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METHODS OF EXTENDING LOWER ORDER PROBLEMS TO

HIGHER ORDER PROBLEMS IN THE CONTEXT OF SMALLEST

EIGENVALUE COMPARISONS
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Abstract. The theory of u0-positive operators with respect to a cone in a Ba-
nach space is applied to the linear differential equations u(4) + λ1p(x)u = 0 and
u(4) + λ2q(x)u = 0, 0 ≤ x ≤ 1, with each satisfying the boundary conditions
u(0) = u′(r) = u′′(r) = u′′′(1) = 0, 0 < r < 1. The existence of smallest positive
eigenvalues is established, and a comparison theorem for smallest positive eigenval-
ues is obtained. These results are then extended to the nth order problem using
two different methods. One method involves finding sign conditions for the Green’s
function for −u(n) = 0 satisfying the higher order boundary conditions, and the
other involves making a substitution that allows us to work with a variation of the
fourth order problem.
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1. Introduction

In this paper, we will consider the eigenvalue problems

(1.1) u(4) + λ1p(x)u = 0,

(1.2) u(4) + λ2q(x)u = 0,

satisfying the boundary conditions

(1.3) u(0) = u′(r) = u′′(r) = u′′′(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],
where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

The focus of this paper will be on comparing the smallest eigenvalues for these
eigenvalue problems. First, using the theory of u0-positive operators with respect
to a cone in a Banach space, we establish the existence of smallest eigenvalues for
(1.1),(1.3), and (1.2),(1.3), and then compare these smallest eigenvalues after assum-
ing a relationship between p(x) and q(x). We then extend these results to the nth
order case using two different methods. First, we establish the sign properties of the
Green’s function for the nth order problem, and by using these properties, we are
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able to again establish the existence of smallest eigenvalues and then derive the com-
parison results. We then use a substitution method so that we can work with fourth
order eigenvalue problems that have the same eigenvalues as the nth order problem.
Comparison results are then obtained.

The technique for the comparison of these eigenvalues involve the application of
sign properties of the Green’s function, followed by the application of u0-positive
operators with respect to a cone in a Banach space. These applications are presented
in books by Krasnoselskii [19] and by Krein and Rutman [18].

Several authors have before applied these techniques in comparing eigenvalues for
different boundary problems than the ones seen here. Previous work has been devoted
to boundary value problems for ordinary differential equations involving conjugate,
Lidstone, and right focal conditions. For example, Eloe and Henderson have studied
smallest eigenvalue comparisons for a class of two-point boundary value problems
[4] and for a class of multipoint boundary value problems [5]. Karna has also stud-
ied smallest eigenvalue comparisons for m-point boundary value problems [14] and
three-point boundary value problems [15]. In addition, comparison results have been
obtained for difference equations [9] and for boundary value problems on time scales
[1, 3, 12, 13, 20]. For additional work on this field, see [2, 6, 7, 8, 10, 16, 22, 23].

2. Preliminary Definitions and Theorems

Definition 2.1. Let B be a Banach space over R. A closed nonempty subset P of B
is said to be a cone provided

(i) αu + βv ∈ P, for all u, v ∈ P and all α, β ≥ 0, and
(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.2. A cone P is solid if the interior, P◦, of P, is nonempty. A cone P is
reproducing if B = P−P; i.e., given w ∈ B, there exist u, v ∈ P such that w = u−v.

Remark 2.1. Krasnosel’skii [19] showed that every solid cone is reproducing.

Definition 2.3. Let P be a cone in a real Banach space B. If u, v ∈ B, u ≤ v with
respect to P if v − u ∈ P. If both M, N : B → B are bounded linear operators,
M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P.

Definition 2.4. A bounded linear operator M : B → B is u0-positive with respect
to P if there exists 0 6= u0 ∈ P such that for each 0 6= u ∈ P, there exist k1(u) > 0
and k2(u) > 0 such that k1u0 ≤ Mu ≤ k2u0 with respect to P.

The following three results are fundamental to our comparison results and are
attributed to Krasnosel’skii [19]. The proof of Lemma 2.1 is provided, the proof of
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Theorem 2.1 can be found in Krasnosel’skii’s book [19], and the proof of Theorem 2.2
is provided by Keener and Travis [17] as an extension of Krasonel’skii’s results.

Lemma 2.1. Let B be a Banach space over the reals, and let P ⊂ B be a solid cone.
If M : B → B is a linear operator such that M : P\{0} → P◦, then M is u0-positive
with respect to P.

Proof. Choose any u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose
k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and
u0 −

1
k2

Mu ∈ P◦. So k1u0 ≤ Mu with respect to P and Mu ≤ k2u0 with respect to
P. Thus k1u0 ≤ Mu ≤ k2u0 with respect to P and so M is u0-positive with respect
to P . �

Theorem 2.1. Let B be a real Banach space and let P ⊂ B be a reproducing cone.
Let L : B → B be a compact, u0-positive, linear operator. Then L has an essentially
unique eigenvector in P, and the corresponding eigenvalue is simple, positive, and
larger than the absolute value of any other eigenvalue.

Theorem 2.2. Let B be a real Banach space and P ⊂ B be a cone. Let both M, N :
B → B be bounded, linear operators and assume that at least one of the operators
is u0-positive. If M ≤ N , Mu1 ≥ λ1u1 for some u1 ∈ P and some λ1 > 0, and
Nu2 ≤ λ2u2 for some u2 ∈ P and some λ2 > 0, then λ1 ≤ λ2. Futhermore, λ1 = λ2

implies u1 is a scalar multiple of u2.

3. The Fourth Order Problem

In this section, we consider the fourth order eigenvalue problems

(3.1) u(4) + λ1p(x)u = 0,

(3.2) u(4) + λ2q(x)u = 0,

satisfying the boundary conditions

(3.3) u(0) = u′(r) = u′′(r) = u′′′(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],
where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

We derive comparison results for these fourth order eigenvalue problems by apply-
ing the theorems previously mentioned. To do this, we will define integral operators
whose kernel is the Green’s function for −u(4) = 0 satisfying (3.3).
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This Green’s function is given by

G(x, s) =











































s3

6
, s ≤ r, s ≤ x,

(x−r)3+r3

6
, s > r, s > x,

(x−s)3+s3

6
, s ≤ r, s > x,

r3+(s−x)3+(x−r)3

6
, s > r, s ≤ x.

So u(x) solves (3.1),(3.3) if and only if u(x) = λ1

∫ 1

0
G(x, s)p(s)u(s)ds, and u(x)

solves (3.2),(3.3) if and only if u(x) = λ2

∫ 1

0
G(x, s)q(s)u(s)ds. Note G(x, s) ≥ 0 on

[0, 1] × [0, 1], G(x, s) > 0 on (0, 1] × (0, 1], and ∂
∂x

G(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 2.1 and 2.2, we need to define a Banach space B and a cone
P ⊂ B. Define the Banach space B by

B = {u ∈ C1[0, 1] | u(0) = 0}

with the norm
||u|| = sup

0≤x≤1
|u′(x)|.

Define the cone P to be

P = {u ∈ B | u(x) ≥ 0 on [0, 1]}.

Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(x)| = |u(x) − u(0)| =

∣

∣

∣

∣

∫ x

0

u′(s)ds

∣

∣

∣

∣

≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(x)| ≤ ||u||.

Lemma 3.1. The cone P is solid in B and hence reproducing.

Proof. Define
Ω = {u ∈ B | u(x) > 0 on (0, 1] and u′(0) > 0}.

Note Ω ⊂ P. Choose u ∈ Ω and define Bǫ(u) = {v ∈ B | ||u − v|| < ǫ} for ǫ > 0.
Choose ǫ0 > 0 such that u′(0) − ǫ0 > 0 and u(x) − ǫ0 > 0 for 0 < x ≤ 1. So for
v ∈ Bǫ0(u), sup

0≤x≤1
|v′(x)− u′(x)| < ǫ0. So v′(0) > u′(0)− ǫ0 > 0. Also, |v(x)− u(x)| ≤

||v − u|| < ǫ0, and so v(x) > 0 on (0, 1]. So v ∈ Ω and hence Bǫ0(u) ⊂ Ω ⊂ P and
Ω ⊂ P◦. Therefore P is solid in B. �
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Next, we define our linear operators M, N : B → B by

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

G(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-
pact.

Lemma 3.2. The bounded linear operators M and N are u0-positive with respect to
P.

Proof. We show M : P\{0} → Ω ⊂ P◦. Let u ∈ P. So u(x) ≥ 0. Then since
G(x, s) ≥ 0 on [0, 1] × [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P.

Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that
u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since G(x, s) > 0 on (0, 1] × (0, 1],

Mu(x) =

∫ 1

0

G(x, s)p(s)u(s)ds

≥

∫ β

α

G(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x

G(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)′(0) =

∫ 1

0

∂

∂x
G(0, s)p(s)u(s)ds

≥

∫ β

α

∂

∂x
G(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 2.1, M is
u0-positive with respect to P. A similar argument for N completes the proof. �

Remark 3.1. Notice that

Λu = Mu =

∫ 1

0

G(x, s)p(s)u(s)ds,

EJQTDE, 2011 No. 99, p. 5



if and only if

u(x) =
1

Λ

∫ 1

0

G(x, s)p(s)u(s)ds,

if and only if

−u(4)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(r) = u′′(r) = u′′′(1) = 0.

So the eigenvalues of (3.1),(3.3) are reciprocals of eigenvalues of M , and conversely.
Similarly, eigenvalues of (3.2),(3.3) are reciprocals of N , and conversely.

Theorem 3.1. Let B, P, M , and N be defined as earlier. Then M (and N) has
an eigenvalue that is simple, positive, and larger than the absolute value of any other
eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P, by
Theorem 2.1, M has an essentially unique eigenvector, say u ∈ P, and eigenvalue Λ
with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M

(

1
Λ
u
)

∈ P◦. �

Theorem 3.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].
Let Λ1 and Λ2 be the eigenvalues defined in Theorem 3.1 associated with M and N ,
respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2,
and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P and x ∈ [0, 1],

(Nu − Mu)(x) =

∫ 1

0

G(x, s)(q(s) − p(s))u(s)ds ≥ 0.

So Nu−Mu ∈ P for all u ∈ P, or M ≤ N with respect to P. Then by Theorem 2.2,
Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on some
subinterval [α, β] ⊂ [0, 1]. Then (N − M)u1 ∈ Ω ⊂ P◦ and so there exists ǫ > 0
such that (N − M)u1 − ǫu1 ∈ P. So Λ1u1 + ǫu1 = Mu1 + ǫu1 ≤ Nu1, implying
Nu1 ≥ (Λ1 + ǫ)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2, Λ1 + ǫ ≤ Λ2, or
Λ1 < Λ2. �

By Remark 3.1, the following theorem is an immediate consequence of Theorems
3.1 and 3.2.
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Theorem 3.3. Assume the hypotheses of Theorem 3.2. Then there exists smallest
positive eigenvalues λ1 and λ2 of (3.1),(3.3) and (3.2),(3.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may be
chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if p(x) = q(x) for
0 ≤ x ≤ 1.

4. Extending the Fourth Order Problem Using Sign Properties of

the Green’s Function

Let n ∈ N, n ≥ 5. In this section, we will consider the eigenvalue problems

(4.1) u(n) + λ1p(x)u = 0,

(4.2) u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

(4.3) u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],
where neither p(x) nor q(x) vanish identically on any compact subinterval of [0, 1].

Here we will use methods similar to the methods used previously to derive com-
parison theorems for these nth order eigenvalue problems. We will do this by find-
ing the the sign properties of the Green’s function, which we will call Gn(x, s), for
−u(n) = 0 satisfying (4.3). This Green’s function, as a function of x, is Cn−4[0, 1],

and ∂(n−4)

∂x(n−4) Gn(x, s) = G(x, s), where G(x, s) is as defined earlier.

Now u(x) solves (4.1),(4.3) if and only if u(x) = λ1

∫ 1

0
Gn(x, s)p(s)u(s)ds, and u(x)

solves (4.2),(4.3) if and only if u(x) = λ2

∫ 1

0
Gn(x, s)q(s)u(s)ds.

Since ∂n−4

∂xn−4 Gn(x, s) = G(x, s), then ∂n−4

∂xn−4 Gn(x, s) ≥ 0 on [0, 1] × [0, 1] and
∂n−4

∂xn−4 Gn(x, s) > 0 on (0, 1] × (0, 1]. Also, since ∂n−3

∂xn−3 Gn(x, s) = ∂
∂x

G(x, s), then
∂n−3

∂xn−3 Gn(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 2.1 and 2.2, we need to define a Banach space B and a cone
P ⊂ B. Define the Banach space B by

B = {u ∈ C(n−3)[0, 1] | u(0) = u′(0) = · · · = u(n−4)(0) = 0}

with the norm
||u|| = sup

0≤x≤1
|u(n−3)(x)|.

Define the cone P to be

P = {u ∈ B | u(n−4)(x) ≥ 0 on [0, 1]}.
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Notice that for u ∈ B, 0 ≤ x ≤ 1,

|u(n−4)(x)| = |u(n−4)(x) − u(n−4)(0)| =

∣

∣

∣

∣

∫ x

0

u(n−3)(s)ds

∣

∣

∣

∣

≤ ||u||x

≤ ||u||,

and so sup
0≤x≤1

|u(n−4)(x)| ≤ ||u||.

Lemma 4.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {u ∈ B | u(n−4)(x) > 0 on (0, 1] and u(n−3)(0) > 0}.

Note Ω ⊂ P. Choose u ∈ Ω and define Bǫ(u) = {v ∈ B | ||u − v|| < ǫ} for ǫ > 0.
Choose ǫ0 > 0 such that u(n−3)(0) − ǫ0 > 0 and u(n−4)(x) − ǫ0 > 0 for 0 < x ≤ 1. So
for v ∈ Bǫ0(u), sup

0≤x≤1
|v(n−3)(x) − u(n−3)(x)| < ǫ0. So v(n−3)(0) > u(n−3)(0) − ǫ0 > 0.

Also, |v(n−4)(x) − u(n−4)(x)| ≤ ||v − u|| < ǫ0, and so v(n−4)(x) > 0 on (0, 1]. So v ∈ Ω
and hence Bǫ0(u) ⊂ Ω ⊂ P, and Ω ⊂ P◦. Therefore P is solid in B. �

Next, we define our linear operators M and N by

Mu(x) =

∫ 1

0

Gn(x, s)p(s)u(s)ds, 0 ≤ x ≤ 1,

and

Nu(x) =

∫ 1

0

Gn(x, s)q(s)u(s)ds, 0 ≤ x ≤ 1.

Note that since ∂n−i

∂xn−i Gn(x, s)|x=0 = 0 for i = 4, 5, . . . , n, then M, N : B → B. A
standard application of the Arzela-Ascoli theorem shows that M and N are compact.

Lemma 4.2. The bounded linear operators M and N are u0-positive with respect to
P.

Proof. First we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P. So u(x) ≥ 0. Then, since
∂n−4

∂xn−4 Gn(x, s) = G(x, s) ≥ 0 on [0, 1] × [0, 1] and p(x) ≥ 0 on [0, 1],

Mu(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)p(s)u(s)ds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P.
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Now let u ∈ P\{0}. So there exists a compact interval [α, β] ⊂ [0, 1] such that

u(x) > 0 and p(x) > 0 for all x ∈ [α, β]. Then, since ∂n−4

∂xn−4 Gn(x, s) > 0 on (0, 1]×(0, 1],

Mu(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)p(s)u(s)ds

≥

∫ β

α

∂n−4

∂xn−4
Gn(x, s)p(s)u(s)ds

> 0,

for 0 < x ≤ 1. Also, since ∂n−3

∂xn−3 Gn(x, s)|x=0 > 0 for 0 < s < 1,

(Mu)(n−3)(0) =

∫ 1

0

∂n−3

∂xn−3
Gn(0, s)p(s)u(s)ds

≥

∫ β

α

∂n−3

∂xn−3
Gn(0, s)p(s)u(s)ds

> 0,

and so Mu ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 2.1, M is
u0-positive with respect to P. A similar argument for N completes the proof. �

Remark 4.1. Notice that

Λu = Mu =

∫ 1

0

Gn(x, s)p(s)u(s)ds,

if and only if

u(x) =
1

Λ

∫ 1

0

Gn(x, s)p(s)u(s)ds,

if and only if

−u(n)(x) =
1

Λ
p(x)u(x), 0 ≤ x ≤ 1,

with

u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0.

So the eigenvalues of (4.1),(4.3) are reciprocals of eigenvalues of M , and conversely.
Similarly, eigenvalues of (4.2),(4.3) are reciprocals of N , and conversely.

Theorem 4.1. Let B, P, M , and N be defined as earlier. Then M (and N) has
an eigenvalue that is simple, positive, and larger than the absolute value of any other
eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.
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Proof. Since M is a compact linear operator that is u0-positive with respect to P, by
Theorem 2.1, M has an essentially unique eigenvector, say u ∈ P, and eigenvalue Λ
with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u = M

(

1
Λ
u
)

∈ P◦. �

Theorem 4.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].
Let Λ1 and Λ2 be the eigenvalues defined in Theorem 4.1 associated with M and N ,
respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦. Then Λ1 ≤ Λ2

and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any u ∈ P and x ∈ [0, 1],

(Nu − Mu)(n−4)(x) =

∫ 1

0

∂n−4

∂xn−4
Gn(x, s)(q(s) − p(s))u(s)ds ≥ 0.

So Nu−Mu ∈ P for all u ∈ P, or M ≤ N with respect to P. Then by Theorem 2.2,
Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on some
subinterval [α, β] ⊂ [0, 1]. Then (N − M)u1 ∈ Ω ⊂ P◦ and so there exists ǫ > 0
such that (N − M)u1 − ǫu1 ∈ P. So Λ1u1 + ǫu1 = Mu1 + ǫu1 ≤ Nu1, implying
Nu1 ≥ (Λ1 + ǫ)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2, Λ1 + ǫ ≤ Λ2, or
Λ1 < Λ2. �

By Remark 4.1, the following theorem is an immediate consequence of Theorems
4.1 and 4.2.

Theorem 4.3. Assume the hypotheses of Theorem 4.2. Then there exists smallest
positive eigenvalues λ1 and λ2 of (4.1),(4.3) and (4.2),(4.3), respectively, each of
which is simple, positive, and less than the absolute value of any other eigenvalue of
the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2 may be
chosen to belong to P◦. Finally, λ1 ≥ λ2 and λ1 = λ2 if and only if p(x) = q(x) for
0 ≤ x ≤ 1.

5. Extending the Fourth Order Problem Using Substitution

Instead of using the sign properties of the Green’s function for the nth order
equation to derive the comparison theorems, we will instead make a substitution and
work with a variation of the fourth order problem. This method has its benefits,
since we do not need to find the sign properties of the Green’s function of the nth
order problem, and can instead work with the fourth order problem. The techniques
used in this section have been used previously by Henderson and Parmjet [11] and by
Maroun [21] to reduce the order of singular problems. However, they have not been
used in the context of smallest eigenvalue comparisons.
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Let n ∈ N, n ≥ 5. We consider the eigenvalue problems

(5.1) u(n) + λ1p(x)u = 0,

(5.2) u(n) + λ2q(x)u = 0,

satisfying the boundary conditions

(5.3) u(0) = u′(0) = · · · = u(n−4)(0) = u(n−3)(r) = u(n−2)(r) = u(n−1)(1) = 0,

and the eigenvalue problems

(5.4) v(4) + λ1p(x)
1

(n − 5)!

∫ x

0

(x − s)n−5v(s)ds = 0,

(5.5) v(4) + λ2q(x)
1

(n − 5)!

∫ x

0

(x − s)n−5v(s)ds = 0,

satisfying the boundary condtions

(5.6) v(0) = v′(r) = v′′(r) = v′′′(1) = 0,

where 0 < r < 1, and p(x) and q(x) are continuous nonnegative functions on [0, 1],
where neither p(x) nor q(x) vanishes identically on any compact subinterval of [0, 1].

First we note that if u(x) is a solution to (5.1),(5.3), then u(n−4)(x) solves
(5.4),(5.6). Also, if v(x) is a solution to (5.4),(5.6), then 1

(n−5)!

∫ x

0
(x − s)n−5v(s)ds is

a solution to (5.1),(5.3). Similarly, if u(x) is a solution to (5.2),(5.3), then u(n−4)(x)
solves (5.5),(5.6) and if v(x) is a solution to (5.5),(5.6), then 1

(n−5)!

∫ x

0
(x−s)n−5v(s)ds

is a solution to (5.2),(5.3).

Now let λ be an eigenvalue of (5.1),(5.3) with the corresponding eigenvector
u(x). Then u(n−4)(x) is a solution to (5.4),(5.6) with the same eigenvalue λ.
Also, if λ is an eigenvalue of (5.4),(5.6) with corresponding eigenvector v(x), then

1
(n−5)!

∫ x

0
(x − s)n−5v(s)ds is a solution to (5.1),(5.3) with the corresponding eigen-

value λ. So eigenvalues of (5.1),(5.3) are eigenvalues of (5.4),(5.6), and vice versa.
Similarly, eigenvalues of (5.2),(5.3) are eigenvalues of (5.5),(5.6), and vice versa. So
any comparison theorems for (5.4),(5.6), and (5.5),(5.6) will apply to (5.1),(5.3), and
(5.2),(5.3).

For these reasons, we will derive comparison theorems for eigenvalue problems
(5.4),(5.6), and (5.5),(5.6), and then use these theorems to derive the comparison
theorems for (5.1),(5.3), and (5.2),(5.3).
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Let G(x, s) by the Green’s function for −v(4) = 0 satisfying (5.6), which was defined
earlier. So v(x) solves (5.4),(5.6) if and only if

v(x) = λ1

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds,

and v(x) solves (5.5),(5.6) if and only if

v(x) = λ2

∫ 1

0

G(x, s)q(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds.

Again, note G(x, s) ≥ 0 on [0, 1] × [0, 1], G(x, s) > 0 on (0, 1] × (0, 1], and
∂
∂x

G(x, s)|x=0 > 0 for 0 < s < 1.

To apply Theorems 2.1 and 2.2, we need to define a Banach space B and a cone
P ⊂ B. Define the Banach space B by

B = {v ∈ C1[0, 1] | v(0) = 0}

with the norm

||v|| = sup
0≤x≤1

|v′(x)|.

Define the cone P to be

P = {v ∈ B | v(x) ≥ 0 on [0, 1]}.

Notice that for v ∈ B, 0 ≤ x ≤ 1,

|v(x)| = |v(x) − v(0)| =

∣

∣

∣

∣

∫ x

0

v′(s)ds

∣

∣

∣

∣

≤ ||v||x

≤ ||v||,

and so sup
0≤x≤1

|v(x)| ≤ ||v||.

Lemma 5.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω = {v ∈ B | v(x) > 0 on (0, 1] and v′(0) > 0}.

It was shown earlier that Ω ⊂ P◦. Therefore P is solid in B. �

Next, we define our linear operators M, N : B → B by

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds, 0 ≤ x ≤ 1,
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and

Nv(x) =

∫ 1

0

G(x, s)q(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds, 0 ≤ x ≤ 1.

A standard application of the Arzelá-Ascoli theorem shows that M and N are com-
pact.

Lemma 5.2. The bounded linear operators M and N are u0-positive with respect to
P.

Proof. We again show M : P\{0} → Ω ⊂ P◦. Let v ∈ P. So v(x) ≥ 0. Then since
G(x, s) ≥ 0 on [0, 1] × [0, 1], p(x) ≥ 0 on [0, 1] and 1

(n−5)!

∫ x

0
(x − s)n−5v(s)ds ≥ 0,

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds ≥ 0,

for 0 ≤ x ≤ 1. So M : P → P.

Now let v ∈ P\{0}. Since (x − s)n−5 > 0 for 0 ≤ s < x, there exists a compact
interval [α, β] ⊂ [0, 1] such that 1

(n−5)!

∫ x

0
(x − s)n−5v(s)ds > 0 and p(x) > 0 for all

x ∈ [α, β]. Then, since G(x, s) > 0 on (0, 1] × (0, 1],

Mv(x) =

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds

≥

∫ β

α

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds

> 0,

for 0 < x ≤ 1. Also, since ∂
∂x

G(x, s)|x=0 > 0 for 0 < s < 1,

(Mv)′(0) =

∫ 1

0

∂

∂x
G(0, s)p(s)

1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds

≥

∫ β

α

∂

∂x
G(0, s)p(s)

1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds

> 0,

and so Mv ∈ Ω ⊂ P◦. So M : P\{0} → Ω ⊂ P◦. Therefore by Lemma 2.1, M is
u0-positive with respect to P. A similar argument for N completes the proof. �

Remark 5.1. Notice that

Λv = Mv =

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds,
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if and only if

v(x) =
1

Λ

∫ 1

0

G(x, s)p(s)
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds,

if and only if

−v(4)(x) =
1

Λ
p(x)

1

(n − 5)!

∫ x

0

(x − s)n−5v(s)ds, 0 ≤ x ≤ 1,

with

v(0) = v′(r) = v′′(r) = v′′′(1) = 0.

So the eigenvalues of (5.4),(5.6) are reciprocals of eigenvalues of M , and conversely.
Similarly, eigenvalues of (5.5),(5.6) are reciprocals of N , and conversely.

Theorem 5.1. Let B, P, M , and N be defined as earlier. Then M (and N) has
an eigenvalue that is simple, positive, and larger than the absolute value of any other
eigenvalue, with an essentially unique eigenvector that can be chosen to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to P, by
Theorem 2.1, M has an essentially unique eigenvector, say v ∈ P, and eigenvalue Λ
with the above properties. Since v 6= 0, Mv ∈ Ω ⊂ P◦ and v = M

(

1
Λ
v
)

∈ P◦. �

Theorem 5.2. Let B, P, M , and N be defined as earlier. Let p(x) ≤ q(x) on [0, 1].
Let Λ1 and Λ2 be the eigenvalues defined in Theorem 5.1 associated with M and N ,
respectively, with the essentially unique eigenvectors v1 and v2 ∈ P◦. Then Λ1 ≤ Λ2,
and Λ1 = Λ2 if and only if p(x) = q(x) on [0, 1].

Proof. Let p(x) ≤ q(x) on [0, 1]. So for any v ∈ P, x ∈ [0, 1],

(Nv − Mv)(x) =

∫ 1

0

G(x, s)(q(s) − p(s))
1

(n − 5)!

∫ s

0

(s − t)n−5v(t)dtds ≥ 0.

So Nv −Mv ∈ P for all v ∈ P, or M ≤ N with respect to P. Then by Theorem 2.2,
Λ1 ≤ Λ2.

If p(x) = q(x), then Λ1 = Λ2. Now suppose p(x) 6= q(x). So p(x) < q(x) on
some subinterval [α, β] ⊂ [0, 1]. Then (N − M)v1 ∈ Ω ⊂ P◦ and so there exists
ǫ > 0 such that (N − M)v1 − ǫv1 ∈ P. So Λ1v1 + ǫv1 = Mv1 + ǫv1 ≤ Nv1, implying
Nv1 ≥ (Λ1 + ǫ)v1. Since N ≤ N and Nv2 = Λ2v2, by Theorem 2.2, Λ1 + ǫ ≤ Λ2, or
Λ1 < Λ2. �

By Remark 5.1, the following theorem is an immediate consequence of Theorems
5.1 and 5.2.
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Theorem 5.3. Assume the hypotheses of Theorem 5.2. Then there exists smallest
positive eigenvalues λ1 and λ2 of (5.4),(5.6) (and hence (5.1),(5.3)) and (5.5),(5.6)
(and hence (5.2),(5.3)), respectively, each of which is simple, positive, and less than
the absolute value of any other eigenvalue of the corresponding problems. Also, eigen-
functions corresponding to λ1 and λ2 may be chosen to belong to P◦. Finally, λ1 ≥ λ2,
and λ1 = λ2 if and only if p(x) = q(x) for 0 ≤ x ≤ 1.
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