem 3.4], we
observe that the equation

dαy(t)

dtα
+ A(t, y(t))y(t) = f(t, x(t),

∫ t

0

k(t, s, x(s))ds,

∫ T

0

h(t, s, x(s))ds), t ∈ J

y(0) = x0 − g(t1, t2, . . . , tp, x(·))

has a unique classical solution y(t) on J satisfying the equation

y(t)

= Rx(t, 0)x0 − Rx(t, 0)g(t1, t2, . . . , tp, x(·))

+
1

Γ(α)

∫ t

0

(t − s)α−1Rx(t, s)f(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,

∫ T

0

h(s, τ, x(τ))dτ)ds

= x(t), t ∈ J.

Consequently, x(t) is the classical solution of initial value problem (1.1)–(1.2) on
J . This completes the proof of Theorem 3.3. �

The following generalized Gronwall’s inequality is essential to prove continuous
dependence of mild solutions of equations (1.1)–(1.2)

Lemma 3.4. [24] Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally
integrable on 0 ≤ t < T (some T ≤ ∞), and suppose u(t) is nonnegative and locally
integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0

(t − s)β−1u(s)ds, 0 ≤ t < T.

Then

u(t) ≤ a(t) +

∫ t

0

∞
∑

j=1

(bΓ(β))j

Γ(jβ)
(t − s)jβ−1a(s)ds, 0 ≤ t < T. (3.18)

If a(t) ≡ a, constant on 0 ≤ t < T , then the inequality (3.18) is reduced to

u(t) ≤ aEβ(bΓ(β)tβ),

where Eβ is the Mittag–Leffler function of order β.
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Theorem 3.5. Suppose that the functions f, g, k and h satisfy hypotheses (H1)-
(H4) and assumptions (ii), (iii) of Theorem 3.1. Then, for each pair of elements
x∗

0, x
∗∗
0 ∈ X, and for the corresponding mild solutions x1, x2 of problem (1.1) with

x1(t0) + g(t1, t2, . . . , tp, x1(·)) = x∗
0 and x2(t0) + g(t1, t2, . . . , tp, x2(·)) = x∗∗

0 , the
inequality

‖x1 − x1‖E ≤
M0

(1 − p1)
‖x∗

0 − x∗∗
0 ‖Eα(

p2

(1 − p1)
Γ(α)tα),

is true, whenever

p1 =
T α+1C0

Γ(α + 1)
[Lr + LT (Kr + K1) + LT (Hr + H1) + L1]

+ [C0‖x0‖Y T + M0G + C0GT ]

< 1

and

p2 = M0L[1 + KT + HT ].

Proof of Theorem 3.5. Suppose that x1(t) and x2(t) satisfy (1.1) on J with x1(t0)+
g(t1, t2, . . . , tp, x1(·)) = x∗

0 and x2(t0)+g(t1, t2, . . . , tp, x2(·)) = x∗∗
0 , respectively and

x1, x2 ∈ E. Using the equation (2.3), hypotheses (H1)–(H4) and assumptions (ii),
(iii), we obtain

‖x1(t) − x2(t)‖

≤ ‖Rx1
(t, 0)x∗

0 − Rx2
(t, 0)x∗∗

0 ‖

+ ‖Rx1
(t, 0)g(t1, t2, . . . , tp, x1(·)) − Rx2

(t, 0)g(t1, t2, . . . , tp, x2(·))‖

+
1

Γ(α)

∫ t

0

(t − s)α−1

×

[

‖Rx1
(t, 0)f(s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ,

∫ T

0

h(s, τ, x1(τ))dτ)

−Rx2
(t, 0)f(s, x2(s),

∫ s

0

k(s, τ, x2(τ))dτ,

∫ T

0

h(s, τ, x2(τ))dτ)‖ds

]

≤ ‖Rx1
(t, 0)x∗

0 − Rx2
(t, 0)x∗

0‖ + ‖Rx2
(t, 0)x∗

0 − Rx2
(t, 0)x∗∗

0 ‖

+ ‖Rx1
(t, 0)g(t1, t2, . . . , tp, x1(·)) − Rx1

(t, 0)g(t1, t2, . . . , tp, x2(·))‖

+ ‖Rx1
(t, 0)g(t1, t2, . . . , tp, x2(·)) − Rx2

(t, 0)g(t1, t2, . . . , tp, x2(·))‖

+
1

Γ(α)

∫ t

0

(t − s)α−1

×

[

‖Rx1
(t, 0)f(s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ,

∫ T

0

h(s, τ, x1(τ))dτ)

− Rx2
(t, 0)f(s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ,

∫ T

0

h(s, τ, x1(τ))dτ)‖ds
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+ ‖Rx2
(t, 0)f(s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ,

∫ T

0

h(s, τ, x1(τ))dτ)

−Rx2
(t, 0)f(s, x2(s),

∫ s

0

k(s, τ, x2(τ))dτ,

∫ T

0

h(s, τ, x2(τ))dτ)‖

]

ds

Now, we can use the same calculation presented in proof of Theorem (3.1) to find

‖x1(t) − x2(t)‖ ≤ M0‖x
∗
0 − x∗∗

0 ‖ + p1‖x1 − x2‖E

+
1

Γ(α)

∫ t

0

(t − s)α−1p2‖x1 − x2‖Eds,

where

p1 =
T α+1C0

Γ(α + 1)
[Lr + LT (Kr + K1) + LT (Hr + H1) + L1]

+ [C0‖x0‖Y T + M0G + C0GT ],

and

p2 = M0L[1 + KT + HT ].

Therefore, we obtain

‖x1 − x2‖E ≤
M0

(1 − p1)
‖x∗

0 − x∗∗
0 ‖

+
1

Γ(α)

∫ t

0

(t − s)α−1 p2

(1 − p1)
‖x1 − x2‖Eds.

Using Lemma (3.4), we get

‖x1 − x2‖E ≤
M0

(1 − p1)
‖x∗

0 − x∗∗
0 ‖Eα(

p2

(1 − p1)
Γ(α)tα),

provided that p1 < 1. From this inequality, it follows that the continuous depen-
dence of solutions depends upon the initial data. This completes the proof of the
Theorem 3.5. �

4. Application

In this section we present an example to illustrate the applications of some
of our main results, we consider the fractional mixed Volterra–Fredholm partial
integrodifferential equation

∂αw(u, t)

∂tα
+ a(u, t, w(u, t))

∂2w(u, t)

∂u2

= P (t, w(u, t),

∫ t

0

k1(t, s, w(u, s))ds,

∫ T

0

h1(t, s, w(u, s))ds)

0 < u < 1, 0 ≤ t ≤ T

(4.1)

with initial and boundary conditions

w(0, t) = w(1, t) = 0, 0 ≤ t ≤ T, (4.2)
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w(u, 0) +

p
∑

i=1

w(u, ti) = w0(u), 0 < t1 < t2 < · · · < tp ≤ T. (4.3)

where a : (0, 1)× [0, T ]×R → R, P : [0, T ]×R×R×R → R, k1, h1 : [0, T ]× [0, T ]×
R → R are continuous functions.

First, we reduce the equations (4.1)–(4.3) into (1.1)–(1.2) by making suitable
choices of A, f, g, k and h.

Let X = L2[0, 1] be the space of square integrable functions. Define the operator
A(t, ·) : X → X by (A(t, ·)z)(u) = a(u, t, ·)z′′ with dense domain D(A(t, ·)) = {z ∈
X : z, z′ are absolutely continuous, z′′ ∈ X and z(0) = z(1) = 0}, generates an
evolution system and Rx(t, s) can be extracted from evolution system, such that
‖Rx(t, s)‖ ≤ M0, M0 > 0 for s < t and x ∈ Ω ⊂ X (see [16, 17, 34]).

Define the functions f : [0, T ] × X × X × X → X , k : [0, T ] × [0, T ] × X → X ,
h : [0, T ]× [0, T ]× X → X and g : [0, T ]p × X → X as follows

f(t, x, y, z)(u) = P (t, x(u), y(u), z(u)),

k(t, s, x)(u) = k1(t, s, x(u)),

h(t, s, x)(u) = h1(t, s, x(u)),

g(t1, t2, . . . , tp, x(·))u =

p
∑

i=1

w(u, ti)

for t ∈ [0, T ], x, y, z ∈ X and 0 < u < 1. We assume that the functions P , k1 and
h1 in (4.1) satisfy all the hypotheses of the Theorem 3.1. Also we suppose that

|

p
∑

i=1

w(u, ti) −

p
∑

i=1

w(v, ti)| ≤ G∗ sup
t∈[0,T ]

|u(t) − v(t)|

for u, v ∈ E1 = C([0, T ]; R) and some constant G∗ > 0. Then the above problem
(4.1)–(4.3) can be formulated abstractly as quasilinear mixed integrodifferential
equation in Banach space X :

∂αx(t)

∂tα
+ A(t, x(t))x(t) = f(t, x(t),

∫ t

0

k(t, s, x(s))ds,

∫ T

0

h(t, s, x(s))ds), t ∈ J

(4.4)

x(t0) + g(t1, t2, . . . , tp, x(·)) = x0. (4.5)

Since all the hypotheses of the Theorem 3.1 are satisfied, the Theorem 3.1 can be
applied to guarantee the mild solution of the fractional mixed Volterra–Fredholm
partial integrodifferential equations (4.1)–(4.3).
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E-mail address: hazi@ens-kouba.dz

EJQTDE, 2012 No. 51, p. 16


	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Application
	References

