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Abstract: This paper is concerned with a class of Nicholson’s blowflies models with
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the model. Moreover, we give an example to illustrate our main results.
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1. Introduction

In biological applications, Gurney et al. [1] introduced a mathematical model

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ), (1.1)

to describe the population of the Australian sheep-blowfly and to agree with the experimental

data obtained in [2]. Here, N(t) is the size of the population at time t, p is the maximum per

capita daily egg production, 1
a

is the size at which the population reproduces at its maximum

rate, δ is the per capita daily adult death rate, and τ is the generation time. The model and
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its modifications have also been later used to describe population growth of other species

(see, e.g., Cooke et al. [3]), and thus, have been extensively and intensively studied (see, e.g.,

[3-6]). In particular, there have been extensive results on the problem of the existence of

positive periodic solutions for Nicholson’s blowflies equation in the literature. We refer the

reader to [7−8] and the references cited therein. In [7], Chen obtained the result of existence

of periodic solutions of Nicholson’s blowflies model of the form

N ′(t) = −δ(t)N(t) + P (t)N(t − σ(t))e−a(t)N(t−τ(t)) , (1.2)

where δ ∈ C(R,R), P, σ, τ ∈ C(R, (0,+∞)) and a ∈ C(R, (0,+∞)) are T -periodic functions

with
∫ T
0 δ(t)dt > 0. In [8], Li and Du researched the following generalized Nicholson’s blowflies

model:

N ′(t) = −δ(t)N(t) +
m∑

i=1

pi(t)N(t − τi(t))e
−qi(t)N(t−τi(t)), (1.3)

where δ, pi, qi ∈ C(R+, (0,+∞)) and τi ∈ C(R+, R+) are T -periodic functions for i =

1, 2, . . . ,m with
∫ T
0 δ(t)dt > 0. They established a sufficient and necessary condition for

the existence of positive periodic solutions for (1.3).

Recently, as pointed out in L. Berezansky et al. [9], a new study indicates that a linear

model of density-dependent mortality will be most accurate for populations at low densities,

and marine ecologists are currently in the process of constructing new fishery models with

nonlinear density-dependent mortality rates. Therefore, L. Berezansky et al. [9] proposed

an open problems: Reveal the dynamic behaviors of the Nicholson’s blowflies model with a

nonlinear density-dependent mortality term as follows:

N ′(t) = −D(N) + PN(t − τ)e−N(t−τ), (1.4)

where P is a positive constant and function D might have one of the following forms: D(N) =

aN/(N + b) or D(N) = a − be−N . Furthermore, B. Liu [10] obtain permanence for models

(1.4) with D(N) = aN/(N + b), and W. Wang [11] studied the existence of positive periodic

solutions for the models (1.4) with D(N) = a−be−N . However, to the best of our knowledge,

few authors have considered the problem for positive periodic solutions of Nicholson’s blowflies
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models (1.4) with D(N) = aN/(N + b). Thus, it is worthwhile to continue to investigate the

existence of positive periodic solutions of (1.4) in this case.

The main purpose of this paper is to give the conditions for the existence of the positive

periodic solutions for Nicholson’s blowflies models (1.4) with D(N) = aN/(N + b). Since

the coefficients and delays in differential equations of population and ecology problems are

usually time-varying in the real world, so we’ll consider the delayed Nicholson’s blowflies

models with a nonlinear density-dependent mortality term:

N ′(t) = −
a(t)N(t)

b(t) + N(t)
+ c(t)N(t − τ(t))e−γ(t)N(t−τ(t)) , (1.5)

where a, b, c, γ, τ ∈ C(R, (0,∞)) are positive T -periodic functions. It is obvious that when

D(N) = aN/(N + b), (1.4) is a special case of (1.5).

Throughout this paper, given a bounded continuous function g defined on R, let g+ and

g− be defined as

g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t).

The remaining part of this paper is organized as follows. In section 2, we shall derive

new sufficient conditions for checking the existence of the positive periodic solutions of model

(1.5). In Section 3, we shall give an example and a remark to illustrate our results obtained

in the previous sections.

2. Existence of Positive Periodic Solutions

For convenience, we will let X = Z = {x ∈ C(R,R) : x(t + T ) = x(t) for all t ∈ R} be

Banach spaces equipped with the norm || · ||, where ||x|| = max
t∈[0,T ]

|x(t)|. For any x ∈ X, we

denote

∆(x, t) = −
a(t)

b(t) + ex(t)
+ c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

.

Because of periodicity, it is easy to see that ∆(x, ·) ∈ C(R,R) is T -periodic. Let

L : D(L) = {x ∈ X : x ∈ C1(R,R)} ∋ x 7−→ x′ ∈ Z,

P : X ∋ x 7−→
1

T

∫ T

0
x(s)ds ∈ X,
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Q : Z ∋ z 7−→
1

T

∫ T

0
z(s)ds ∈ Z,

N : X ∋ x 7−→ ∆(x, ·) ∈ Z.

From the definitions of the above operators. It is easy to see that

ImL = {x|x ∈ Z,

∫ T

0
x(s)ds = 0},KerL = R, ImP = KerL and KerQ = ImL.

Thus, the operator L is a Fredholm operator with index zero.

In order to study the existence of positive periodic solutions, we first introduce the Con-

tinuation Theorem as follows:

Lemma 1 (Continuation Theorem) [12]. Let X and Z be two Banach spaces. Suppose

that L : D(L) ⊂ X → Z is a Fredholm operator with index zero and N : X → Z is L

-compact on Ω, where Ω is an open subset of X. Moreover, assume that all the following

conditions are satisfied:

(1) Lx 6= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);

(2) Nx 6∈ ImL, for all x ∈ ∂Ω ∩ KerL;

(3) The Brouwer degree

deg{QN,Ω ∩ KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution in domL ∩ Ω.

Our main result is given in the following theorem.

Theorem 1. Set

A = 2

∫ T

0

a(t)

b(t)
dt, B =

∫ T

0
c(t)dt, ln

2B

A
> A, and 1 >

c+

a−γ−e
. (2.1)

Then (1.5) has a positive T -periodic solution.

Proof. Set N(t) = ex(t), then (1.5) can be rewritten as

x′(t) = − a(t)
b(t)+ex(t) + c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

= ∆(x, t). (2.2)

Then, to prove Theorem 1, it suffices to show that equation (2.2) has at least one T -periodic

solution. Denoting by L−1
P : ImL → D(L) ∩ KerP the inverse of L|D(L)∩KerP , we have

L−1
P y(t) = −

1

T

∫ T

0

∫ t

0
y(s)dsdt +

∫ t

0
y(s)ds. (2.3)
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To apply Lemma 1, we first claim that N is L-compact on Ω, where Ω is a bounded open

subset of X. From (2.3), it follows that

QNx =
1

T

∫ T

0
Nx(t)dt =

1

T

∫ T

0
[−

a(t)

b(t) + ex(t)
+ c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

]dt, (2.4)

L−1
P (I − Q)Nx =

∫ t

0
Nx(s)ds −

t

T

∫ T

0
Nx(s)ds −

1

T

∫ T

0

∫ t

0
Nx(s)dsdt

+
1

T

∫ T

0

∫ t

0
QNx(s)dsdt. (2.5)

Obviously, QN and L−1
P (I − Q)N are continuous. It is not difficult to show that L−1

P (I −

Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem.

Moreover, QN(Ω) is clearly bounded. Thus, N is L-compact on Ω with any open bounded

set Ω ⊂ X.

Considering the operator equation Lx = λNx, λ ∈ (0, 1), we have

x′(t) = λ∆(x, t). (2.6)

Assume that x ∈ X is a solution of (2.6) for some λ ∈ (0, 1). Then

∫ T

0
|c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

|dt =

∫ T

0
c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

dt

=

∫ T

0

a(t)

b(t) + ex(t)
dt

=

∫ T

0
|

a(t)

b(t) + ex(t)
|dt

<

∫ T

0

a(t)

b(t)
dt. (2.7)

It follows from (2.6) and (2.7) that

∫ T

0
|x′(t)|dt ≤ λ

∫ T

0
|c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

|dt + λ

∫ T

0
|

a(t)

b(t) + ex(t)
|dt

< 2

∫ T

0

a(t)

b(t)
dt = A. (2.8)

Since x ∈ X, there exist ξ, η ∈ [0, T ] such that

x(ξ) = min
t∈[0,T ]

x(t), x(η) = max
t∈[0,T ]

x(t), and x′(ξ) = x′(η) = 0. (2.9)
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It follows from (2.7) and (2.8) that

A

2
=

∫ T

0

a(t)

b(t)
dt

>

∫ T

0

a(t)

b(t) + ex(t)
dt

=

∫ T

0
c(t)ex(t−τ(t))−x(t)−γ(t)ex(t−τ(t))

dt

≥ ex(ξ)−x(η)−γ+ex(η)
∫ T

0
c(t)dt

= Bex(ξ)−x(η)−γ+ex(η)
,

which implies that

x(ξ) < ln
A

2B
+ x(η) + γ+ex(η).

Using (2.8) yields

x(t) ≤ x(ξ) +

∫ T

0
|x′(t)|dt < ln

A

2B
+ x(η) + γ+ex(η) + A.

In particular,

x(η) < x(ξ) +

∫ T

0
|x′(t)|dt < ln

A

2B
+ x(η) + γ+ex(η) + A.

It follows that

x(η) > ln(
1

γ+
(ln

2B

A
− A)).

Again from (2.8), we have

x(t) ≥ x(η) −

∫ T

0
|x′(t)|dt > ln(

1

γ+
(ln

2B

A
− A)) − A := H1. (2.10)

Since x′(ξ) = 0, from (2.7), we obtain

a(ξ)

b(ξ) + ex(ξ)
= c(ξ)ex(ξ−τ(ξ))−x(ξ)−γ(ξ)ex(ξ−τ(ξ))

. (2.11)

Hence, from (2.11) and the fact that sup
u≥0

ue−u = 1
e
, we have

ex(ξ)

b+ + ex(ξ)
≤

ex(ξ)

b(ξ) + ex(ξ)
=

c(ξ)

a(ξ)γ(ξ)
γ(ξ)ex(ξ−τ(ξ))e−γ(ξ)ex(ξ−τ(ξ))

≤
c+

a−γ−e
. (2.12)
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Noting that u
b++u

is strictly monotone increasing on [0,+∞) and

sup
u≥0

u

b+ + u
= 1 >

c+

a−γ−e
,

it is clear that there exists a constant k > 0 such that

u

b+ + u
>

c+

a−γ−e
for all u ∈ [k,+∞). (2.13)

In view of (2.12) and (2.13), we get

ex(ξ) ≤ k and x(ξ) ≤ ln k. (2.14)

Then, we can choose a sufficiently large positive constant H2 > ln k such that

x(t) < H2 and ln b+ < H2. (2.15)

Let H > max{|H1|,H2} be a fix constant such that

eH >
1

γ−
(H + ln

2B

C
) with C =

∫ T

0
a(t)dt,

and define Ω = {x ∈ X : ||x|| < H}. Then (2.10) and (2.15) imply that there is no λ ∈ (0, 1)

and x ∈ ∂Ω such that Lx = λNx.

When x ∈ ∂Ω ∩ KerL = ∂Ω ∩ R, x = ±H. Then

QN(−H) > 0 and QN(H) < 0. (2.16)

Otherwise, if QN(−H) ≤ 0, it follows from (2.4) that

A

2
=

∫ T

0

a(t)

b(t)
dt

>

∫ T

0

a(t)

b(t) + e−H
dt

≥

∫ T

0
c(t)e−γ(t)e−H

dt

≥ e−γ+e−H
∫ T

0
c(t)dt

= Be−γ+e−H

,

EJQTDE, 2012 No. 24, p. 7



which implies

−H ≥ ln(
1

γ+
ln

2B

A
) > ln(

1

γ+
(ln

2B

A
− A)) − A = H1.

This is a contradiction and implies that QN(−H) > 0.

If QN(H) ≥ 0, it follows from (2.4) that

C

2
e−H =

∫ T

0

a(t)

2eH
dt

<

∫ T

0

a(t)

b(t) + eH
dt

≤

∫ T

0
c(t)e−γ(t)eH

dt

≤ e−γ−eH
∫ T

0
c(t)dt

= Be−γ−eH

.

Consequently,

eH <
1

γ−
(H + ln

2B

C
),

a contradiction to the choice of H. Thus, QN(H) < 0.

Furthermore, define continuous function H(x, µ) by setting

H(x, µ) = −(1 − µ)x + µ
1

T

∫ T

0
[−

a(t)

b(t) + ex
+ c(t)e−γ(t)x]dt.

It follows from (2.16) that xH(x, µ) 6= 0 for all x ∈ ∂Ω ∩ kerL. Hence, using the homotopy

invariance theorem, we obtain

deg{QN,Ω ∩ kerL, 0} = deg{ 1
T

∫ T
0 [− a(t)

b(t)+ex + c(t)e−γ(t)x]dt,Ω ∩ kerL, 0}

= deg{−x,Ω ∩ kerL, 0} 6= 0.

In view of all the discussions above, we conclude from Lemma 1 that Theorem 1 is proved.

3. An Example

In this section we present an example to illustrate our results.

Example 3.1. Consider the delayed periodic Nicholson’s blowflies models with a nonlin-

ear density-dependent mortality term:

N ′(t) = −
(2 + sin t)N(t)

2 + sin t + N(t)
+ (

e4π

4
+ 1)(4 + cos t)N(t − e4π+sin t)e−e4π+| sin t|N(t−e4π+sin t) (3.1)
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has a positive 2π-periodic solution.

Proof. By (3.1), we have

a(t) = b(t) = 2 + sin t, c(t) = (
e4π

4
+ 1)(4 + cos t), γ(t) = e4π+| sin t|,

then

A = 2

∫ 2π

0

a(t)

b(t)
dt = 4π,B =

∫ 2π

0
c(t)dt = 8π + 2πe4π,

a− = 1, c+ = 5(
e4π

4
+ 1), γ− = e4π.

Clearly,

ln
2B

A
= ln(e4π + 4) > 4π = A,

c+

a−γ−e
=

5

4e
+

5

e4π+1
< 1,

it means that conditions in Theorem 1 hold. Hence, the equation (3.1) has a positive 2π-

periodic solution.

Remark 3.1. (3.1) is a kind of delayed periodic Nicholson’s blowflies models with a

nonlinear density-dependent mortality term, but as far as we know there are not results can

be applicable to (3.1) to obtain the existence of 2π-periodic solutions. This implies that the

results of this paper are essentially new.
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[4] M.R.S. Kulenović, G. Ladas, Y. Sficas, Global attractivity in Nicholson’s blowflies, Appl.

Anal., 43 (1992) 109-124.

[5] T.S. Yi, X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with

Neumann boundary condition: A non-monotone case, J. Differential Equations, 245 (11)

(2008) 3376-3388.

[6] H. Zhou, W. Wang, H. Zhang, Convergence for a class of non-autonomous Nichol-

son’s blowflies model with time-varying coefficients and delays, Nonlinear Analysis: Real

World Applications, 11(5) (2010) 3431-3436.

[7] Y. Chen, Periodic solutions of delayed periodic Nicholson’s blowflies models, Can. Appl.

Math. Q., 11 (2003) 23-28.

[8] J. Li, C. Du, Existence of positive periodic solutions for a generalized Nicholson’s

blowflies model, J. Comput. Appl. Math., 221 (2008) 226-233.

[9] L. Berezansky, E. Braverman, L. Idels, Nicholson’s blowflies differential equations revis-

ited: main results and open problems, Appl. Math. Modelling, 34 (2010) 1405-1417.

[10] B. Liu, Permanence for a delayed Nicholson’s blowflies model with a nonlinear density-

dependent mortality term, Ann. Polon. Math. 101 (2011), 123-129.

EJQTDE, 2012 No. 24, p. 10



[11] W. Wang, Positive periodic solutions of delayed Nicholson’s blowflies models with

a nonlinear density-dependent mortality term, Appl. Math. Modelling (2011), doi:

10.1016/j.apm.2011.12.001.

[12] R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations.

Berlin-Heidelberg-New York: Springer-Verlag, 1977.

(Received October 26, 2011)

EJQTDE, 2012 No. 24, p. 11


