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Abstract

In this paper, we consider a class of impulsive stochastic Volterra-Levin equations. By establishing a new

integral inequality, some sufficient conditions for the existence and global attractivity of periodic solution for

impulsive stochastic Volterra-Levin equations are given. Our results imply that under the appropriate linear

periodic impulsive perturbations, the impulsive stochastic Volterra-Levin equations preserve the original

periodic property of the nonimpulsive stochastic Volterra-Levin equations. An example is provided to show

the effectiveness of the theoretical results.
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1 Introduction

Since Itô introduced his stochastic calculus about 50 years ago, the theory of stochastic differential

equations has been developed very quickly [1–3]. It is now being recognized to be not only richer than

the corresponding theory of differential equations without stochastic perturbation but also represent a more

natural framework for mathematical modeling of many real-world phenomena. Now there also exists a

well-developed qualitative theory of stochastic differential equations [4–6]. However, not so much has been

developed in the direction of the periodically stochastic differential equations. Till now only a few papers

have been published on this topic [7–10]. In [10], Xu et al. showed that stochastic differential equations with

delay has a periodic solution if its solutions are uniformly bounded and point dissipativity.

Meanwhile, the theory of impulsive differential equations has attracted the interest of many researchers

in the past twenty years [11–15] since they provide a natural description of several real processes subject to

certain perturbations whose duration is negligible in comparison with the duration of the process. Such pro-

cesses are often investigated in various fields of science and technology such as physics, population dynamics,

ecology, biological systems, optimal control, etc. For details, see [11, 13] and references therein. In [16],

the stability of nonlinear stochastic differential delay systems with impulsive are studied by constructing an
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impulse control for a nonlinear stochastic differential delay system. Recently, the corresponding theory for

the existence of periodic solution for impulsive functional differential equations has been studied by several

authors [17–20].

To the best of our knowledge, there are no results on the existence of periodic solution for impulsive

stochastic differential equation, which is very important in both theories and applications and also is a very

challenging problem. Motivated by the above discussions, in this paper, we will focus on the existence and

global attractivity of periodic solution for impulsive stochastic Volterra-Levin equations [21, 22]. First we

will establish the equivalence between the solution of impulsive stochastic Volterra-Levin equations and that

of a corresponding nonimpulsive stochastic Volterra-Levin equations by the method given in [16]. Then, by

establishing a new integral inequality, some sufficient conditions for the existence and global attractivity of

periodic solution for impulsive stochastic Volterra-Levin equations are given. Our results imply that under

the appropriate linear periodic impulsive perturbations, the impulsive stochastic Volterra-Levin equations

preserve the original periodic property of the nonimpulsive stochastic Volterra-Levin equations. An example

is provided to show the effectiveness of the theoretical results.

2 Model description and preliminaries

For convenience, we introduce several notations and recall some basic definitions.

C(X,Y ) denotes the space of continuous mappings from the topological space X to the topological space

Y . Especially, let C
∆
= C([−τ, 0] , R) with a norm ‖ϕ‖ = sup

−τ≤s≤0
|ϕ (s)| and |·| is the Euclidean norm of a

vector x ∈ R, where τ is a positive constant.

PC(J,H) =
{

ψ(t) : J → H | ψ(t) is continuous for all but at most countable points s ∈ J

and at these points s ∈ J, ψ(s+) and ψ(s−) exist, ψ(s−) = ψ(s)
}

,

where J ⊂ R is an interval, H is a complete metric space, ψ(s+) and ψ(s−) denote the right-hand and

left-hand limit of the function ψ(s), respectively. Especially, let PC
∆
= PC ([−τ, 0] , R).

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e, it is right continuous and F0 contains all P-null sets). If x(t) is an R-valued stochastic

process on t ∈ [t0 − τ,∞), we let xt = x (t+ s) : −τ ≤ s ≤ 0, which is regarded as a PC-valued stochastic

process for t ≥ 0. Denote by PCb
F0

([−τ, 0] , R) (BCb
F0

([−τ, 0] , R)) the family of all bounded F0-measurable,

PC-valued (C-valued) random variables φ, satisfying ‖φ‖
p
Lp = sup

−τ≤s≤0
E|φ (s)|

p
< ∞ , where E[f ] means

the mathematical expectation of f .

For any φ ∈ C, we define [φ(t)]τ = sup−τ≤s≤0 |φ(t + s)|. In the following discussion, we always use the

notations

f = min
t∈[0,ω]

|f (t)| , f = max
t∈[0,ω]

|f (t)| ,

where f(t) is a continuous ω-periodic function, where ω > 0.

We consider impulsive stochastic Volterra-Levin equations as follows:
{

dx (t) = −(
∫ t

t−τ p (s− t)g (s, x (s)) ds)dt+ σ (t) dB (t) , t ≥ t0 ≥ 0, t 6= tk,

x
(

t+k
)

= bkx (tk) , t ≥ t0, t = tk,
(1)

with initial condition

xt0(s) = ϕ(s) ∈ PCb
F0

([−τ, 0], R) , s ∈ [−τ, 0], (2)

where p ∈ C ([−τ, 0] , R) , g ∈ C (R,R) and σ ∈ C ([t0,∞) , R) .
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Remark 2.1. Recently, Appleby [21] and Luo [22] studied the stability of Eq. (1) with g(t, x(t)) = g(x(t))

and bk = 1, k = 1, 2, · · · , by using fixed point theory, respectively. In [21,22], for the stability purpose, they

assume that
∫∞

t0
e4αsσ (s) ds < ∞ , or, σ2 (t) ln t → 0 as t → ∞. In this paper, we will assume that σ(t) is a

periodic function.

Throughout this paper, we make the following assumptions:

(H1) t0 < t1 < t2 < · · · are fixed impulsive points with lim
k→∞

tk = ∞.

(H2) {bk} is a real sequence and bk 6= 0, k = 1, 2, · · · .

(H3) I(t) =
∏

t0<tk<t
bk is a periodic function with period ω, k = 1, 2, · · · , and m ≤ |

∏

t0≤t<t0+ω

I (t) | ≤M.

(H4) g(t, x(t)) and σ(t) are periodic continuous functions with periodic ω for t ≥ t0.

(H5) g(t, x(t)) is Lipschitz-continuous with Lipschitz constant L. Without loss of generality, we also

assume that g (t, 0) = 0, xg(t, x) ≥ 0 and lim
x→0

g(t,x)
x = γ(t) <∞.

Define

h (t) :=

{

g(t,x(t))
x(t) , x (t) 6= 0,

γ(t), x (t) = 0

and
∫ 0

−τ p (s) ds = α, where α > 0.

Remark 2.2. Condition (H5) is similar as the conditions on g and p in [21, 22].

Remark 2.3. It follows from (H4) and (H5) that function h(t) is nonnegative integral function and satisfies

that sup
t≥t0

∫ t

t−τ
h (s)ds = H and lim

t→∞

∫ t

t0
h (s)ds = ∞.

Definition 2.1. A function x(t) defined on [t0−τ,∞) is said to be a solution of Eq. (1) with initial condition

(2) if

(a) x(t) is absolutely continuous on each interval (tk, tk+1], k = 0, 1, · · · ;

(b) For any tk, k = 1, 2, · · · , x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk);

(c) x(t) satisfies the differential equation of (1) for almost everywhere in [t0,∞)\tk and the impulsive

condtions for every t = tk, k = 1, 2, · · · .

(d) xt0 (s) = ϕ(s), s ∈ [−τ, 0].

Under Condition (H5), Eq. (1) can be rewritten as follows:







dx (t) = −αh (t)x (t) dt+ d
(

∫ 0

−τ
p (s)

∫ t

t+s
g (u, x (u)) duds

)

+ σ (t) dB (t) , t ≥ t0 ≥ 0, t 6= tk,

x
(

t+k
)

= bkx (tk) , t ≥ t0, t = tk.
(3)

Under the assumptions (H1) − (H5), we consider the following system:

dy (t) = −αh (t) y (t) dt+
∏

t0<tk<t

b−1
k d

(

∫ 0

−L

p (s)

∫ t

t+s

g

(

u,
∏

t0<tk<u

bky (u)

)

duds

)

+
∏

t0<tk<t

b−1
k σ (t) dB (t) , t ≥ t0, (4)

with initial condition

yt0(s) = ϕ(s), s ∈ [−τ, 0]. (5)

By a solution y(t) of (4) with initial condition (5), we mean an absolutely continuous function y(t) defined

on [t0,∞) satisfying (4) a.e. for t ≥ t0 and y(t) = ϕ(t) on [t0 − τ, t0].

The following lemma will be useful to prove our results. The proof is similar to that of Lemma 3.1 in [16].
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Lemma 2.1. Assume that (H1) − (H5) hold. Then

(i) if y(t) is a solution of (4) and (5), then x(t) =
∏

t0<tk<t
bky(t) is a solution of (3) and (2) on [t0 − τ,∞);

(ii) if x(t) is a solution of (3) and (2), then y(t) =
∏

t0<tk<t
b−1
k x(t) is a solution of (4) and (5) on [t0−τ,∞).

Proof. (i) Suppose that y(t) is a solution of (4) on [t0,∞), then we have for any t 6= tk, k = 1, 2, · · · ,

dx (t) =
∏

t0<tk<t

bkdy (t)

=
∏

t0<tk<t

bk

[

−αh (t) y (t) dt+
∏

t0<tk<t

b−1
k d

(

∫ 0

−L

p (s)

∫ t

t+s

g

(

u,
∏

t0<tk<u

bky (u)

)

duds

)]

+σ (t) dB (t)

= −αh (t)x (t) dt+ d

(
∫ 0

−τ

p (s)

∫ t

t+s

g (u, x (u)) duds

)

+ σ (t) dB (t) , t ≥ t0,

which implies that x(t) satisfies the first equation of (3) for almost everywhere in [t0,∞)\tk.

On the other hand, for every t = tk, k = 1, 2, · · · ,

x
(

t+k
)

= lim
t→t+

k

∏

t0<tj<t

bjy (t) =
∏

t0<tj≤tk

bjy (t)

and

x (tk) =
∏

t0<tj<tk

bjy (t) .

this means that, for every t = tk, k = 1, 2, · · · ,

x
(

t+k
)

= bkx (tk) .

Therefore, we arrive at a conclusion that x(t) is the solution of (3) corresponding to initial condition (2).

In fact, if y(t) is the solution of (4) with initial condition (5), then x (t) =
∏

t0<tk<t
bky (t) = y (t) = ϕ (t) on

[t0 − τ, t0].

(ii) Since x(t) is a solution of (3) and (2), so x(t) is absolutely continuous on each interval (tk, tk+1), k =

1, 2, · · · . Therefore, y (t) =
∏

t0<tk<t
b−1
k x (t) is absolutely continuous on (tk, tk+1), k = 1, 2, · · · . What’s more,

it follows that, for any t = tk, k = 1, 2, · · · ,

y
(

t+k
)

= lim
t→t+

k

∏

t0<tj<t

b−1
j x (t)

=
∏

t0<tj≤tk

b−1
j x

(

t+k
)

=
∏

t0<tj<tk

b−1
j x (tk)

= y (tk)

and

y
(

t−k
)

= lim
t→t−

k

∏

t0<tj<t

b−1
j x (t)

=
∏

t0<tj<tk

b−1
j x

(

t−k
)

= y (tk) ,
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which implies that y(t) is continuous and easy to prove absolutely continuous on [t0,∞). Now, similar

proof in the case (i), we can easily check that y (t) =
∏

t0<tk<t
b−1
k x (t) is the solution of (4) on [t0 − τ,∞)

corresponding to the initial condition (5).

From the above analysis, we know that the conclusion of Lemma 2.1 is true. The proof is complete.

We assume that for any ϕ ∈ PCb
F0

([−τ, 0] , R), there exists a unique solution of (3). Later on we shall

often denote the solution of (3) by x(t) = x(t, t0, ϕ), or xt (t0, ϕ) for all t0 and ϕ ∈ PCb
F0

([−τ, 0] , R). By

Lemma 2.1, for any ϕ ∈ PCb
F0

([−τ, 0] , R), there exists a unique solution of (4). We also shall often denote

the solution of (4) by y(t) = x(t, t0, ϕ), or yt (t0, ϕ) for all t0 and ϕ ∈ PCb
F0

([−τ, 0] , R).

Definition 2.2. A stochastic process xt(s) is said to be periodic with period ω if its finite dimensional distri-

butions are periodic with periodic ω, i.e., for any positive integer m and any moments of time t1, . . . , tm, the

joint distributions of the random variables xt1+kω
(s), . . . , xtm+kω

(s) are independent of k, (k = ±1,±2, · · · ).

Remark 2.4. By the definition of periodicity, if xt(s) is an ω-periodic stochastic process, then its mathematic

expectation and variance are ω-periodic [8, p49].

Definition 2.3. The set S ⊂ PCb
F0

([−τ, 0] , R) is called a global attracting set of (3), if for any initial value

ϕ ∈ PCb
F0

([−τ, 0] , R), we have

dist(xt(t0, ϕ), S) → 0 as t→ ∞,

where

dist (η, S) = inf
γ∈S

ρ (η, γ) for η ∈ PCb
F0

([−τ, 0] , R) ,

where ρ (·, ·) is any distance in PCb
F0

([−τ, 0] , R).

Definition 2.4. The periodic solution x(t, t0, ϕ) with the initial condition ϕ ∈ PCb
F0

([−τ, 0] , Rn) of Eq. (3)

is called globally attractive if for any solution x(t, t0, ϕ1) with the initial condition ϕ1 ∈ PCb
F0

([−τ, 0] , Rn)

of Eq. (3),

E|x (t, t0, ϕ) − x (t, t0, ϕ1)| → 0 as t→ ∞.

Remark 2.5. Similarly as Definition 2.2-2.4, the periodicity, attracting set and global attractivity of the

solution of (4) can be defined.

Remark 2.6. From Lemma 2.1, we can easily obtain that if the periodic solution of (4) is globally attractive,

then the periodic solution of (3) is also globally attractive.

Definition 2.5. The solutions yt (t0, ϕ) of (4) are said to be

(i) p-uniformly bounded, if for each α > 0, t0 ∈ R, there exists a positive constant θ = θ (α) which is

independent of t0 such that ‖ϕ‖p
LP ≤ α implies E [‖yt (t0, ϕ)‖p] ≤ θ, t ≥ t0;

(ii) p-point dissipative, if there is a constant N > 0, for any point ϕ ∈ BCb
F0

([−τ, 0] , Rn), there exists

T (t0, ϕ) such that

E [‖yt (t0, ϕ)‖
p
] ≤ N, t ≥ t0 + T (t0, ϕ) .

We recall the following result [10, Theorem 3.5] which lays the foundation for the existence of periodic

solution to Eq. (4).

Lemma 2.2. Under Conditions (H1)− (H5), assume that the solutions of Eq. (4) are p-uniformly bounded

and p-point dissipative for p > 2, then there is an ω-periodic solution.
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Lemma 2.3. Let u(t) ∈ C(R,R+) be a solution of the delay integral inequality
{

u (t) ≤ η1e
−δ

R

t

t0
h(v)dv

+ η2 [u (t)]τ + η3
∫ t

t0
e−δ

R

t

s
h(v)dvh(s) [u (s)]τ ds+ η4, t ≥ t0,

u (t) ≤ φ (t) , t ∈ [t0 − τ, t0] ,
(6)

where η1, η2, η3 and η4 are nonnegative constants, δ > 0, h(t) is a nonnegative integral function, sup
t≥t0

∫ t

t−τ
h (s)ds =

H . φ(s) ∈ C([−τ, 0], R+), s ∈ [−τ, 0]. If Υ = η2 + η3/δ < 1, then there are positive constants λ < δ and N

such that

u (t) ≤ Ne
−λ

R

t

t0
h(v)dv

+ (1 − Υ)
−1
η4, t ≥ t0, (7)

where λ and N are determined by

[φ(t0)]τ < N and
η1
N

+ eλHη2 + eλH η3
δ − λ

< 1. (8)

Proof. From the conditions η2 + η3/δ < 1 and φ(s) ∈ C([−τ, 0], R+), s ∈ [−τ, 0], by using continuity, we

obtain there exist positive constants λ and N such that (8) holds. In order to prove (7), we first prove for

any d > 1,

u (t) < dNe
−λ

R

t

t0
h(v)dv

+ (1 − Υ)−1η4, t ≥ t0. (9)

If (9) is not true, from the fact that [φ(t0)]τ ≤ N and u(t) is continuous, then there must be a t1 > t0

such that

u (t1) = dNe−λ
R t1

t0
h(v)dv + (1 − Υ)−1η4, (10)

u (t) ≤ dNe
−λ

R

t

t0
h(v)dv

+ (1 − Υ)
−1
η4, t0 − τ ≤ t ≤ t1. (11)

Hence, it follows from (6), (8) and (11) that

u (t1) ≤ η1e
−δ

R t1
t0

h(v)dv + η2[u (t1)]τ + η3

∫ t1

t0

e−δ
R

t1
s

h(v)dvh (s) [u (s)]τds+ η4

≤ η1e
−δ

R t1
t0

h(v)dv + η2

[

dNeλ
R t1

t1−τ
h(v)dve−λ

R t1
t0

h(v)dv + (1 − Υ)−1η4

]

+ η3

∫ t1

t0

e−δ
R

t1
s

h(v)dvh (s)
[

dNeλ
R

s

s−τ
h(v)dve

−λ
R

s

t0
h(v)dv

+ (1 − Υ)
−1
η4

]

ds+ η4

≤ η1e
−δ

R t1
t0

h(v)dv + η2

[

dNeλHe−λ
R t1

t0
h(v)dv + (1 − Υ)

−1
η4

]

+ η3

∫ t1

t0

e−δ
R

t1
s

h(v)dvh (s)
[

dNeλHe
−λ

R

s

t0
h(v)dv

+ (1 − Υ)
−1
η4

]

ds+ η4

≤ η1e
−λ

R t1
t0

h(v)dv + η2dNe
λHe−λ

R t1
t0

h(v)dv + η3

∫ t1

t0

e−δ
R

t1
s

h(v)dvh (s) dNeλHe
−λ

R

s

t0
h(v)dv

ds

+
(

η2 +
η3
δ

)

(1 − Υ)
−1
η4 + η4

<

(

η1
N

+ η2e
λH + η3e

λH

∫ t1

t0

e−(δ−λ)
R

t1
s

h(v)dvh (s) ds

)

dNe−λ
R t1

t0
h(v)dv + (1 − Υ)

−1
η4

≤

(

η1
N

+ η2e
λH +

η3
δ − λ

eλH

)

dNe−λ
R t1

t0
h(v)dv + (1 − Υ)

−1
η4

< dNe−λ
R t1

t0
h(v)dv + (1 − Υ)

−1
η4,

which contradicts to the equality (10). So (9) holds for all t ≥ t0. Letting d → 1 in (9), we have (7). The

proof is complete.

If η4 = 0, we can easily get the following corollary:

Corollary 2.1. Assume that all conditions of Lemma 2.3 hold and lim
t→∞

∫ t

t0
h (s)ds = ∞. Then all solutions

of the inequality (6) convergence to zero.
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3 Main results

To obtain the existence and global attractivity of periodic solution of Eq. (1), we introduce the following

assumption.

(H6) There exist positive constants p > 2 and I such that

Υ1 = 4p−1

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

+ 4p−1

(

L
M

αm

∫ 0

−τ

|p (s) s| ds

)p

< 1,

and
∫ ∞

t0

e−2α
R

t

s
h(u)duσ2 (s) ds ≤ I.

Theorem 3.1. Suppose that (H1)− (H6) hold, then the system (1) must have a periodic solution, which is

globally attractive and in the attracting set S = {ϕ ∈ PCb
F0

([−τ, 0] , R) | ‖ϕ‖p
Lp ≤ m(1 − Υ1)

−1J1}, where

J1 = 4p−1
(

1
m

)p
(p (p− 1) /2)

p/2
I

p

2 .

Proof. By the method of variation parameter, we have from (4) that for t ≥ t0,

y (t) = e
−α

R

t

t0
h(u)du

(

ϕ (0) −

∫ 0

−τ

p (s)

∫ t0

t0+s

g (u, y (u)) duds

)

+
∏

t0<tk<t

b−1
k

∫ 0

−τ

p (s)

∫ t

t+s

g

(

u,
∏

t0<tk<u

bky (u)

)

duds

−

∫ t

t0

e−α
R

t

v
h(u)duh(v)

∏

t0<tk<v

b−1
k

∫ 0

−τ

p (s)

∫ v

v+s

g

(

u,
∏

t0<tk<u

bky (u)

)

dudsdv

+

∫ t

t0

e−α
R

t

s
h(u)du

∏

t0<tk<s

b−1
k σ (s) dB (s)

= : I1(t) + I2(t) + I3(t) + I4(t). (12)

By using the inequality (a+ b+ c+ d)
p
≤ 4p−1 (ap + bp + cp + dp) for any positive real numbers a, b, c

and d, taking expectations, we find for all t ≥ t0,

E|y (t)|
p
≤ 4p−1E (|I1(t)|

p
+ |I2(t)|

p
+ |I3(t)|

p
+ |I4(t)|

p
) . (13)

We first evaluate the first term of the right-hand side as follows:

E|I1(t)|
p = E

∣

∣

∣

∣

e
−α

R

t

t0
h(u)du

(

ϕ (0) −

∫ 0

−τ

p (s)

∫ t0

t0+s

g (u, ϕ (u)) duds

)∣

∣

∣

∣

p

≤ 2p−1e
−αp

R

t

t0
h(u)du

(

E|ϕ (0)|
p

+ E

∣

∣

∣

∣

∫ 0

−τ

p (s)

∫ t0

t0+s

g (u, ϕ (u)) duds

∣

∣

∣

∣

p
)

≤ 2p−1e
−αp

R

t

t0
h(u)du

(

E|ϕ (0)|
p

+

(

L‖ϕ‖

∫ 0

−τ

|p (s) s| ds

)p
)

. (14)

As to the second term, by (H5) and (H3), we have

E|I2 (t)|
p

= E

∣

∣

∣

∣

∣

∏

t0<tk<t

b−1
k

∫ 0

−τ

p (s)

∫ t

t+s

g

(

u,
∏

t0<tk<u

bky (u)

)

duds

∣

∣

∣

∣

∣

p

≤ E

(

1

m

∫ 0

−τ

|p (s)|

∫ t

t+s

L

∣

∣

∣

∣

∣

∏

t0<tk<u

bky (u)

∣

∣

∣

∣

∣

duds

)p

≤ E

(

L
M

m

∫ 0

−τ

|p (s)|

∫ t

t+s

|y (u)| duds

)p

≤

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

[E|y (t)|
p
]τ . (15)
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As to the third term, by Hölder inequality, (H5) and (H3), we have

E|I3 (t)|
p

= E

∣

∣

∣

∣

∣

∫ t

t0

e−α
R

t

v
h(u)duh (v)

∏

t0<tk<v

b−1
k

∫ 0

−τ

p (s)

∫ v

v+s

g

(

u,
∏

t0<tk<u

bky (u)

)

dudsdv

∣

∣

∣

∣

∣

p

≤

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

E

[
∫ t

t0

e−α
R

t

v
h(u)duh (v) [y (v)]τdv

]p

=

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

E

[
∫ t

t0

(

e−α
R

t

v
h(u)duh (v)

)

p−1
p
(

e−α
R

t

v
h(u)duh (v)

)
1
p

[y (v)]τdv

]p

≤

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p(∫ t

t0

e−α
R

t

v
h(u)duh (v) dv

)p−1 ∫ t

t0

e−α
R

t

v
h(u)duh (v) [E |y (v)|p]τdv

≤ α

(

L
M

αm

∫ 0

−τ

|p (s) s|ds

)p ∫ t

t0

e−α
R

t

v
h(u)duh (v) [E |y (v)|

p
]τdv. (16)

As far as the last term is concerned, using an estimate on the Itô integral established in [24, Proposition

1.9], Hölder inequality, (H5) and (H3), we obtain:

E|I4 (t)|
p

= E

∣

∣

∣

∣

∣

∫ t

t0

e−α
R

t

s
h(u)du

∏

t0<tk<s

b−1
k σ (s) dB (s)

∣

∣

∣

∣

∣

p

≤

(

1

m

)p

E

∣

∣

∣

∣

∫ t

t0

e−α
R

t

s
h(u)duσ(s)dB (s)

∣

∣

∣

∣

p

≤

(

1

m

)p

cp

(
∫ t

t0

(

e−αp
R

t

s
h(u)du|σ(s)|p

)
2
p

ds

)

p

2

=

(

1

m

)p

cp

(
∫ t

t0

e−2α
R

t

s
h(u)duσ2(s)ds

)

p

2

≤

(

1

m

)p

cpI
p

2 , (17)

where cp = (p (p− 1) /2)
p/2
.

It follows from (13)-(17) that

E|y (t)|
p

≤ 8p−1e
−α

R

t

t0
h(u)du

(

E|ϕ (0)|
p

+

(

L ‖ϕ‖

∫ 0

−τ

|p (s) s| ds

)p
)

+ 4p−1

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

[E|y (t)|
p
]τ

+ 4p−1α

(

L
M

αm

∫ 0

−τ

|p (s) s| ds

)p ∫ t

t0

e−α
R

t

s
h(u)duh (s)E[|y (s)|p]τds

+ 4p−1

(

1

m

)p

cpI
p

2 . (18)

From Lemma 2.3 and Condition (H6), the solutions of (4) are p-uniformly bounded and S1 = {ϕ ∈

PCb
F0

([−τ, 0] , R) | ‖ϕ‖
p
Lp ≤ (1 − Υ1)

−1J1} is an attracting set of (4) (i.e., the family of all solutions of (4)

is p-point dissipative). From Lemma 2.2, then system (4) must exist an ω-periodic solution. It follows from

Lemma 2.1, (H3) and the equivalence between (1) and (3) that the system (1) must have an ω-periodic

solution.

In view of (ii) of Lemma 2.1 and (H3), it’s easy to see that

S = {ϕ ∈ PCb
F0

([−τ, 0] , R) |
1

m
‖ϕ‖

p
Lp ≤ (1 − Υ1)

−1J1}

i,e,

EJQTDE, 2012 No. 46, p. 8



S = {ϕ ∈ PCb
F0

([−τ, 0] , R) |‖ϕ‖
p
Lp ≤ m(1 − Υ1)

−1J1}

is an attracting set of (1)

Denote y∗(t) be the ω-periodic solution and y(t) be an arbitrary solution of Eq. (4).

We rewrite the Eq. (4) by

d (y (t) − y∗ (t)) = −αh (t) (y (t) − y∗ (t)) dt

+
∏

t0<tk<t

b−1
k d

(

∫ 0

−L

p (s)

∫ t

t+s

(

g

(

u,
∏

t0<tk<u

(bky (u)

)

−g

(

t,
∏

t0<tk<u

bky
∗ (u)

))

duds

)

, t ≥ t0. (19)

Proceeding as the proof of the existence of periodic solution, we have

E|y (t)|
p

≤ 6p−1e
−α

R

t

t0
h(u)du

(

E|ϕ (0)|
p

+

(

L ‖ϕ‖

∫ 0

−τ

|p (s) s| ds

)p
)

+ 3p−1

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p

[E|y (t)|
p
]τ

+ 3p−1

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)p ∫ t

t0

e−α
R

t

s
h(u)duh (s)E[|y (s)|

p
]τds. (20)

From Corollary 2.1 and Condition (H6), we get that the periodic solution is globally attractive . And

the proof is completed.

If bk = 1, k = 1, 2, · · · , the system (1) becomes the system without impulses

dx (t) = −

∫ t

t−τ

p (s− t)g (s, x (s)) ds+ σ (t) dB (t) . (21)

Corollary 3.1. Suppose that (H4), (H5) and (H6) with m = M = 1 hold, then the system (21) must have a

periodic solution, which is globally attractive and in the attracting set S2 = {ϕ ∈ BCb
F0

([−τ, 0], R)|‖ϕ‖p
Lp ≤

(I − Υ2)
−1J2}, where J2 = 4p−1(p (p− 1) /2)

p/2
I

p

2 .

Proof. The proof is similar to that of Theorem 3.1, so we omit it here.

4 Example

Example 4.1. Consider the impulsive stochastic Volterra-Levin equations

dx (t) = −

∫ t

t−1

e−(t−s)
∣

∣

∣
4−

2
3 cos

π

2
s
∣

∣

∣
x (s) ds+ cos

π

2
tdB (t) , t ≥ 0, t 6= tk, (22)

with

x
(

t+k
)

= bkx (tk) ,

where bk 6= 0, tk = k, k = 1, 2, . . . .

It is obvious that

h (t) =

∣

∣

∣

∣

1

4
cos

π

2
t

∣

∣

∣

∣

, σ (t) = cos
π

2
t, α =

∫ 0

−τ

p (s) ds =

∫ 0

−τ

esds = 1 −
1

e
,
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L = 1
4 and τ = 1.

Case 5.1. Let bk = 1, k = 1, 2, · · · , then Eq. (22) becomes nonimpulsive stochastic Volterra-Levin equa-

tions. Taking p = 3, we have

Υ2 = 42

(

L

∫ 0

−τ

|p (s) s| ds

)3

+ 42

(

L

α

∫ 0

−τ

|p (s) s| ds

)3

= 42

(

1

4

∫ 0

−τ

|ess|ds

)3

+ 42

(

1

4

e

e− 1

∫ 0

−τ

|ess|ds

)3

=

(

e− 2

4e

)3

+

(

e− 2

4(e− 1)

)3

< 1

and
∫ ∞

0

e−2α
R

t

s
h(u)duσ2 (s) ds =

∫ ∞

0

e−
2(e−1)

e

R

t

s |
1
4 cos π

2 u|ducos2
π

2
sds

≤

∫ ∞

0

e−
1
4

2(e−1)
e

R

t

s |cos
π
2 u|du

∣

∣

∣
cos

π

2
s
∣

∣

∣
ds =

2e

e− 1

It follows from Corollary 3.1 that Eq. (22) has a 4-periodic solution, which is globally attractive .

Case 5.2. Let bk = 2sin π
2 k. Then I (t) =

∏

0<tk<t
bk =

∏

0<tk<t
2sin π

2 k. Now we claim that (H3) holds. In fact

I (t+ 4) =
∏

0<tk<4

2sin π
2 k ·

∏

4<tk<4+t

2sin π
2 k

= 2

4
P

k=1

sin π
2 k

·
∏

0<tk<t

2sin π
2 (k−4)

= 2

4
P

k=1

sin π
2 k

·
∏

0<tk<t

2sin π
2 k = 20 · I (t) = I (t) ,

which implies that I(t) is a periodic function with period 4. By simple computation, we know that 1 ≤
∏

0<tk<t
bk ≤ 2. That is, m = 1 and M = 2. Taking p = 3, we have

Υ1 = 42

(

L
M

m

∫ 0

−τ

|p (s) s| ds

)3

+ 42

(

L
M

αm

∫ 0

−τ

|p (s) s|ds

)3

= 42

(

2 ·
1

4

∫ 0

−τ

|ess| ds

)3

+ 42

(

2 ·
1

4

e

e− 1

∫ 0

−τ

|ess| ds

)3

= 2

(

(

e− 2

e

)3

+

(

e− 2

e− 1

)3
)

< 1.

It follows from Theorem 3.1 that Eq. (22) has a 4-periodic solution, which is globally attractive.

References
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