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BLOW UP OF SOLUTIONS FOR A SEMILINEAR

HYPERBOLIC EQUATION

YAMNA BOUKHATEM1 AND BENYATTOU BENABDERRAHMANE

Abstract. In this paper we consider a semilinear hyperbolic equation
with source and damping terms. We will prove a blow up result of solu-
tions for positive initial energy.

1. Introduction

Let Ω be a bounded domain of R
n with a smooth boundary ∂Ω. We

are concerned with the blow up of solutions of an initial-boundary value

problem for a semilinear hyperbolic equation with dissipative terms:

utt + Au − α∆ut + g(ut) = βf(u), x ∈ Ω, t ≥ 0 (1.1)

u(x, t) = 0, x ∈ ∂Ω, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

where α > 0, β > 0 and u0, u1 are given functions. A is a second order

elliptic operator where the coefficients are depended on x and t. f and g are

some functions specified later.

In the case A = −∆, many mathematicians studied the problem (1.1)−(1.3).

For α = 0, g(v) ≡ 0 (absence of the damping term), the source term f(u),

in the case where the initial energy is negative, causes the blow up of solu-

tions (see [1, 8]). In contract, in the absence of the source term (β = 0), the

damping term (with α = 0) assures global existence for arbitrary initial data

(see [7, 9]). The interaction between the damping and the source terms was

considered by Levine [9, 10] in linear damping case (α = 0, g(v) ∼= v) and

polynomial source term of the form f(u) = |u|p−2u, p > 2. He showed that

the solutions with negative initial energy blow up in finite time. Georgiev

and Todorova [5] extended Levine’s result to the nonlinear case, where the

damping term is given by |ut|
m−2ut, m > 2. Precisely, they showed that the

solution continues to exist globally ’in time’ if m ≥ p and blows up in finite

time if m < p and the initial energy is sufficiently negative. Vitillaro [16]
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extended the result in to situation when the damping is nonlinear and the

solution has positive initial energy. Recently, Yu [17] studied the same prob-

lem of Vittilaro with strongly damping term. He proved that the solution

exists globally if E(t) < d, m < p and blows up in finite time in unstable

set.

G.Li and al [11] considered the Petrovsky equation utt + ∆2u − ∆ut +

|ut|
m−2ut = |u|p−2u and proved the global existence of the solution under

conditions without any relation between m and p, and established an ex-

ponential decay rate. They also showed that the solution blows up in finite

time if p > m and the initial energy is less than the potential well depth.

Messaoudi in [14] studied the following problem:

utt − ∆u + a(1 + |ut|
m−2)ut = b|u|p−2u, x ∈ Ω, t ≥ 0

u(x, t) = 0, x ∈ ∂Ω

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where a, b > 0, p, m > 2. He showed that if the initial energy is negative,

then the solutions blow up in finite time.

In this work, we will prove that if the initial energy is positive, then the

solution of problem (1.1) − (1.3) blows up in finite time.

2. preliminaries

In this section we shall give some assumptions and notations which will

be used throughout this work.

H1) The elliptic operator A is defined as follows:

A(t)ϕ = −
n

∑

i,j=1

∂

∂xi

(

aij(x, t)
∂ϕ

∂xj

)

,

where aij ∈ C1(Ω× [0, ∞)) ∀1 ≤ i, j ≤ n is symmetric and there exists a

constant a0 > 0 such that :

a)
n

∑

i,j=1

aij(x, t)ξiξj ≥ a0|ξ|
2,

b)

n
∑

i,j=1

(

∂

∂t
aij(x, t)

)

ξiξj ≤ 0,

for all (x, t) ∈ Ω × (0, ∞) and ξ = (ξ1 . . . ξn) ∈ R
n.

H2) We assume that the function g(v) is increasing and g(v) ∈ C0(R) ∩
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C1(R∗). Furthermore, there exist two positive constants k0 and k1 such

that:

a) g(v)v ≥ k0|v|
m

b) |g(v)| ≤ k1|v|(1 + |v|m−2),

for all v ∈ R and 2 < m < ∞.

H3) The function f ∈ C0(R, R+), with the primitive

F (u) =

∫ u

0

f(t)dt,

satisfies

a) f(s)s ≥ pF (s),

b) |F (s)| ≤ c0|s|
p,

where s ∈ R, c0 > 0 and p > 2. A typical example of these functions is

f(u) = |u|p−2u.

Next we introduce some notations, which will be used in the sequel:

u(x, t) = u ;
∂u

∂t
= ut ;

∂2u

∂t2
= utt;

(u, v) =

∫

Ω

u(x)v(x)dx; ‖u‖Lr(Ω) = ‖u‖r ; 1 ≤ r ≤ ∞,

where Lr (Ω) is the Lebesgue space.

Remark. By using Poincaré’s inequality and the Sobolev embedding the-

orem. Then, there exists a constant C∗ depending on Ω, r only such that

∀u ∈ H1
0 (Ω), ‖u(t)‖r ≤ C∗ ‖∇u(t)‖2 , 2 ≤ r ≤

2n

n − 2
, n ≥ 3 (2.1)

3. Local existence of solutions

To allow for studying the local existence and blow up of solutions, we

proceed to obtain a variational formulation of the problem (1.1) − (1.3).

By multiplying equation (1.1) by v ∈ H1
0 (Ω), integrating over Ω and using

integration par parts, it is easy to verify that under the hypothesis (H1) the

problem (1.1) − (1.3) is equivalent to the following variational problem:

(utt, v) + a(u, v) + α(∇ut,∇v) + (g(ut), v) = β(f(u), v), ∀v ∈ H1
0 (Ω),

where

a(u, v) = (Au, v) =

n
∑

i,j=1

∫

Ω

aij(x, t)
∂u

∂xi

∂v

∂xj

dx. (3.1)
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By using the hypothesis (H1), we verify that the bilinear form a(., .) :

H1
0 (Ω) × H1

0 (Ω) −→ R is symmetric and continuous.

On the other hand, from H1a) for ξi =
∂u

∂xi

, we get

a(u, u) ≥ a0

∫

Ω

n
∑

i=1

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

2

dx = a0 ‖∇u‖2
2 , (3.2)

which implies that a(., .) is coercive.

Referring to [3] and [5], by using the precedent hypotheses we can demon-

strate the following theorem, which confirms the local existence and unique-

ness of a weak solution.

Theorem 3.1. Assume that H1a), H2 and H3 hold. Suppose that m ≥

2, 2 ≤ p ≤ 2
n − 1

n − 2
if n ≥ 3 and let u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω), then there

exists T > 0 such that the problem (1.1) − (1.3) has a unique local solution

u(t) having the following regularities :

u ∈ L∞
(

[0, T ) ; H1
0 (Ω)

)

,

ut ∈ L∞
(

[0, T ) ; L2(Ω)
)

∩ Lm (Ω × [0, T )) ∩ L2
(

[0, T ) ; H1(Ω)
)

.

4. Blow-up of solutions

In this section, we will establish our main blow-up result concerning the

problem (1.1) − (1.3). We set

λ0 =

(

a0

c0β
C−p

∗

)
1

p−2

, E0 = a0(
1

2
−

1

p
)λ2

0. (4.1)

We define the energy function associated to the solution u of the problem

(1.1) − (1.3) by

E(u(t), ut(t)) = E(t) =
1

2
‖ut(t)‖

2
2 +

1

2
a(u(t), u(t)) − β

∫

Ω

F (u)du, t ≥ 0

(4.2)

By multiplying equation (1.1) by ut, integrating over Ω and using integration

par parts. Then, under the stated assumptions (H1b) and (H2a), we obtain

the following result:
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Lemma 4.1. Let u(x, t) be a solution to the problem (1.1) − (1.3). Then

E(t) is decreasing function for t > 0 and

d

dt
E(t) = −α ‖∇ut(t)‖

2
2 −

∫

Ω

g(ut(t))ut(t)dx+ (4.3)

+

n
∑

i,j=1

∫

Ω

(

∂

∂t
aij(x, t)

)

∂u(t)

∂xi

∂u(t)

∂xj

dx.

By using arguments similar to those used by Vitillaro [16], we prove the

following Lemma, which is very important to obtain the blow-up result.

Lemma 4.2. Let u be a solution of (1.1) − (1.3) with initial data satisfy

E(0) < E0 ; ‖∇u0‖2 > λ0. (4.4)

Then there exists a constant λ1 > λ0 such that:

‖∇u(t)‖2 > λ1 ; ‖u(t)‖p > C∗λ1 , ∀t ∈ [0, T ] . (4.5)

Proof. By using (H3b), from (4.2) it follows

E(t) ≥
1

2
a(u(t), u(t)) −

c0β

p
‖u(t)‖p

p . (4.6)

Then, using (2.1) and (3.2) we have

E(t) ≥
a0

2
‖∇u(t)‖2

2 −
c0β

p
Cp

∗
‖∇u(t)‖p

2 = Q(‖∇u(t)‖2), t ≥ 0

then

• Q(s) has a single maximum value E0 = Q(λ0) at λ0,

• Q(s) is strictly increasing on [0, λ0),

• Q(s) is strictly decreasing on (λ0, ∞) and Q(s) → −∞ as s → +∞.

Therefore, since E(0) < E0, there exists λ1 > λ0 such that Q(λ1) = E(0).

If we set λ2 = ‖∇u0‖2, then by (4.6) we have Q(λ2) ≤ E(0) = Q(λ1), which

implies that λ2 ≥ λ1.

To establish ‖∇u(t)‖2 > λ1, we suppose by contradiction that ‖∇u(t0)‖2 <

λ1, for some t0 > 0 and by the continuity of ‖∇u(.)‖2 we can chose t0 such

that ‖∇u(t0)‖2 > λ0. Again the use of (4.6) leads to

E(t0) ≥ Q (‖∇u(t0)‖) > Q(λ1) = E(0).

This is impossible since E(t) ≤ E(0), for all t ≥ 0.

To prove ‖u(t)‖p > C∗λ1, we exploit (4.2) and (H3b) to see

1

2
a(u(t), u(t)) −

c0β

p
‖u(t)‖p

p ≤ E(t) ≤ E(0).
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Then
c0β

p
‖u(t)‖p

p ≥
a0

2
‖∇u(t)‖2

2 − E(0)

≥
a0

2
λ2

1 − Q(λ1) =
c0β

p
Cp

∗
λp

1.

�

Referring to [13], we will show the following theorem, which permit us

to confirm that the solution of the problem (1.1) − (1.3) blows up in finite

time.

Theorem 4.3. Suppose that

2 ≤ m < p ≤ 2
n − 1

n − 2
, n ≥ 3 (4.7)

Then any solution of (1.1) − (1.3), with initial data satisfying (4.4) blows

up at finite time i.e., there exists T ∗ < +∞ such that

lim
t→T ∗−

[

‖u(t)‖p

p + ‖∇u(t)‖2
2 + H(t) + ‖ut(t)‖

2
2

]

= +∞.

Proof. By contradiction, we suppose that the solution of the problem (1.1)−

(1.3) is global, then for every fixed T > 0 there exists a constant C such

that

‖u(t)‖p

p + ‖∇u(t)‖2
2 + H(t) + ‖ut(t)‖

2
2 ≤ C ∀t ∈ [0, T ] . (4.8)

We set

H(t) = E0 − E(t), ∀t ∈ [0, T ] . (4.9)

By Lemma 4.1, we deduce that H ′(t) ≥ 0. Thus by (4.4), we obtain

H(t) ≥ H(0) = E0 − E(0) > 0. (4.10)

From (4.9), (4.2) and (H3b), we get

H(t) ≤ E0 −
a0

2
‖∇u(t)‖2

2 +
c0β

p
‖u(t)‖p

p .

Then, from Lemma 4.2 it follows

H(t) ≤ E0 −
a0

2
λ2

0 +
c0β

p
‖u(t)‖p

p .

Hence

0 < H(0) ≤ H(t) ≤
c0β

p
‖u(t)‖p

p , ∀t ∈ [0, T ] . (4.11)

For ε small to be chosen later, we then define the following auxiliary func-

tion:

G(t) = H1−σ(t) + ε

∫

Ω

ut(t)u(t)dx +
εα

2
‖∇u(t)‖2

2 , (4.12)
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where

0 < σ ≤ min

{

p − 2

2p
,

p − m

p(m − 1)

}

. (4.13)

Let us remark that G is a small perturbation of the energy.

By taking the time derivation of (4.12) and using a variational formulation,

we obtain that

d

dt
G(t) = (1 − σ)H−σ(t)Ht(t) + ε ‖ut(t)‖

2
2 − εa(u(t), u(t))+ (4.14)

+ εβ

∫

Ω

f(u(t))u(t)dx − ε

∫

Ω

g(ut(t))u(t)dx.

By using (4.2), (H3) and (4.9) from (4.14) we deduce that :

d

dt
G(t) ≥ (1 − σ)H−σ(t)Ht(t) + ε

(p

2
+ 1

)

‖ut(t)‖
2
2 + εpH(t) (4.15)

+ ε
(p

2
− 1

)

a(u(t), u(t)) − ε

∫

Ω

g(ut(t))u(t)dx − εpE0.

Using the assumption (H2b), we get
∣

∣

∣

∣

∫

Ω

g(ut(t))u(t)dx

∣

∣

∣

∣

≤ k1

∫

Ω

|ut(t)||u(t)|dx + k1

∫

Ω

|ut(t)|
m−1|u(t)|dx.

Then we exploit the following Young’s inequality :

XY ≤
δr

r
Xr +

δ−s

s
Y s, X, Y ≥ 0, δ > 0,

1

r
+

1

s
= 1,

with r = m and s = m
m−1

to get

k1

∫

Ω

|ut(t)|
m−1|u(t)|dx ≤ k1

δm

m
‖u(t)‖m

m + k1
m − 1

m
δ−

m−1
m ‖ut(t)‖

m

m , (4.16)

for all positive constant δ.

By using Holder’s inequality and (2.1) we get

k1

∫

Ω

|ut(t)||u(t)|dx ≤ k1c(λ)C2
∗
‖∇u(t)‖2

2 + k1c1(λ) ‖ut(t)‖
2
2 , (4.17)

where c(λ), c1(λ) are positive constants.

Inserting (4.16), (4.17) and (3.2) in (4.15), we arrive at

d

dt
G(t) ≥ (1 − σ)H−σ(t)Ht(t) + εpH(t) − εpE0 − εk1

δm

m
‖u(t)‖m

m (4.18)

− εk1
m − 1

m
δ−

m−1
m ‖ut(t)‖

m

m + ε
(p

2
+ 1 − k1c1(λ)

)

‖ut(t)‖
2
2 +

+ ε
(

a0(
p

2
− 1) − k1c(λ)C2

∗

)

‖∇u(t)‖2
2 .
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We observe that

a0

(p

2
− 1

)

‖∇u(t)‖2
2 − pE0 = a0

(p

2
− 1

) λ2
1 − λ2

0

λ2
1

‖∇u(t)‖2
2 +

+ a0

(p

2
− 1

)

λ2
0

‖∇u(t)‖2
2

λ2
1

− pE0,

where λ1 is given in Lemma 4.2. From (4.5), it follows:

a0

(p

2
− 1

)

‖∇u(t)‖2
2 − pE0 ≥ C1 ‖∇u(t)‖2

2 + C2, (4.19)

where C1 = a0(
p

2
− 1)

λ2
1 − λ2

0

λ2
1

, using Lemma 4.2, we have C1 > 0 and by

(4.9), we see that C2 = a0(
p

2
− 1)λ2

0 − pE0 > 0.

Since Ht(t) ≥ k0 ‖ut‖
m

m and by (4.19), we get

d

dt
G(t) ≥

(

(1 − σ)H−σ(t) − ε
k1

k0

m − 1

m
δ−

m−1
m

)

Ht(t) + εpH(t)+

+ ε
(p

2
+ 1 − k1c1(λ)

)

‖ut(t)‖
2
2 + ε

(

C1 − k1c(λ)C2
∗

)

‖∇u(t)‖2
2 −

− εk1
δm

m
‖u(t)‖m

m .

At this point we choose δ so that δ−
m−1

m = MH−σ(t), for M a large constant

to be determined later, and substituting in the last inequality, we obtain

d

dt
G(t) ≥

(

(1 − σ) − ε
k1

k0

m − 1

m
M

)

H−σ(t) + εpH(t)Ht(t)+ (4.20)

+ ε
(p

2
+ 1 − k1c1(λ)

)

‖ut(t)‖
2
2 + ε

(

C1 − k1c(λ)C2
∗

)

‖∇u(t)‖2
2 +

− ε
k1

m
M1−mHσ(m−1)(t) ‖u(t)‖m

m .

Since p > m, we have

∫

Ω

|u(t)|mdx ≤ C3

[
∫

Ω

|u(t)|pdx

]
m

p

,

where C3 is a positive constant depending on Ω only.

We also have from (4.11)

Hσ(m−1)(t)

∫

Ω

|u(t)|mdx ≤ C3

(

c0β

p

)σ(m−1) [
∫

Ω

|u(t)|pdx

]σ(m−1)+ m

p

.

Exploiting the following algebraic inequality:

zτ ≤ z + 1 ≤

(

1 +
1

d

)

(z + d), ∀z ≥ 0, 0 < τ ≤ 1, d ≥ 0,
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with z = ‖u(t)‖p

p , e = 1 +
1

H(0)
, d = H(0) and τ = σ(m − 1) + m

p
, then

the condition (4.13) implies that 0 < τ ≤ 1 and therefore,

[
∫

Ω

|u(t)|pdx

]σ(m−1)+ m

p

≤ e
(

‖u(t)‖p

p + H(0)
)

(4.21)

≤ e
(

‖u(t)‖p

p + H(t)
)

, ∀t ∈ [0, T ] .

Inserting the estimation (4.21) into (4.20) we have

d

dt
G(t) ≥

(

(1 − σ) − ε
k1

k0

m − 1

m
M

)

H−σ(t)Ht(t)+ (4.22)

+ ε
(p

2
+ 1 − k1c1(λ)

)

‖ut(t)‖
2 + ε

(

C1 − k1c(λ)C2
∗

)

‖∇u(t)‖2
2 +

+ ε

[

pH(t) − e
k1

m
M1−mC3

(

c0β

p

)σ(m−1)
(

‖u(t)‖p

p + H(t)
)

]

.

At this point we choose λ > 0, (it is the case where k1 max (c(λ), c1(λ)) <

min
(

1 + p

2
, C1

C2
∗

)

) such that

{

K1 =
(

p

2
+ 1 − k1c1(λ)

)

> 0,

K2 = (C1 − k1c(λ)C2
∗
) > 0,

and we can choose M >
[(

1
c0β

+ 1
p

)

ek1

m
C3)

]
1

m−1
(

c0β

p

)σ

so large enough so

that (4.22) becomes,

d

dt
G(t) ≥

(

(1 − σ) − ε
k1

k0

m − 1

m
M

)

H−σ(t)Ht(t)+ (4.23)

+ K1 ‖ut(t)‖
2 + K2 ‖∇u(t)‖2

2 + εK3

(

‖u(t)‖p

p + H(t)
)

.

Once M is fixed, we pick ε small enough such that

{

(1 − σ) − εk1

k0

m−1
m

M ≥ 0,

G(0) = H1−σ(0) + ε
∫

Ω
u1u0dx + εα

2
‖∇u0‖

2
2 > 0.

Then, from (4.23) we deduce that:

d

dt
G(t) ≥ Kε

[

H(t) + ‖∇u(t)‖2
2 + ‖u(t)‖p

p + ‖ut(t)‖
2
2

]

, (4.24)

where K = min (K1, K2, K3). Hence G(t) ≥ G(0) > 0, ∀t ∈ [0, T ].

Now we set r = 1
1−σ

, by (a + b)r ≤ 2r−1(ar + br) for all positive a, b and
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r > 1, we obtain on the other hand from (4.12),

Gr(t) ≤

(

H1−σ(t) + ǫ

∫

Ω

ut(t)u(t)dx +
εα

2
‖∇u(t)‖2

2

)r

(4.25)

≤ C4

(

H(t) +

(
∫

Ω

ut(t)u(t)dx

)r

+ ‖∇u(t)‖)2r
2

)

,

where C4 = 22(r−1) max
{

1, εr max
{

1, (α
2
)r

}}

.

For p > 2 and by using Holder’s and Young’s inequalities, we obtain
(

∫

Ω

u(t)ut(t)dx

)r

≤ ‖u(t)‖r

2 ‖ut(t)‖
r

2 ≤ C5

(

‖u(t)‖µr

p + ‖ut(t)‖
θr

2

)

, (4.26)

where 1
µ

+ 1
θ

= 1 and C5 depending on Ω, µ, θ only. We take θ = 2(1 − σ),

to get µr = 2
1−2σ

≤ p by (4.13).

Therefore (4.26) becomes
(

∫

Ω

u(t)ut(t)dx

)r

≤ C5

(

‖u(t)‖
2

1−2σ

p + ‖ut(t)‖
2
2

)

.

Again by using (4.13) and (4.21) we deduce
(

‖u(t)‖p

p

)
2

(1−2σ)p
≤ e

(

‖u(t)‖p

p + H(t)
)

≤ e
(

‖∇u(t)‖2
2 + ‖u(t)‖p

p + H(t)
)

,

so
(

∫

Ω

u(t)ut(t)dx

)r

≤ eC5

(

‖∇u(t)‖2
2 + ‖u(t)‖p

p + H(t) + ‖ut(t)‖
2
2

)

. (4.27)

From (4.8) and (4.10), we have

‖∇u(t)‖2r

2 ≤ C
1

1−σ ≤
C

1
1−σ

H(0)
H(t). (4.28)

It follows from (4.27), (4.28) and (4.25) that

Gr(t) ≤ C6

(

‖∇u(t)‖2
2 + ‖u(t)‖p

p + H(t) + ‖ut(t)‖
2
2

)

, ∀t ∈ [0, T ] , (4.29)

where C6 = C4

(

1 + eC5 + C
1

1−σ

H(0)

)

. Combining (4.29) and (4.24), we arrive

at
d

dt
G(t) ≥

εK

C6
G

1
1−σ (t), ∀t ∈ [0, T ] . (4.30)

A simple integration of (4.30) over (0, t) then yields

G
σ

1−σ (t) ≥
1

G
−σ

1−σ (0) − Kεσt/ [C6(1 − σ)]
, ∀t ∈ [0, T ] . (4.31)

Therefore G(t) blows up in a time

T ∗ ≤
C6(1 − σ)

KεσG
σ

1−σ (0)
,
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the estimate (4.31) is valid on [0, T ] for every fixed T > 0, then we can

choose T such that T ∗ < T . Furthermore, we get from (4.29) that

lim
t→T ∗−

‖∇u(t)‖2
2 + ‖u‖p

p + H(t) + ‖ut‖
2
2 = +∞,

which is in contradiction with (4.8). Thus, the solution of the problem (1.1)−

(1.3) blows up in finite time.

�

Remark. For E(0) < 0, we set H(t) = −E(t), instead of (4.9) and use

arguments similar to those used in the proof of Theorem 4.3 to deduce that

the solution blows up in finite time.
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Matematic, Tom XVI,(2009), 167-181.

[4] F. Gazzola and M. Squassina, Global solutions and finite time blow-up

for damped semilinear wave equations, Ann. I. H. Poincaré, 23, (2006),
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