Coexistence for a Resource-Based Growth Model with Two Resources 1

Yijie Meng Yifu Wang Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China

Abstract

We investigate the coexistence of positive steady-state solutions to a parabolic system, which models a single species on two growth-limiting, non-reproducing resources in an un-stirred chemostat with diffusion. We establish the existence of a positive steady-state solution for a range of the parameter (m, n), the bifurcation solutions and the stability of bifurcation solutions. The proof depends on the maximum principle, bifurcation theorem and perturbation theorem.

Keywords: chemostat; coexistence; local bifurcation; maximum principle.

1 Introduction

Consider the following parabolic system

$$S_{t} = d_{1}S_{xx} - muf(S, R), \qquad 0 < x < 1, t > 0,$$

$$R_{t} = d_{2}R_{xx} - nug(S, R), \qquad (1.1)$$

$$u_{t} = d_{3}u_{xx} + u(mf(S, R) + cng(S, R)),$$

with the boundary conditions

$$S_x(0,t) = -1, \quad R_x(0,t) = -1, \quad u_x(0,t) = 0, \\ S_x(1,t) + \gamma S(1,t) = 0, \quad R_x(1,t) + \gamma R(1,t) = 0, \quad u_x(1,t) + \gamma u(1,t) = 0,$$
(1.2)

and initial conditions

$$S(x,0) = S_0(x) \ge 0, \quad R(x,0) = R_0(x) \ge 0, \quad u(x,0) = u_0(x) \ge 0, \neq 0, \quad (1.3)$$

where f(S, R) = S/(1 + aS + bR), g(S, R) = R/(1 + aS + bR), m > 0 is the maximal growth rate of species u on resource S in the absence of resource R, the constant n is defined similarly, constant c denotes the ratio of the growth yield constant of S and R. The constant a > 0 and b > 0 are the Michaelis-Menten constants, $\gamma > 0$.

Since we are only concerned with the nonnegative solutions (S, R, u) of (1.1), we can redefine the response functions f, g for $S \leq 0, R \leq 0$ without affecting our results. The un-stirred chemostat with one resource has been considered by many authors in the past decade(see [1][2][3]). Just as pointed out in [4], the un-stirred chemostat with two resources is more realistic and thus of interest, and the system (1.1) with equal diffusion rates is investigated in paper [5]. Without the assumption of equal diffusion rates, we

¹Research supported by the NSF of China(Grant # 19971004, 10226013)

obtain some estimates on the size of the coexistence region near a bifurcation point in the parameter space. The existence of positive steady-state solution of the system (1.1) is established by the maximum principle and the theorem of bifurcation, which appears in [6] to study the local solutions. The stability of bifurcation solutions is also studied via the perturbation theorem.

2 Extinction

In this section we use the maximum principle to establish conditions under which the species become extinct.

Lemma 2.1. The region $(S \ge 0, R \ge 0, u \ge 0)$ is invariant. *Proof.* Consider the nutrient equation

For the fixed $u, \bar{S}(x,t) \equiv 0$ is a solution of the differential equation above, $S(x,0) \geq \bar{S}(x,0)$, and $-S_x(0,t) = 1 \geq 0 = \bar{S}_x(0)$. By the comparison theorem for the parabolic equation (for example see [7]), we can show that $S(x,t) \geq 0$ for all (x,t). Moreover, the boundary condition $S \not\equiv 0$ implies that S(x,t) > 0 for t > 0. Similarly, we can prove that R(x,t) > 0 and u(x,t) > 0 for all t > 0, and thus the proof is completed.

Let $\lambda_0^{(i)} > 0(i = 1, 2, 3)$ be the principle eigenvalue of the following problem

$$d_i \phi_{xx} + \lambda \phi = 0,$$
 $0 < x < 1$
 $\phi_x(0) = 0, \quad \phi_x(1) + \gamma \phi(1) = 0.$

with the eigenfunction $\phi_0^{(i)} > 0 (i = 1, 2, 3)$ on [0, 1].

Let $\overline{S}(x)$ be the unique positive solution of the following problem

$$S_{xx} = 0,$$

 $S_x(0) = -1,$ $S_x(1) + \gamma S(1) = 0.$
 $0 < x < 1,$

The existence and uniqueness of $\bar{S}(x)$ is standard, and by the maximum principle it is easy to show that $\bar{S} > 0$ on [0, 1].

Lemma 2.2. There are positive constants α_i and $K_i(i = 1, 2)$ such that $S(x, t) \leq \bar{S}(x) + K_1 e^{-\alpha_1 t}$, $R(x, t) \leq \bar{S}(x) + K_2 e^{-\alpha_2 t}$, for all $x \in [0, 1], t > 0$. *Proof.* Let $\omega(x, t) = S(x, t) - \bar{S}(x)$, then ω satisfies

$$\begin{aligned} \omega_t &\leq d_1 \omega_{xx}, & 0 < x < 1, t > 0, \\ \omega_x(0,t) &= 0, & \omega_x(1,t) + \gamma \omega(1,t) = 0, \quad t > 0. \end{aligned}$$

Then, by the comparison theorem, we have $\omega(x,t) \leq W(x,t)$, where W(x,t) is the unique solution of the linear problem

$$W_t = d_1 W_{xx}, \qquad 0 < x < 1, t > 0, W_x(0, t) = 0, \qquad W_x(1, t) + \gamma W(1, t) = 0, W(x, 0) = S(x, 0) - \bar{S}(x).$$

In order to estimate W, let $0 < \alpha_1 < \lambda_0^{(1)}$, $W(x,t) = \phi_0^{(1)}(x)h(x,t)e^{-\alpha_1 t}$. Then we have

$$h_t = d_1 h_{xx} + \frac{2d_1}{\phi_0^{(1)}} \phi_{0x}^{(1)} h_x + (\alpha_1 - \lambda_0^{(1)})h, \quad 0 < x < 1, t > 0,$$

$$h_x(0, t) = 0, \quad h_x(1, t) = 0,$$

$$h(x, 0) = \frac{S(x, 0) - \bar{S}(x)}{\phi_0^{(1)}(x)}.$$

The maximum principle ([7]) implies that

$$|h(x,t)| \le \max_{[0,1]} \frac{|S(x,0) - \bar{S}(x)|}{\phi_0^{(1)}(x)}$$

and this leads to

$$S(x,t) \le \overline{S}(x) + K_1 e^{-\alpha_1 t}, \ x \in [0,1], \ t > 0,$$

for some constants $K_1 > 0$. Similarly result holds for R.

Lemma 2.3. Let (S, R, u) be a solution of system (1.1)-(1.3), and suppose that $\frac{m+cn}{min(a,b)} < \lambda_0^{(3)}$. Then there are positive constants K, α such that $u(x,t) \leq Ke^{-\alpha t}$.

Proof. Straightforward computation leads to

$$u_t = d_3 u_{xx} + u(mf(S, R) + cng(S, R)) \le d_3 u_{xx} + \frac{m + cn}{min(a, b)}u, \quad 0 < x < 1, t > 0$$

Let V(x,t) be the unique solution of the following problem

$$V_t = d_3 V_{xx} + \frac{m + cn}{min(a,b)} V, \qquad 0 < x < 1, t > 0,$$

$$V_x(0,t) = 0, \quad V_x(1,t) + \gamma V(1,t) = 0,$$

$$V(x,0) = u(x,0).$$

By the comparison principle, we have $u(x,t) \leq V(x,t)$. Let $V(x,t) = \phi_0^{(3)}(x)h(x,t)e^{-\alpha t}$, where $\alpha > 0$ is small enough so that $\alpha + \frac{m+cn}{min(a,b)} - \lambda_0^{(3)} < 0$. then

$$h_t = d_3 h_{xx} + \frac{2d_3}{\phi_0^{(3)}} \phi_{0x}^{(3)} h_x + (\alpha + \frac{m+cn}{min(a,b)} - \lambda_0^{(3)})h, \quad 0 < x < 1, t > 0,$$

$$h_x(0,t) = 0, \quad h_x(1,t) = 0,$$

$$h(x,0) = \frac{u(x,0)}{\phi_0^{(3)}(x)}.$$

As in the previous lemma, it follows that $|h(x,t)| \le \max_{[0,1]} \frac{|u(x,0)|}{\phi_0^{(3)}(x)}$ and the lemma follows.

3 Coexistence.

In this section we consider the coexistence of the positive steady-state solutions of the system (1.1). So we consider the elliptic system

$$d_1 S_{xx} - muf(S, R) = 0, 0 < x < 1, d_2 R_{xx} - nug(S, R) = 0, (3.1) d_3 u_{xx} + u(mf(S, R) + cng(S, R)) = 0,$$

with the boundary conditions

$$S_x(0) = -1, \quad R_x(0) = -1, \quad u_x(0) = 0, \\ S_x(1) + \gamma S(1) = 0, \quad R_x(1) + \gamma R(1) = 0, \quad u_x(1) + \gamma u(1) = 0.$$
(3.2)

Let $z = (d_1S + cd_2R + d_3u)/(d_1 + cd_2)$, then z satisfies

$$z_{xx} = 0, 0 < x < 1, z_x(0) = -1, z_x(1) + \gamma z(1) = 0, (3.3)$$

and we have $z = (1 + \gamma)/\gamma - x$.

First we give some estimates about the nonnegative solution of (3.1)-(3.2). The similar proof can be found in [4,8]. We omit the detail here.

Lemma 3.1. Suppose that (S, R, u) is a nonnegative solution of (3.1)-(3.2), then S > 0, R > 0, and either 0 < S < z, 0 < R < z or S = R = z. Furthermore, $d_1S + cd_2R + d_3u = (d_1 + cd_2)z$.

Let s = z - S, r = z - R, then by lemma 3.1, either 0 < s, r < z or s = r = 0, and

$$d_1 d_3 s_{xx} + m(d_1 s + c d_2 r) f(z - s, z - r) = 0, \quad 0 < x < 1, d_2 d_3 r_{xx} + n(d_1 s + c d_2 r) g(z - s, z - r) = 0, \quad 0 < x < 1,$$
(3.4)

with the boundary conditions

$$s_x(0) = 0, \quad r_x(0) = 0, s_x(1) + \gamma s(1) = 0, \quad r_x(1) + \gamma r(1) = 0.$$
(3.5)

3.1. The special case of $d_2m = d_1n$

In this subsection, we consider the case of $d_2m = d_1n$ and discuss the existence of a positive solution of (3.4).

Let $\omega = s - r$, then ω satisfies

$$\omega_{xx} - C(x)\omega = 0, 0 < x < 1, \quad \omega_x(0) = 0, \quad \omega_x(1) + \gamma \omega(1) = 0,$$

where $C(x) = m(d_1s + cd_2r)/(d_1d_3(1 + a(z - s) + b(z - r)))$. It follows from the maximum principle that $\omega = 0$, which leads to s = r on [0, 1]. Substituting s = r into (3.4), we have

$$d_1 d_3 s_{xx} + m(d_1 + cd_2) s f(z - s, z - s) = 0, \quad 0 < x < 1, s_x(0) = 0, s_x(1) + \gamma s(1) = 0.$$
(3.6)

Let $\lambda_1 > 0$ and $\phi_1 > 0$ be the principle eigenvalue and eigenfunction of the following problem, with ϕ normalized so that $\int_0^1 f(z, z)\phi^2 dx = 1$

$$\phi_{xx} + \lambda_1 f(z, z)\phi = 0, \ \phi_x(0) = 0, \ \phi_x(1) + \gamma \phi(1) = 0.$$
(3.7)

By the result in [8,9], we have

Theorem 3.1. There exists a unique positive solution \bar{s} of (3.6), if and only if $m > d_1 d_3 \lambda_1 / (d_1 + c d_2)$, moreover $0 < \bar{s} < z, \bar{s}$ is continuous with respect to $m \in$ $\lim_{m \to (\frac{d_1 d_3 \lambda_1}{d_1 + c d_2})^+} \bar{s} = 0 \text{ uniformly in } (0, 1), \lim_{m \to \infty} \bar{s} = z \text{ a.e. } x \in (0, 1).$ $[d_1 d_3 \lambda_1 / (d_1 + c d_2), \infty]$, and

Clearly, if $m > d_1 d_3 \lambda_1 / (d_1 + c d_2)$, then $(\bar{S}, \bar{R}, \bar{u}) = (z - \bar{s}, z - \bar{s}, (d_1 + c d_2) \bar{s} / d_3)$ is the unique positive steady-state solution of (3.1)-(3.2) in the case $d_2m = d_1n$.

3.2. The case of $d_2m \neq d_1n$

In this subsection, we discuss the existence and nonexistence of a positive solution of (3.4)(3.5). First we give a basic estimate for (s, r).

Lemma 3.2. If $d_2m \ge d_1n$, then the solution (s,r) of (3.4)(3.5) satisfies $r \le s \le 1$ $\frac{d_2m}{d_1n}r.$

Proof. Let $\omega = s - r$, then

$$\omega_{xx} - C(x)\omega \le 0, 0 < x < 1, \\ \omega_x(0) = 0, \\ \omega_x(1) + \gamma\omega(1) = 0,$$

where $C(x) = n(d_1s + cd_2r)/(d_2d_3(1 + a(z - s) + b(z - r))) \ge 0$. It follows from the maximum principle that $\omega \geq 0$, and thus $r \leq s$.

Again, let $\omega = d_1 n s - d_2 m r$, then

$$\omega_{xx} = \frac{mn(d_1s + cd_2r)}{d_3}(g(z - s, z - r) - f(z - s, z - r))$$

= $\frac{mn(d_1s + cd_2r)}{d_3(1 + a(z - s) + b(z - r))}(s - r)$
 ≥ 0
 $\omega_x(0) = 0, \qquad \omega_x(1) + \gamma\omega(1) = 0,$

it follows that $\omega \leq 0$, i.e. $s \leq \frac{d_2m}{d_1n}r$. Similarly, if $d_2m \leq d_1n$, then we have $s \leq r \leq \frac{d_1n}{d_2m}s$.

The following theorem shows that a positive solution of (3.4)(3.5) cannot exist if both m and n are too small.

Theorem 3.2. Suppose $m \leq d_1 d_3 \lambda_1 / (d_1 + c d_2)$ and $n \leq d_2 d_3 \lambda_1 / (d_1 + c d_2)$, then (s,r) = (0,0) is the unique nonnegative solution of (3.4)(3.5).

Proof. If $m \leq d_1 d_3 \lambda_1 / (d_1 + c d_2)$ and $n \leq d_2 d_3 \lambda_1 / (d_1 + c d_2)$, and (s, r) is a nontrivial nonnegative solution of (3.4)(3.5). Then it follows from the maximum principle that

s > 0, r > 0. If $\frac{d_1n}{d_2} \le m \le \frac{d_1d_3\lambda_1}{d_1 + cd_2}$, multiplying the first equation in (3.4) by s, integrating over (0, 1) and using Green formula, we find

$$d_1 d_3 (\int_0^1 s_x^2 dx + \gamma s^2(1)) = m \int_0^1 (d_1 s + c d_2 r) s f(z - s, z - r) dx$$

$$\leq m (d_1 + c d_2) \int_0^1 s^2 f(z, z) dx.$$

By the variational property of the principle eigenvalue, we have

$$\int_{0}^{1} s_{x}^{2} dx + \gamma s^{2}(1) \ge \lambda_{1} \int_{0}^{1} s^{2} f(z, z) dx.$$

Hence $(d_1d_3\lambda_1 - m(d_1 + cd_2)) \int_0^1 s^2 f(z, z) dx \leq 0$, which leads to s = 0, a contradiction. A similar result holds if $m \leq d_1n/d_2$. This completes the proof.

Thus if $m \leq d_1 d_3 \lambda_1 / (d_1 + c d_2)$ and $n \leq d_2 d_3 \lambda_1 / (d_1 + c d_2)$, then the washout solution (z, z, 0) is the unique nontrivial nonnegative solution of (3.1)(3.2).

Theorem 3.3 Suppose $m \ge d_1 d_3 \lambda_1 / (d_1 + cd_2)$ and $n \ge d_2 d_3 \lambda_1 / (d_1 + cd_2)$. Then there exists a positive solution of (3.4)(3.5).

Proof. It is easy to check that (3.4)(3.5) is a quasi-monotone increasing system. Let $(\bar{s}, \bar{r}) = (z, z)$ and $(\underline{s}, \underline{r}) = (\delta\phi, \delta\phi)$, where ϕ is the principle eigenfunction defined by (3.7) and $\delta > 0$ is small enough. Obviously $(\bar{s}, \bar{r}) = (z, z)$ is the upper solution of (3.4)(3.5). Again

$$d_{1}\underline{s}_{xx} + m(\frac{d_{1}\underline{s} + cd_{2}\underline{r}}{d_{3}})f(z - \underline{s}, z - \underline{r})$$

$$= \delta\phi((\frac{m(d_{1} + cd_{2})}{d_{3}} - d_{1}\lambda_{1})f(z, z) - \frac{m(d_{1} + cd_{2})}{d_{3}}(f(z, z) - f(z - \delta\phi, z - \delta\phi)))$$

$$\geq \delta\phi((\frac{m(d_{1} + cd_{2})}{d_{3}} - d_{1}\lambda_{1})\frac{1}{\gamma + a + b} - \frac{m(d_{1} + cd_{2})\delta\phi}{d_{3}(1 + (a + b)(z - \theta\delta\phi))^{2}}) \quad (0 < \theta < 1)$$

as long as δ is sufficiently small, we have

$$d_1\underline{s}_{xx} + m(\frac{d_1\underline{s} + cd_2\underline{r}}{d_3})f(z - \underline{s}, z - \underline{r}) > 0.$$

Similarly we have

$$d_2\underline{r}_{xx} + n(\frac{d_1\underline{s} + cd_2\underline{r}}{d_3})g(z - \underline{s}, z - \underline{r}) > 0.$$

Thus, for sufficiently small $\delta > 0$, the pair (\bar{s}, \bar{r}) and $(\underline{s}, \underline{r})$ are the ordered upper and lower solutions of (3.4)(3.5). From [7], there exists a solution (s, r) satisfies $(\delta\phi, \delta\phi) \leq (s, r) \leq (z, z)$.

Theorem 3.4. Suppose that either $m > d_3\lambda_1$, $n \le d_2d_3\lambda_1/(d_1 + cd_2)$ or $m \le d_1d_3\lambda_1/(d_1 + cd_2)$, $n > d_3\lambda_1/c$. Then there exists a positive solution of (3.4)(3.5).

Proof. We consider the former case, the other case can be done similarly. Let $(\bar{s}, \bar{r}) = (z, z)$ and $(\underline{s}, \underline{r}) = (\delta \phi, 0)$, then

$$d_{1}\underline{s}_{xx} + m(\frac{d_{1}\underline{s} + cd_{2}\underline{r}}{d_{3}})f(z - \underline{s}, z - \underline{r}) = \delta\phi((\frac{md_{1}}{d_{3}} - d_{1}\lambda_{1})f(z, z) - \frac{md_{1}}{d_{3}}(f(z, z) - f(z - \delta\phi, z))).$$

For sufficiently small $\delta > 0$, we note that (\bar{s}, \bar{r}) and $(\underline{s}, \underline{r})$ are the ordered upper and lower solution of (3.4)(3.5). Hence there exists solution (s, r) of (3.4)(3.5) such that $(\delta\phi, 0) \leq (s, r) \leq (z, z)$. So s > 0. It follows that r > 0 from lemma 3.2. This completes the proof.

3.3. Bifurcation Theorem

Now, for fixed $n \leq d_2 d_3 \lambda_1 / (d_1 + c d_2)$, we treat *m* as a bifurcation parameter to obtain the local bifurcation which corresponds to the positive solution of (3.4)(3.5).

At first, we rewrite (3.4)(3.5) as

$$s_{xx} + m(\frac{d_1s + cd_2r}{d_1d_3})f(z, z) + F_1(s, r) = 0, \quad 0 < x < 1,$$

$$r_{xx} + n(\frac{d_1s + cd_2r}{d_2d_3})g(z, z) + F_2(s, r) = 0, \quad 0 < x < 1,$$
(3.8)

with the same boundary conditions, where

$$F_1(s,r) = m(\frac{d_1s + cd_2r}{d_1d_3})(f(z - s, z - r) - f(z, z)),$$

$$F_2(s,r) = n(\frac{d_1s + cd_2r}{d_2d_3})(g(z - s, z - r) - g(z, z)).$$

Let K be the inverse operator of $-\frac{d^2}{dx^2}$, then

$$s - mK((\frac{d_1s + cd_2r}{d_1d_3})f(z, z)) - KF_1(s, r) = 0, \quad 0 < x < 1,$$

$$r - nK((\frac{d_1s + cd_2r}{d_2d_3})g(z, z)) - KF_2(s, r) = 0, \quad 0 < x < 1,$$

Let $T(m, s, r) = (mK((\frac{d_1s + cd_2r}{d_1d_3})f(z, z)) + KF_1(s, r), nK((\frac{d_1s + cd_2r}{d_2d_3})g(z, z)) + KF_2(s, r)),$ and G(m, s, r) = (s, r) - T(m, s, r). Then the zeros of G(m, s, r) are the solutions of (3.4)(3.5).

Let $C_B^1[0,1] = \{u \in C^1[0,1] : u_x(0) = 0, u_x(1) + \gamma u(1) = 0\}$, endowed with the usual norm $\|\cdot\|$, and $X = C_B^1[0,1] \times C_B^1[0,1]$. Then we have the following theorem

Theorem 3.5. Suppose $n \leq \frac{d_2d_3\lambda_1}{d_1 + cd_2}$. Then $(m_0, 0, 0)$ is a bifurcation point of G(m, s, r) = 0, and in the neighborhood of $(m_0, 0, 0)$, part of the bifurcation branch corresponds to the positive solution of (3.4)(3.5), where $m_0 = d_3\lambda_1 - cn$.

Proof. Let $L(m, 0, 0) = DG_{(s,r)}(m, 0, 0)$ is the Frechet derivative of G(m, s, r) with respect to (s, r) at (0, 0). Straightforward computation gives

$$L(m_0, 0, 0)(\omega, \chi) = (\omega - m_0 K((\frac{d_1\omega + cd_2\chi}{d_1d_3})f(z, z)), \chi - nK((\frac{d_1\omega + cd_2\chi}{d_2d_3})g(z, z))).$$

Then $L(m_0, 0, 0)(\omega, \chi) = 0$ leads to

$$\omega_{xx} + m_0 \left(\frac{d_1 \omega + cd_2 \chi}{d_1 d_3}\right) f(z, z) = 0, \qquad 0 < x < 1,
\chi_{xx} + n \left(\frac{d_1 \omega + cd_2 \chi}{d_2 d_3}\right) g(z, z) = 0, \qquad 0 < x < 1,
\omega_x(0) = 0, \qquad \chi_x(0) = 0,
\omega_x(1) + \gamma \omega(1) = 0, \qquad \chi_x(1) + \gamma \chi(1) = 0.$$
(3.9)

Noting that $m_0 = d_3\lambda_1 - cn$ and f(z, z) = g(z, z), we have

$$(d_1\omega + cd_2\chi)_{xx} + \lambda_1(d_1\omega + cd_2\chi)f(z, z) = 0,$$

so $d_1\omega + cd_2\chi = \phi$, and putting this into (3.9), we find

$$\omega_{xx} + \frac{m_0}{d_1 d_3} f(z, z)\phi = 0, \quad \chi_{xx} + \frac{n}{d_2 d_3} g(z, z)\phi = 0.$$

It is easy to show that there exists a unique positive solution (ω_1, χ_1) of the above problem. Moreover $\omega_1 \geq \chi_1$ and $d_1\omega_1 + cd_2\chi_1 = \phi$. Hence the null space of $L(m_0, 0, 0)$, $N(L(m_0, 0, 0)) = spans\{(\omega_1, \chi_1)\}$. This, $dimN(L(m_0, 0, 0)) = 1$. Let $R(L(m_0, 0, 0))$ be the range of the operator $L(m_0, 0, 0)$. If $(h_1, h_2) \in R(L(m_0, 0, 0))$, then there exists $(\Phi, \Psi) \in X$ satisfies

$$\begin{split} \Phi_{xx} + m_0 &(\frac{d_1 \Phi + cd_2 \Psi}{d_1 d_3}) f(z, z) = h_{1xx}, & 0 < x < 1, \\ \Psi_{xx} + n &(\frac{d_1 \Phi + cd_2 \Psi}{d_2 d_3}) g(z, z) = h_{2xx}, & 0 < x < 1, \\ \Phi_x(0) &= 0, \quad \Psi_x(0) = 0, \\ \Phi_x(1) + \gamma \Phi(1) &= 0, \quad \Psi_x(1) + \gamma \Psi(1) = 0. \end{split}$$

Thus, we find

$$(d_1\Phi + cd_2\Psi)_{xx} + \lambda_1(d_1\Phi + cd_2\Psi)f(z,z) = (d_1h_1 + cd_2h_2)_{xx},$$

multiplying the above equation by ϕ , and integrating over (0, 1), shows

$$-\int_0^1 \lambda_1 \phi(d_1 h_1 + c d_2 h_2) dx = 0,$$

which implies $R(L(m_0, 0, 0)) = \{(h_1, h_2) \in X : \int_0^1 \phi(d_1h_1 + cd_2h_2)dx = 0\}$ and $codim R(L(m_0, 0, 0)) = 1$.

Now Let $L_1(m_0, 0, 0) = D^2 G_{m(s,r)}(m_0, 0, 0)$, then

$$L_1(m_0, 0, 0)(m_0, 0, 0)(\omega_1, \chi_1) = \left(-K\left(\frac{d_1\omega_1 + cd_2\chi_1}{d_1d_3}\right)f(z, z), 0\right)$$

It is easy to see that $L_1(m_0, 0, 0)(m_0, 0, 0)(\omega_1, \chi_1) \notin R(L(m_0, 0, 0))$. According to Theorem1.7 in [10], there exists a $\delta > 0$ and a C^1 function $(m(\tau), \omega(\tau), \chi(\tau)) : (-\tau, \tau) \to R \times X$, such that $m(0) = m_0$, $\omega(0) = 0$, $\chi(0) = 0$ and $(m(\tau), s(\tau), r(\tau)) = (m(\tau), \tau(\omega_1 + \omega(\tau)), \tau(\chi_1 + \chi(\tau)))(|\tau| < \delta)$ satisfies $G(m(\tau), s(\tau), r(\tau)) = 0$. Point on the curve $\{(m(\tau), z - \tau(\omega_1 + \omega(\tau)), z - \tau(\chi_1 + \chi(\tau))) : |\tau| < \delta\}$ with $\tau > 0$ corresponds to the positive solutions of (3.1)(3.2).

3.4. Stability of the Bifurcation Solution

In this section we shall determine the stability of the bifurcation solutions.

Lemma 3.3. 0 is a i - simple eigenvalue of $L(m_0, 0, 0)$.

Proof. Suppose $L(m_0, 0, 0) = 0$. From the proof of Theorem 3.5, we have $N(L(m_0, 0, 0)) =$ $spans\{(\omega_1, \chi_1)\}, \ codim R(L(m_0, 0, 0)) = \ dim N(L(m_0, 0, 0)) = 1$. We say $i(\omega_1, \chi_1) \notin R(L(m_0, 0, 0))$, otherwise

$$\int_0^1 f(z, z)\phi(d_1\omega_1 + cd_2\chi_1)dx = 0,$$

which is impossible. Thus we complete the proof of the lemma.

Let $L(m(\tau), s(\tau), r(\tau))$ be the linearized operator of (5.1) at $(m(\tau), s(\tau), r(\tau))$. Then the corollary 1.13 and Theorem 1.16 in[11] can be applied and we have the following lemma.

Lemma 3.4. There exist C^1 function $m \to (\xi(m), U(m)), \tau \to (\eta(\tau), V(\tau))$ defined on the neighborhoods of m_0 and 0, respectively, into $R \times X$, such that $(\xi(m_0), U(m_0)) = (0, (\omega_1, \chi_1)) = (\eta(0), V(0))$ and on these neighborhoods

$$L(m, 0, 0)U(m) = \xi(m)U(m), \qquad |m - m_0| << 1, L(m(\tau), s(\tau), r(\tau))V(\tau) = \eta(\tau)v(\tau), \quad |\tau| << 1$$
(3.10)

where $U(m) = (u_1(m), u_2(m)), V(\tau) = (v_1(\tau), v_2(\tau)), \text{ and } \xi'(m_0) \neq 0, \eta(\tau) \text{ and } -\tau m'(\tau)\xi'(m_0)$ have the same sign if $\eta(\tau) \neq 0$.

Theorem 3.6 The differential $\xi'(m_0) > 0$. *Proof.* By (3.10) we have

$$u_{1xx} + m(\frac{d_1u_1 + cd_2u_2}{d_1d_3})f(z, z) = \xi(m)u_1, \quad 0 < x < 1,$$

$$u_{2xx} + n(\frac{d_1u_1 + cd_2u_2}{d_2d_3})g(z, z) = \xi(m)u_2,$$

$$u_{1x}(0) = 0, \quad u_{2x}(0) = 0,$$

$$u_{1x}(1) + \gamma u_1(1) = 0, \quad u_{2x}(1) + \gamma u_2(1) = 0.$$

(3.11)

Clearly, $u_1 \neq 0$, $u_2 \neq 0$. Since U(m) is continuous and $U(m_0) = (\omega_1, \chi_1), u_1(m) > 0$, $u_2(m) > 0$ for $|m - m_0| << 1$. By (3.11) we have

$$(d_1u_1 + cd_2u_2)_{xx} + \frac{m+cn}{d_3}(d_1u_1 + cd_2u_2)f(z,z) = \xi(m)(d_1u_1 + cd_2u_2).$$

Since $d_1u_1 + cd_2u_2 > 0$, it follows that $\xi(m)$ is the principle eigenvalue of $L_2 = \frac{d^2}{dx^2} + \frac{d^2}{dx^2}$ $\frac{m+cn}{d_3}f(z,z)$, and increases in m for $|m-m_0| \ll 1$. Again $\xi'(m_0) \neq 0$, so we must have $\xi'(m_0) > 0.$

Theorem 3.7. The differential of $m(\tau)$ at $\tau = 0$ satisfies

$$m'(0) \int_0^1 \phi^2 f(z, z) dx = \int_0^1 \phi^2 \frac{m_0 \omega_1 + cn\chi_1 + (bm_0 - acn)(\omega_1 - \chi)z}{(1 + (a + b)z)^2} dx.$$

Proof. Substitute $(m(\tau), s(\tau), r(\tau))$ into the equation of (3.4), divide by τ , differential with respect to τ , and set $\tau = 0$, this gives

$$\begin{aligned} &d_1\omega'(0)_{xx} + m'(0)(\frac{d_1\omega_1 + cd_2\chi_1}{d_3})f(z,z) + m_0(\frac{d_1\omega'(0) + cd_2\chi'(0)}{d_3})f(z,z) \\ &+ m_0(\frac{d_1\omega_1 + cd_2\chi_1}{d_3})\frac{-\omega_1 + b(\chi_1 - \omega_1)z}{(1 + (a + b)z)^2} = 0 \\ &d_2\chi'(0)_{xx} + n(\frac{d_1\omega'(0) + cd_2\chi'(0)}{d_3})f(z,z) + n(\frac{d_1\omega_1 + cd_2\chi_1}{d_3})\frac{-\chi_1 + a(\omega_1 - \chi_1)z}{(1 + (a + b)z)^2} = 0. \end{aligned}$$

Now, multiplying the first equation by ϕ , adding to the second equation which is multiplied by $c\phi$, integrating over (0, 1) to get

$$m'(0) \int_0^1 \frac{d_1\omega_1 + cd_2\chi_1}{d_3} \phi f(z, z) dx$$

=
$$\int_0^1 \frac{d_1\omega_1 + cn\chi_1}{d_3} \phi \frac{m_0\omega_1 + cn\chi_1 + (bm_0 - acn)(\omega_1 - \chi)z}{(1 + (a + b)z)^2} dx$$

i.e.

$$m'(0) \int_0^1 \phi^2 f(z, z) dx = \int_0^1 \phi^2 \frac{m_0 \omega_1 + cn\chi_1 + (bm_0 - acn)(\omega_1 - \chi)z}{(1 + (a + b)z)^2} dx$$

Now, we have

Theorem 3.8. Suppose $n \leq \frac{d_2 d_3 \lambda_1}{d_1 + c d_2}$ and $bm_0 \geq acn$. Then the bifurcation solutions defined by Theorem 3.5 are stable for $\tau > 0$.

Proof. From Theorem 3.5 and 3.7, m'(0) > 0, $m'(\tau) > 0$ for $|\tau| << 1$. By Lemma 3.4 and Theorem 3.6, we have $\eta(\tau) < 0$ for $\tau > 0$, which completes the proof of Theorem.

Acknowledgement: The research is supported by the National Natural Science Foundation of China (19971004, 10226013)

Reference

[1] G. J. Butler, S. B. Hsu and P. Waltman, *Coexistence of competing predators in a chemostat*, J. Math. Biol., 17(1983),133-151.

[2] H. L. Smith and P. Waltman, *The theory of the chemostat*, Cambridge Univ. Press, Cambridge, UK,1995.

[3] H. L. Smith and X. Q. Zhao, *Microbial Growth in a plug flow reactor with wall adherence and cell motility*, J. Math. Anal. and Appl., 241(2000),134-155.

[4] J. W-H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput., 32(1989), 169-183.

[5] J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Diff. Eqns., 172(2001),300-332.

[6] J. Smoller, *Shock waves and reaction-diffusion equation*, Springer-Verlag, New York, 1983.

[7] Q. Ye and Z. Li, *Introduction to reaction-diffusion equations*, Science Press, Beijing, 1990.

[8] J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39(2000), 817-835.

[9] J. H. Wu, *Coexistence state of the competition in the chemostat*, PH.D.thesis,Xi'an Jiaotong University, 1997.

[10] M. G. Crandall and P. H. Rabinowitz, *Bifurcation from simple eigenvalue*, J. Function Anal., 8(1971), 321-340.

[11] M. G. Crandall and P. H. Rabinowitz, *Bifurcation, perturbation of simple eigen*values, and linearized stability, Arch. Rational Mech. Anal., 52(1973), 161-180.