Coexistence for a Resource-Based Growth Model with Two Resources ${ }^{1}$

Yijie Meng Yifu Wang
Department of Applied Mathematics, Beijing Institute of Technology,
Beijing 100081, P.R. China

Abstract

We investigate the coexistence of positive steady-state solutions to a parabolic system, which models a single species on two growth-limiting, non-reproducing resources in an un-stirred chemostat with diffusion. We establish the existence of a positive steady-state solution for a range of the parameter (m, n), the bifurcation solutions and the stability of bifurcation solutions. The proof depends on the maximum principle, bifurcation theorem and perturbation theorem.

Keywords: chemostat; coexistence; local bifurcation; maximum principle.

1 Introduction

Consider the following parabolic system

$$
\begin{array}{ll}
S_{t}=d_{1} S_{x x}-\operatorname{muf}(S, R), & 0<x<1, t>0, \\
R_{t}=d_{2} R_{x x}-\operatorname{nug}(S, R), & \tag{1.1}\\
u_{t}=d_{3} u_{x x}+u(m f(S, R)+\operatorname{cng}(S, R)), &
\end{array}
$$

with the boundary conditions

$$
\begin{align*}
& S_{x}(0, t)=-1, \quad R_{x}(0, t)=-1, \quad u_{x}(0, t)=0, \\
& S_{x}(1, t)+\gamma S(1, t)=0, \quad R_{x}(1, t)+\gamma R(1, t)=0, \quad u_{x}(1, t)+\gamma u(1, t)=0, \tag{1.2}
\end{align*}
$$

and initial conditions

$$
\begin{equation*}
S(x, 0)=S_{0}(x) \geq 0, \quad R(x, 0)=R_{0}(x) \geq 0, \quad u(x, 0)=u_{0}(x) \geq 0, \not \equiv 0, \tag{1.3}
\end{equation*}
$$

where $f(S, R)=S /(1+a S+b R), g(S, R)=R /(1+a S+b R), m>0$ is the maximal growth rate of species u on resource S in the absence of resource R, the constant n is defined similarly, constant c denotes the ratio of the growth yield constant of S and R. The constant $a>0$ and $b>0$ are the Michaelis-Menten constants, $\gamma>0$.

Since we are only concerned with the nonnegative solutions (S, R, u) of (1.1), we can redefine the response functions f, g for $S \leq 0, R \leq 0$ without affecting our results. The un-stirred chemostat with one resource has been considered by many authors in the past decade(see [1][2][3]). Just as pointed out in [4], the un-stirred chemostat with two resources is more realistic and thus of interest, and the system (1.1) with equal diffusion rates is investigated in paper [5]. Without the assumption of equal diffusion rates, we

[^0]obtain some estimates on the size of the coexistence region near a bifurcation point in the parameter space. The existence of positive steady-state solution of the system (1.1) is established by the maximum principle and the theorem of bifurcation, which appears in [6] to study the local solutions. The stability of bifurcation solutions is also studied via the perturbation theorem.

2 Extinction

In this section we use the maximum principle to establish conditions under which the species become extinct.

Lemma 2.1. The region ($S \geq 0, R \geq 0, u \geq 0$) is invariant.
Proof. Consider the nutrient equation

$$
\begin{aligned}
& S_{t}=d_{1} S_{x x}-m u f(S, R), \\
& S_{x}(0, t)=-1, \quad S_{x}(1, t)+\gamma S(1, t)=0, \quad S(x, 0)=S_{0}(x) \geq 0 .
\end{aligned}
$$

For the fixed $u, \bar{S}(x, t) \equiv 0$ is a solution of the differential equation above, $S(x, 0) \geq$ $\bar{S}(x, 0)$, and $-S_{x}(0, t)=1 \geq 0=\bar{S}_{x}(0)$. By the comparison theorem for the parabolic equation (for example see [7]), we can show that $S(x, t) \geq 0$ for all (x, t). Moreover, the boundary condition $S \not \equiv 0$ implies that $S(x, t)>0$ for $t>0$. Similarly, we can prove that $R(x, t)>0$ and $u(x, t)>0$ for all $t>0$, and thus the proof is completed.

Let $\lambda_{0}^{(i)}>0(i=1,2,3)$ be the principle eigenvalue of the following problem

$$
\begin{array}{ll}
d_{i} \phi_{x x}+\lambda \phi=0, & 0<x<1, \\
\phi_{x}(0)=0, \quad \phi_{x}(1)+\gamma \phi(1)=0 . &
\end{array}
$$

with the eigenfunction $\phi_{0}^{(i)}>0(i=1,2,3)$ on $[0,1]$.
Let $\bar{S}(x)$ be the unique positive solution of the following problem

$$
\begin{array}{ll}
S_{x x}=0, & 0<x<1, \\
S_{x}(0)=-1, & S_{x}(1)+\gamma S(1)=0 .
\end{array}
$$

The existence and uniqueness of $\bar{S}(x)$ is standard, and by the maximum principle it is easy to show that $\bar{S}>0$ on $[0,1]$.

Lemma 2.2. There are positive constants α_{i} and $K_{i}(i=1,2)$ such that $S(x, t) \leq$ $\bar{S}(x)+K_{1} e^{-\alpha_{1} t}, R(x, t) \leq \bar{S}(x)+K_{2} e^{-\alpha_{2} t}$, for all $x \in[0,1], t>0$.

Proof. Let $\omega(x, t)=S(x, t)-\bar{S}(x)$, then ω satisfies

$$
\begin{array}{ll}
\omega_{t} \leq d_{1} \omega_{x x}, & 0<x<1, t>0, \\
\omega_{x}(0, t)=0, & \omega_{x}(1, t)+\gamma \omega(1, t)=0, \\
t>0 .
\end{array}
$$

Then, by the comparison theorem, we have $\omega(x, t) \leq W(x, t)$, where $W(x, t)$ is the unique solution of the linear problem

$$
\begin{array}{ll}
W_{t}=d_{1} W_{x x}, & 0<x<1, t>0, \\
W_{x}(0, t)=0, \quad W_{x}(1, t)+\gamma W(1, t)=0, & \\
W(x, 0)=S(x, 0)-\bar{S}(x) . &
\end{array}
$$

In order to estimate W, let $0<\alpha_{1}<\lambda_{0}^{(1)}, W(x, t)=\phi_{0}^{(1)}(x) h(x, t) e^{-\alpha_{1} t}$. Then we have

$$
\begin{aligned}
& h_{t}=d_{1} h_{x x}+\frac{2 d_{1}}{\phi_{0}^{(1)}} \phi_{0 x}^{(1)} h_{x}+\left(\alpha_{1}-\lambda_{0}^{(1)}\right) h, \quad 0<x<1, t>0, \\
& h_{x}(0, t)=0, \quad h_{x}(1, t)=0, \\
& h(x, 0)=\frac{S(x, 0)-\bar{S}(x)}{\phi_{0}^{(1)}(x)} .
\end{aligned}
$$

The maximum principle ([7]) implies that

$$
|h(x, t)| \leq \max _{[0,1]} \frac{|S(x, 0)-\bar{S}(x)|}{\phi_{0}^{(1)}(x)}
$$

and this leads to

$$
S(x, t) \leq \bar{S}(x)+K_{1} e^{-\alpha_{1} t}, \quad x \in[0,1], \quad t>0
$$

for some constants $K_{1}>0$. Similarly result holds for R.
Lemma 2.3. Let (S, R, u) be a solution of system (1.1)-(1.3), and suppose that $\frac{m+c n}{\min (a, b)}<\lambda_{0}^{(3)}$. Then there are positive constants K, α such that $u(x, t) \leq K e^{-\alpha t}$.

Proof. Straightforward computation leads to

$$
u_{t}=d_{3} u_{x x}+u(m f(S, R)+c n g(S, R)) \leq d_{3} u_{x x}+\frac{m+c n}{\min (a, b)} u, \quad 0<x<1, t>0
$$

Let $V(x, t)$ be the unique solution of the following problem

$$
\begin{aligned}
& V_{t}=d_{3} V_{x x}+\frac{m+c n}{\min (a, b)} V, \quad 0<x<1, t>0, \\
& V_{x}(0, t)=0, \quad V_{x}(1, t)+\gamma V(1, t)=0, \\
& V(x, 0)=u(x, 0)
\end{aligned}
$$

By the comparison principle, we have $u(x, t) \leq V(x, t)$. Let $V(x, t)=\phi_{0}^{(3)}(x) h(x, t) e^{-\alpha t}$, where $\alpha>0$ is small enough so that $\alpha+\frac{m+c n}{\min (a, b)}-\lambda_{0}^{(3)}<0$. then

$$
\begin{aligned}
& h_{t}=d_{3} h_{x x}+\frac{2 d_{3}}{\phi_{0}^{(3)}} \phi_{0 x}^{(3)} h_{x}+\left(\alpha+\frac{m+c n}{\min (a, b)}-\lambda_{0}^{(3)}\right) h, \quad 0<x<1, t>0, \\
& h_{x}(0, t)=0, \quad h_{x}(1, t)=0, \\
& h(x, 0)=\frac{u(x, 0)}{\phi_{0}^{(3)}(x)} .
\end{aligned}
$$

As in the previous lemma, it follows that $|h(x, t)| \leq \max _{[0,1]} \frac{|u(x, 0)|}{\phi_{0}^{(3)}(x)}$ and the lemma follows.

3 Coexistence.

In this section we consider the coexistence of the positive steady-state solutions of the system (1.1). So we consider the elliptic system

$$
\begin{array}{ll}
d_{1} S_{x x}-\operatorname{muf}(S, R)=0, & 0<x<1, \\
d_{2} R_{x x}-\operatorname{nug}(S, R)=0, & \tag{3.1}\\
d_{3} u_{x x}+u(m f(S, R)+\operatorname{cng}(S, R))=0, &
\end{array}
$$

with the boundary conditions

$$
\begin{align*}
& S_{x}(0)=-1, \quad R_{x}(0)=-1, \quad u_{x}(0)=0, \\
& S_{x}(1)+\gamma S(1)=0, \quad R_{x}(1)+\gamma R(1)=0, \quad u_{x}(1)+\gamma u(1)=0 . \tag{3.2}
\end{align*}
$$

Let $z=\left(d_{1} S+c d_{2} R+d_{3} u\right) /\left(d_{1}+c d_{2}\right)$, then z satisfies

$$
\begin{align*}
& z_{x x}=0, \\
& z_{x}(0)=-1, z_{x}(1)+\gamma z(1)=0, \tag{3.3}
\end{align*}
$$

and we have $z=(1+\gamma) / \gamma-x$.
First we give some estimates about the nonnegative solution of (3.1)-(3.2). The similar proof can be found in $[4,8]$. We omit the detail here.

Lemma 3.1. Suppose that (S, R, u) is a nonnegative solution of (3.1)-(3.2), then $S>0, R>0$, and either $0<S<z, 0<R<z$ or $S=R=z$. Furthermore, $d_{1} S+c d_{2} R+d_{3} u=\left(d_{1}+c d_{2}\right) z$.

Let $s=z-S, r=z-R$, then by lemma 3.1, either $0<s, r<z$ or $s=r=0$, and

$$
\begin{array}{ll}
d_{1} d_{3} s_{x x}+m\left(d_{1} s+c d_{2} r\right) f(z-s, z-r)=0, & 0<x<1, \tag{3.4}\\
d_{2} d_{3} r_{x x}+n\left(d_{1} s+c d_{2} r\right) g(z-s, z-r)=0, & 0<x<1,
\end{array}
$$

with the boundary conditions

$$
\begin{align*}
& s_{x}(0)=0, \quad r_{x}(0)=0 \\
& s_{x}(1)+\gamma s(1)=0, \quad r_{x}(1)+\gamma r(1)=0 . \tag{3.5}
\end{align*}
$$

3.1. The special case of $d_{2} m=d_{1} n$

In this subsection, we consider the case of $d_{2} m=d_{1} n$ and discuss the existence of a positive solution of (3.4).

Let $\omega=s-r$, then ω satisfies

$$
\omega_{x x}-C(x) \omega=0,0<x<1, \quad \omega_{x}(0)=0, \quad \omega_{x}(1)+\gamma \omega(1)=0
$$

where $C(x)=m\left(d_{1} s+c d_{2} r\right) /\left(d_{1} d_{3}(1+a(z-s)+b(z-r))\right)$. It follows from the maximum principle that $\omega=0$, which leads to $s=r$ on $[0,1]$. Substituting $s=r$ into (3.4), we have

$$
\begin{align*}
& d_{1} d_{3} s_{x x}+m\left(d_{1}+c d_{2}\right) s f(z-s, z-s)=0, \quad 0<x<1 \tag{3.6}\\
& s_{x}(0)=0, s_{x}(1)+\gamma s(1)=0
\end{align*}
$$

Let $\lambda_{1}>0$ and $\phi_{1}>0$ be the principle eigenvalue and eigenfunction of the following problem, with ϕ normalized so that $\int_{0}^{1} f(z, z) \phi^{2} d x=1$

$$
\begin{equation*}
\phi_{x x}+\lambda_{1} f(z, z) \phi=0, \phi_{x}(0)=0, \quad \phi_{x}(1)+\gamma \phi(1)=0 . \tag{3.7}
\end{equation*}
$$

By the result in $[8,9]$, we have
Theorem 3.1. There exists a unique positive solution \bar{s} of (3.6), if and only if $m>d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, moreover $0<\bar{s}<z, \bar{s}$ is continuous with respect to $m \in$ $\left[d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right), \infty\right]$, and $\lim _{m \rightarrow\left(\frac{d d_{d} \lambda_{1}}{d_{1}+c d_{2}}\right)^{+}} \bar{s}=0$ uniformly in $(0,1), \lim _{m \rightarrow \infty} \bar{s}=z$ a.e. $x \in(0,1)$.

Clearly, if $m>d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, then $(\bar{S}, \bar{R}, \bar{u})=\left(z-\bar{s}, z-\bar{s},\left(d_{1}+c d_{2}\right) \bar{s} / d_{3}\right)$ is the unique positive steady-state solution of (3.1)-(3.2) in the case $d_{2} m=d_{1} n$.

3.2. The case of $d_{2} m \neq d_{1} n$

In this subsection, we discuss the existence and nonexistence of a positive solution of $(3.4)(3.5)$. First we give a basic estimate for (s, r).

Lemma 3.2. If $d_{2} m \geq d_{1} n$, then the solution (s, r) of (3.4)(3.5) satisfies $r \leq s \leq$ $\frac{d_{2} m}{d_{1} n} r$.

Proof. Let $\omega=s-r$, then

$$
\omega_{x x}-C(x) \omega \leq 0,0<x<1, \omega_{x}(0)=0, \omega_{x}(1)+\gamma \omega(1)=0,
$$

where $C(x)=n\left(d_{1} s+c d_{2} r\right) /\left(d_{2} d_{3}(1+a(z-s)+b(z-r))\right) \geq 0$. It follows from the maximum principle that $\omega \geq 0$, and thus $r \leq s$.

Again, let $\omega=d_{1} n s-d_{2} m r$, then

$$
\begin{aligned}
\omega_{x x} & =\frac{m n\left(d_{1} s+c d_{2} r\right)}{d_{3}}(g(z-s, z-r)-f(z-s, z-r)) \\
& =\frac{m n\left(d_{1} s+c d_{2} r\right)}{d_{3}(1+a(z-s)+b(z-r))}(s-r) \\
& \geq 0 \\
\omega_{x}(0) & =0, \quad \omega_{x}(1)+\gamma \omega(1)=0,
\end{aligned}
$$

it follows that $\omega \leq 0$, i.e. $s \leq \frac{d_{2} m}{d_{1} n} r$. Similarly, if $d_{2} m \leq d_{1} n$, then we have $s \leq r \leq \frac{d_{1} n}{d_{2} m} s$.
The following theorem shows that a positive solution of (3.4)(3.5) cannot exist if both m and n are too small.

Theorem 3.2. Suppose $m \leq d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$ and $n \leq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, then $(s, r)=(0,0)$ is the unique nonnegative solution of (3.4)(3.5).

Proof. If $m \leq d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$ and $n \leq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, and (s, r) is a nontrivial nonnegative solution of (3.4)(3.5). Then it follows from the maximum principle that
$s>0, r>0$. If $\frac{d_{1} n}{d_{2}} \leq m \leq \frac{d_{1} d_{3} \lambda_{1}}{d_{1}+c d_{2}}$, multiplying the first equation in (3.4) by s, integrating over $(0,1)$ and using Green formula, we find

$$
\begin{aligned}
d_{1} d_{3}\left(\int_{0}^{1} s_{x}^{2} d x+\gamma s^{2}(1)\right) & =m \int_{0}^{1}\left(d_{1} s+c d_{2} r\right) s f(z-s, z-r) d x \\
& \leq m\left(d_{1}+c d_{2}\right) \int_{0}^{1} s^{2} f(z, z) d x
\end{aligned}
$$

By the variational property of the principle eigenvalue, we have

$$
\int_{0}^{1} s_{x}^{2} d x+\gamma s^{2}(1) \geq \lambda_{1} \int_{0}^{1} s^{2} f(z, z) d x
$$

Hence $\left(d_{1} d_{3} \lambda_{1}-m\left(d_{1}+c d_{2}\right)\right) \int_{0}^{1} s^{2} f(z, z) d x \leq 0$, which leads to $s=0$, a contradiction. A similar result holds if $m \leq d_{1} n / d_{2}$. This completes the proof.

Thus if $m \leq d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$ and $n \leq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, then the washout solution $(z, z, 0)$ is the unique nontrivial nonnegative solution of (3.1)(3.2).

Theorem 3.3 Suppose $m \geq d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$ and $n \geq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$. Then there exists a positive solution of (3.4)(3.5).

Proof. It is easy to check that (3.4)(3.5) is a quasi-monotone increasing system. Let $(\bar{s}, \bar{r})=(z, z)$ and $(\underline{s}, \underline{r})=(\delta \phi, \delta \phi)$, where ϕ is the principle eigenfunction defined by (3.7) and $\delta>0$ is small enough. Obviously $(\bar{s}, \bar{r})=(z, z)$ is the upper solution of (3.4)(3.5). Again

$$
\begin{aligned}
& d_{1} \underline{s}_{x x}+m\left(\frac{d_{1} \underline{s}+c d_{2} \underline{r}}{d_{3}}\right) f(z-\underline{s}, z-\underline{r}) \\
= & \delta \phi\left(\left(\frac{m\left(d_{1}+c d_{2}\right)}{d_{3}}-d_{1} \lambda_{1}\right) f(z, z)-\frac{m\left(d_{1}+c d_{2}\right)}{d_{3}}(f(z, z)-f(z-\delta \phi, z-\delta \phi))\right) \\
\geq & \delta \phi\left(\left(\frac{m\left(d_{1}+c d_{2}\right)}{d_{3}}-d_{1} \lambda_{1}\right) \frac{1}{\gamma+a+b}-\frac{m\left(d_{1}+c d_{2}\right) \delta \phi}{d_{3}(1+(a+b)(z-\theta \delta \phi))^{2}}\right) \quad(0<\theta<1)
\end{aligned}
$$

as long as δ is sufficiently small, we have

$$
d_{1} \underline{s}_{x x}+m\left(\frac{d_{1} \underline{s}+c d_{2} \underline{r}}{d_{3}}\right) f(z-\underline{s}, z-\underline{r})>0
$$

Similarly we have

$$
d_{2} \underline{r}_{x x}+n\left(\frac{d_{1} \underline{s}+c d_{2} \underline{r}}{d_{3}}\right) g(z-\underline{s}, z-\underline{r})>0
$$

Thus, for sufficiently small $\delta>0$, the pair (\bar{s}, \bar{r}) and $(\underline{s}, \underline{r})$ are the ordered upper and lower solutions of (3.4)(3.5). From [7], there exists a solution (s, r) satisfies $(\delta \phi, \delta \phi) \leq$ $(s, r) \leq(z, z)$.

Theorem 3.4. Suppose that either $m>d_{3} \lambda_{1}, n \leq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$ or $m \leq$ $d_{1} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right), n>d_{3} \lambda_{1} / c$. Then there exists a positive solution of $(3.4)(3.5)$.

Proof. We consider the former case, the other case can be done similarly. Let $(\bar{s}, \bar{r})=$ (z, z) and $(\underline{s}, \underline{r})=(\delta \phi, 0)$, then

$$
\begin{aligned}
& d_{1} \underline{s}_{x x}+m\left(\frac{d_{1} \underline{s}+c d_{2} \underline{r}}{d_{3}}\right) f(z-\underline{s}, z-\underline{r}) \\
& \quad=\delta \phi\left(\left(\frac{m d_{1}}{d_{3}}-d_{1} \lambda_{1}\right) f(z, z)-\frac{m d_{1}}{d_{3}}(f(z, z)-f(z-\delta \phi, z))\right)
\end{aligned}
$$

For sufficiently small $\delta>0$, we note that (\bar{s}, \bar{r}) and $(\underline{s}, \underline{r})$ are the ordered upper and lower solution of $(3.4)(3.5)$. Hence there exists solution (s, r) of (3.4)(3.5) such that $(\delta \phi, 0) \leq(s, r) \leq(z, z)$. So $s>0$. It follows that $r>0$ from lemma 3.2. This completes the proof.

3.3. Bifurcation Theorem

Now, for fixed $n \leq d_{2} d_{3} \lambda_{1} /\left(d_{1}+c d_{2}\right)$, we treat m as a bifurcation parameter to obtain the local bifurcation which corresponds to the positive solution of (3.4)(3.5).

At first, we rewrite (3.4)(3.5) as

$$
\begin{array}{ll}
s_{x x}+m\left(\frac{d_{1} s+c d_{2} r}{d_{1} d_{3}}\right) f(z, z)+F_{1}(s, r)=0, & 0<x<1, \\
r_{x x}+n\left(\frac{d_{1} s+c d_{2} r}{d_{2} d_{3}}\right) g(z, z)+F_{2}(s, r)=0, & 0<x<1, \tag{3.8}
\end{array}
$$

with the same boundary conditions, where

$$
\begin{aligned}
& F_{1}(s, r)=m\left(\frac{d_{1} s+c d_{2} r}{d_{1} d_{3}}\right)(f(z-s, z-r)-f(z, z)), \\
& F_{2}(s, r)=n\left(\frac{d_{1} s+c d_{2} r}{d_{2} d_{3}}\right)(g(z-s, z-r)-g(z, z)) .
\end{aligned}
$$

Let K be the inverse operator of $-\frac{d^{2}}{d x^{2}}$, then

$$
\begin{array}{ll}
s-m K\left(\left(\frac{d_{1} s+c d_{2} r}{d_{1} d_{3}}\right) f(z, z)\right)-K F_{1}(s, r)=0, & 0<x<1, \\
r-n K\left(\left(\frac{d_{1} s+c d_{2} r}{d_{2} d_{3}}\right) g(z, z)\right)-K F_{2}(s, r)=0, & 0<x<1,
\end{array}
$$

Let $T(m, s, r)=\left(m K\left(\left(\frac{d_{1} s+c d_{2} r}{d_{1} d_{3}}\right) f(z, z)\right)+K F_{1}(s, r), n K\left(\left(\frac{d_{1} s+c d_{2} r}{d_{2} d_{3}}\right) g(z, z)\right)+K F_{2}(s, r)\right)$, and $G(m, s, r)=(s, r)-T(m, s, r)$. Then the zeros of $G(m, s, r)$ are the solutions of (3.4)(3.5).

Let $C_{B}^{1}[0,1]=\left\{u \in C^{1}[0,1]: u_{x}(0)=0, u_{x}(1)+\gamma u(1)=0\right\}$, endowed with the usual norm $\|\cdot\|$, and $X=C_{B}^{1}[0,1] \times C_{B}^{1}[0,1]$. Then we have the following theorem

Theorem 3.5. Suppose $n \leq \frac{d_{2} d_{3} \lambda_{1}}{d_{1}+c d_{2}}$. Then $\left(m_{0}, 0,0\right)$ is a bifurcation point of $G(m, s, r)=0$, and in the neighborhood of $\left(m_{0}, 0,0\right)$, part of the bifurcation branch corresponds to the positive solution of (3.4)(3.5), where $m_{0}=d_{3} \lambda_{1}-c n$.

Proof. Let $L(m, 0,0)=D G_{(s, r)}(m, 0,0)$ is the Frechet derivative of $G(m, s, r)$ with respect to (s, r) at $(0,0)$. Straightforward computation gives

$$
L\left(m_{0}, 0,0\right)(\omega, \chi)=\left(\omega-m_{0} K\left(\left(\frac{d_{1} \omega+c d_{2} \chi}{d_{1} d_{3}}\right) f(z, z)\right), \chi-n K\left(\left(\frac{d_{1} \omega+c d_{2} \chi}{d_{2} d_{3}}\right) g(z, z)\right)\right) .
$$

Then $L\left(m_{0}, 0,0\right)(\omega, \chi)=0$ leads to

$$
\begin{array}{ll}
\omega_{x x}+m_{0}\left(\frac{d_{1} \omega+c d_{2} \chi}{d_{1} d_{3}}\right) f(z, z)=0, & 0<x<1, \\
\chi_{x x}+n\left(\frac{d_{1} \omega+c d_{2} \chi}{d_{2} d_{3}}\right) g(z, z)=0, & 0<x<1, \\
\omega_{x}(0)=0, \quad \chi_{x}(0)=0, & \\
\omega_{x}(1)+\gamma \omega(1)=0, \quad \chi_{x}(1)+\gamma \chi(1)=0 . &
\end{array}
$$

Noting that $m_{0}=d_{3} \lambda_{1}-c n$ and $f(z, z)=g(z, z)$, we have

$$
\left(d_{1} \omega+c d_{2} \chi\right)_{x x}+\lambda_{1}\left(d_{1} \omega+c d_{2} \chi\right) f(z, z)=0
$$

so $d_{1} \omega+c d_{2} \chi=\phi$, and putting this into (3.9), we find

$$
\omega_{x x}+\frac{m_{0}}{d_{1} d_{3}} f(z, z) \phi=0, \quad \chi_{x x}+\frac{n}{d_{2} d_{3}} g(z, z) \phi=0 .
$$

It is easy to show that there exists a unique positive solution $\left(\omega_{1}, \chi_{1}\right)$ of the above problem. Moreover $\omega_{1} \geq \chi_{1}$ and $d_{1} \omega_{1}+c d_{2} \chi_{1}=\phi$. Hence the null space of $L\left(m_{0}, 0,0\right)$, $N\left(L\left(m_{0}, 0,0\right)\right)=\operatorname{spans}\left\{\left(\omega_{1}, \chi_{1}\right)\right\}$. This, $\operatorname{dim} N\left(L\left(m_{0}, 0,0\right)\right)=1$. Let $R\left(L\left(m_{0}, 0,0\right)\right)$ be the range of the operator $L\left(m_{0}, 0,0\right)$. If $\left(h_{1}, h_{2}\right) \in R\left(L\left(m_{0}, 0,0\right)\right)$, then there exists $(\Phi, \Psi) \in X$ satisfies

$$
\begin{array}{ll}
\Phi_{x x}+m_{0}\left(\frac{d_{1} \Phi+c d_{2} \Psi}{d_{1} d_{3}}\right) f(z, z)=h_{1 x x}, & 0<x<1, \\
\Psi_{x x}+n\left(\frac{d_{1} \Phi+c d_{2} \Psi}{d_{2} d_{3}}\right) g(z, z)=h_{2 x x}, & 0<x<1, \\
\Phi_{x}(0)=0, \quad \Psi_{x}(0)=0, \\
\Phi_{x}(1)+\gamma \Phi(1)=0, \quad \Psi_{x}(1)+\gamma \Psi(1)=0 .
\end{array}
$$

Thus, we find

$$
\left(d_{1} \Phi+c d_{2} \Psi\right)_{x x}+\lambda_{1}\left(d_{1} \Phi+c d_{2} \Psi\right) f(z, z)=\left(d_{1} h_{1}+c d_{2} h_{2}\right)_{x x},
$$

multiplying the above equation by ϕ, and integrating over $(0,1)$, shows

$$
-\int_{0}^{1} \lambda_{1} \phi\left(d_{1} h_{1}+c d_{2} h_{2}\right) d x=0
$$

which implies $R\left(L\left(m_{0}, 0,0\right)\right)=\left\{\left(h_{1}, h_{2}\right) \in X: \int_{0}^{1} \phi\left(d_{1} h_{1}+c d_{2} h_{2}\right) d x=0\right\}$ and $\operatorname{codim} R(L$ $\left.\left(m_{0}, 0,0\right)\right)=1$.

Now Let $L_{1}\left(m_{0}, 0,0\right)=D^{2} G_{m(s, r)}\left(m_{0}, 0,0\right)$, then

$$
L_{1}\left(m_{0}, 0,0\right)\left(m_{0}, 0,0\right)\left(\omega_{1}, \chi_{1}\right)=\left(-K\left(\frac{d_{1} \omega_{1}+c d_{2} \chi_{1}}{d_{1} d_{3}}\right) f(z, z), 0\right)
$$

It is easy to see that $L_{1}\left(m_{0}, 0,0\right)\left(m_{0}, 0,0\right)\left(\omega_{1}, \chi_{1}\right) \notin R\left(L\left(m_{0}, 0,0\right)\right)$. According to Theorem1.7 in [10], there exists a $\delta>0$ and a C^{1} function $(m(\tau), \omega(\tau), \chi(\tau)):(-\tau, \tau) \rightarrow R \times X$, such that $m(0)=m_{0}, \omega(0)=0, \chi(0)=0$ and $(m(\tau), s(\tau), r(\tau))=\left(m(\tau), \tau\left(\omega_{1}+\right.\right.$ $\left.\omega(\tau)), \tau\left(\chi_{1}+\chi(\tau)\right)\right)(|\tau|<\delta)$ satisfies $G(m(\tau), s(\tau), r(\tau))=0$. Point on the curve $\left\{\left(m(\tau), z-\tau\left(\omega_{1}+\omega(\tau)\right), z-\tau\left(\chi_{1}+\chi(\tau)\right)\right):|\tau|<\delta\right\}$ with $\tau>0$ corresponds to the positive solutions of (3.1)(3.2).

3.4. Stability of the Bifurcation Solution

In this section we shall determine the stability of the bifurcation solutions.
Lemma 3.3. 0 is a $i-$ simple eigenvalue of $L\left(m_{0}, 0,0\right)$.
Proof. Suppose $L\left(m_{0}, 0,0\right)=0$. From the proof of Theorem 3.5, we have $N\left(L\left(m_{0}, 0,0\right)\right)=$ $\operatorname{spans}\left\{\left(\omega_{1}, \chi_{1}\right)\right\}, \operatorname{codim} R\left(L\left(m_{0}, 0,0\right)\right)=\operatorname{dim} N\left(L\left(m_{0}, 0,0\right)\right)=1$. We say $i\left(\omega_{1}, \chi_{1}\right) \notin$ $R\left(L\left(m_{0}, 0,0\right)\right)$, otherwise

$$
\int_{0}^{1} f(z, z) \phi\left(d_{1} \omega_{1}+c d_{2} \chi_{1}\right) d x=0
$$

which is impossible. Thus we complete the proof of the lemma.
Let $L(m(\tau), s(\tau), r(\tau))$ be the linearized operator of (5.1) at $(m(\tau), s(\tau), r(\tau))$. Then the corollary 1.13 and Theorem 1.16 in[11] can be applied and we have the following lemma.

Lemma 3.4. There exist C^{1} function $m \rightarrow(\xi(m), U(m)), \tau \rightarrow(\eta(\tau), V(\tau))$ defined on the neighborhoods of m_{0} and 0 , respectively, into $R \times X$, such that $\left(\xi\left(m_{0}\right), U\left(m_{0}\right)\right)=$ $\left(0,\left(\omega_{1}, \chi_{1}\right)\right)=(\eta(0), V(0))$ and on these neighborhoods

$$
\begin{array}{ll}
L(m, 0,0) U(m)=\xi(m) U(m), & \left|m-m_{0}\right| \ll 1 \\
L(m(\tau), s(\tau), r(\tau)) V(\tau)=\eta(\tau) v(\tau), & |\tau| \ll 1 \tag{3.10}
\end{array}
$$

where $U(m)=\left(u_{1}(m), u_{2}(m)\right), V(\tau)=\left(v_{1}(\tau), v_{2}(\tau)\right)$, and $\xi^{\prime}\left(m_{0}\right) \neq 0, \eta(\tau)$ and $-\tau m^{\prime}(\tau) \xi^{\prime}\left(m_{0}\right)$ have the same sign if $\eta(\tau) \neq 0$.

Theorem 3.6 The differential $\xi^{\prime}\left(m_{0}\right)>0$.
Proof. By (3.10) we have

$$
\begin{align*}
& u_{1 x x}+m\left(\frac{d_{1} u_{1}+c d_{2} u_{2}}{d_{1} d_{3}}\right) f(z, z)=\xi(m) u_{1}, \quad 0<x<1, \\
& u_{2 x x}+n\left(\frac{d_{1} u_{1}+c d_{2} u_{2}}{d_{2} d_{3}}\right) g(z, z)=\xi(m) u_{2}, \tag{3.11}\\
& u_{1 x}(0)=0, \quad u_{2 x}(0)=0, \\
& u_{1 x}(1)+\gamma u_{1}(1)=0, \quad u_{2 x}(1)+\gamma u_{2}(1)=0 .
\end{align*}
$$

Clearly $, u_{1} \not \equiv 0, u_{2} \not \equiv 0$. Since $U(m)$ is continuous and $U\left(m_{0}\right)=\left(\omega_{1}, \chi_{1}\right), u_{1}(m)>0$, $u_{2}(m)>0$ for $\left|m-m_{0}\right| \ll 1$. By (3.11) we have

$$
\left(d_{1} u_{1}+c d_{2} u_{2}\right)_{x x}+\frac{m+c n}{d_{3}}\left(d_{1} u_{1}+c d_{2} u_{2}\right) f(z, z)=\xi(m)\left(d_{1} u_{1}+c d_{2} u_{2}\right) .
$$

Since $d_{1} u_{1}+c d_{2} u_{2}>0$, it follows that $\xi(m)$ is the principle eigenvalue of $L_{2}=\frac{d^{2}}{d x^{2}}+$ $\frac{m+c n}{d_{3}} f(z, z)$, and increases in m for $\left|m-m_{0}\right| \ll 1$. Again $\xi^{\prime}\left(m_{0}\right) \neq 0$, so we must have $\xi^{\prime}\left(m_{0}\right)>0$.

Theorem 3.7. The differential of $m(\tau)$ at $\tau=0$ satisfies

$$
m^{\prime}(0) \int_{0}^{1} \phi^{2} f(z, z) d x=\int_{0}^{1} \phi^{2} \frac{m_{0} \omega_{1}+c n \chi_{1}+\left(b m_{0}-a c n\right)\left(\omega_{1}-\chi\right) z}{(1+(a+b) z)^{2}} d x .
$$

Proof. Substitute $(m(\tau), s(\tau), r(\tau))$ into the equation of (3.4), divide by τ, differential with respect to τ, and set $\tau=0$, this gives

$$
\begin{aligned}
& d_{1} \omega^{\prime}(0)_{x x}+m^{\prime}(0)\left(\frac{d_{1} \omega_{1}+c d_{2} \chi_{1}}{d_{3}}\right) f(z, z)+m_{0}\left(\frac{d_{1} \omega^{\prime}(0)+c d_{2} \chi^{\prime}(0)}{d_{3}}\right) f(z, z) \\
& +m_{0}\left(\frac{d_{1} \omega_{1}+c d_{2} \chi_{1}}{d_{3}}\right) \frac{-\omega_{1}+b\left(\chi_{1}-\omega_{1}\right) z}{(1+(a+b) z)^{2}}=0 \\
& d_{2} \chi^{\prime}(0)_{x x}+n\left(\frac{d_{1} \omega^{\prime}(0)+c d_{2} \chi^{\prime}(0)}{d_{3}}\right) f(z, z)+n\left(\frac{d_{1} \omega_{1}+c d_{2} \chi_{1}}{d_{3}}\right) \frac{-\chi_{1}+a\left(\omega_{1}-\chi_{1}\right) z}{(1+(a+b) z)^{2}}=0 .
\end{aligned}
$$

Now, multiplying the first equation by ϕ, adding to the second equation which is multiplied by $c \phi$, integrating over $(0,1)$ to get

$$
\begin{aligned}
& m^{\prime}(0) \int_{0}^{1} \frac{d_{1} \omega_{1}+c d_{2} \chi_{1}}{d_{3}} \phi f(z, z) d x \\
= & \int_{0}^{1} \frac{d_{1} \omega_{1}+c n \chi_{1}}{d_{3}} \phi \frac{m_{0} \omega_{1}+c n \chi_{1}+\left(b m_{0}-a c n\right)\left(\omega_{1}-\chi\right) z}{(1+(a+b) z)^{2}} d x
\end{aligned}
$$

i.e.

$$
m^{\prime}(0) \int_{0}^{1} \phi^{2} f(z, z) d x=\int_{0}^{1} \phi^{2} \frac{m_{0} \omega_{1}+c n \chi_{1}+\left(b m_{0}-a c n\right)\left(\omega_{1}-\chi\right) z}{(1+(a+b) z)^{2}} d x .
$$

Now, we have
Theorem 3.8. Suppose $n \leq \frac{d_{2} d_{3} \lambda_{1}}{d_{1}+c d_{2}}$ and $b m_{0} \geq a c n$. Then the bifurcation solutions defined by Theorem 3.5 are stable for $\tau>0$.

Proof. From Theorem 3.5 and $3.7, m^{\prime}(0)>0, m^{\prime}(\tau)>0$ for $|\tau| \ll 1$. By Lemma 3.4 and Theorem 3.6, we have $\eta(\tau)<0$ for $\tau>0$, which completes the proof of Theorem.

Acknowledgement: The research is supported by the National Natural Science Foundation of China $(19971004,10226013)$

Reference

[1] G. J. Butler, S. B. Hsu and P. Waltman, Coexistence of competing predators in a chemostat, J. Math. Biol., 17(1983),133-151.
[2] H. L. Smith and P. Waltman, The theory of the chemostat, Cambridge Univ. Press, Cambridge, UK, 1995.
[3] H. L. Smith and X. Q. Zhao, Microbial Growth in a plug flow reactor with wall adherence and cell motility, J. Math. Anal. and Appl., 241(2000),134-155.
[4] J. W-H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput., 32(1989), 169-183.
[5] J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Diff. Eqns., 172(2001),300-332.
[6] J. Smoller, Shock waves and reaction-diffusion equation, Springer-Verlag, New York,1983.
[7] Q. Ye and Z. Li, Introduction to reaction-diffusion equations, Science Press, Beijing, 1990.
[8] J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39(2000), 817-835.
[9] J. H. Wu, Coexistence state of the competition in the chemostat, PH.D.thesis,Xi'an Jiaotong University, 1997.
[10] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalue, J. Function Anal., 8(1971), 321-340.
[11] M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52(1973), 161-180.

[^0]: ${ }^{1}$ Research supported by the NSF of China(Grant \# 19971004, 10226013)

