Correction on the paper Triple positive solutions of *n*-th order impulsive integro-differential equations

by Zeyong Qiu and Shihuang Hong

Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 57, 1–13.

Abstract

This addendum concerns the paper of the above title found in EJQTDE No. 57 (2011). The example in Section 4 was not correct. The following example is a correction given by the authors. We regret any inconvenience which this may have caused any reader.

1 Correction

The example in Section 4 of the original text, i.e. problem (13), is not written correctly. The following example is a correction given by the authors.

Consider the second order impulsive integro-differential equation

$$\begin{cases} u''(t) = f(t, u(t), u'(t), (Tu)(t), (Su)(t)), \forall t \in J, t \neq 2^{k} \ (k = 0, 1, 2, \cdots); \\ \Delta u|_{t=2^{k}} = 2^{-k} [u(2^{k})]^{2} (15 + [u(2^{k}) + u'(2^{k})]^{2})^{-1}, \ (k = 0, 1, 2, \cdots), \\ \Delta u'|_{t=2^{k}} = 4^{-k} [u'(2^{k})]^{3/2} (5 + (u(2^{k}) + u'(2^{k}))^{3/2})^{-1}, \ (k = 0, 1, 2, \cdots), \\ u(0) = 0, \ u'(\infty) = 2u'(0). \end{cases}$$
(1)

Here Tu and Su are given by

$$(Tu)(t) = \int_0^t e^{-(t+1)s} u(s) ds = \int_0^t K(t,s)u(s) ds;$$

(Su)(t) = $\int_0^\infty e^{-2s} \sin^2(t-s)u(s) ds = \int_0^t H(t,s)u(s) ds$

with $K(t,s) = e^{-(t+1)s}$, $H(t,s) = e^{-2s} \sin^2(t-s)$, and, with $U = (u_0, u_1, u_2, u_3)$, f is the function

$$f(t,U) = \begin{cases} 18e^{-2t}e^{-2(10-u_0)(10-u_1)}g(U), & U \in [0,10) \times [0,\infty) \times [0,\infty) \times [0,\infty), \\ 18e^{-2t}g(U), & \text{otherwise.} \end{cases}$$

EJQTDE, 2011 No. 79, p. 1

with $g(U) = g(u_0, u_1, u_2, u_3) := \left(\frac{1+3u_0+4u_1+5u_2+6u_3}{2+u_0+u_1+u_2+u_3}\right)^2, \forall t \in J = [0, \infty), u_i \ge 0 \ (i = 0, 1, 2, 3).$ It is clear that g is a continuous positive function and

$$g(t, u(t), u'(t), (Tu)(t), (Su)(t)) = \left(\frac{1 + 3u(t) + 4u'(t) + 5(Tu)(t) + 6(Su)(t)}{2 + u(t) + u'(t) + (Tu)(t) + (Su)(t)}\right)^2.$$

Conclusion. The problem (1) has at least three positive solutions $x_1(t), x_2(t), x_3(t)$ such that

$$\begin{split} \|x_{j}\|_{D} &\leq 2160 \quad \text{for } j = 1, 2, 3; \\ 10 &< \min\left\{\min_{t \in [\frac{1}{2}, \infty)} x_{1}^{(i)}(t) : i = 0, 1\right\}; \\ 8 &< \max\left\{\sup_{t \in [0, 1]} x_{2}^{(i)}(t) : i = 0, 1\right\} \text{ with } \min\left\{\min_{t \in [\frac{1}{2}, \infty)} x_{2}^{(i)}(t) : i = 0, 1\right\} < 10; \\ \max\left\{\sup_{t \in [0, 1]} x_{3}^{(i)}(t) : i = 0, 1\right\} < 8. \end{split}$$

Proof. Let $E = DPC^{n-1}[J,\mathbb{R}]$, $P = DPC^{n-1}[J,\mathbb{R}_+]$. Thus, (1) can be regarded as BVP of the form (1) of the original text in E. In this case, $t_{k+1} = 2^k$ ($k = 0, 1, 2, \cdots$), $\rho = 2$, in which

$$I_{0k}(u_0, u_1) = 2^{-k} u_0^2 (15 + (u_0 + u_1)^2)^{-1},$$

$$I_{1k}(u_0, u_1) = 4^{-k} u_1^{3/2} (5 + (u_0 + u_1)^{3/2})^{-1}, \quad \forall u_0 \ge 0, u_1 \ge 0, (k = 0, 1, 2, \cdots).$$

Obviously, $I_{0k}, I_{1k} \in C[J, \mathbb{R}_+ \times \mathbb{R}_+, \mathbb{R}_+]$ $f \in C[J \times \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+, \mathbb{R}_+]$. Moreover,

$$\int_0^t e^{-(t+1)s} ds = -\frac{e^{-(t+1)t}}{t+1} + \frac{1}{t+1} < 1, \quad \int_0^\infty e^{-2s} \sin^2(t-s) ds \le \frac{1}{2}.$$

Since $e^{-t} \int_0^t e^{-(t+1)s} e^s ds \le t e^{-t}$, $e^{-t} \int_0^t e^{-2s} \sin^2(t-s) e^s ds \le e^{-t}$, $\forall t \in J$, we have

$$k^* = \sup_{t \in J} \left(e^{-t} \int_0^t e^{-(t+1)s} e^s ds \right) \le \sup_{t \in J} (te^{-t}) = \frac{e^{-1}}{2},$$

$$h^* = \left(e^{-t} \int_0^\infty e^{-2s} \sin^2(t-s) e^s ds \right) \le \sup_{t \in J} (e^{-t}) = 1.$$

Hence, condition (H1) is satisfied. From the definitions of f, I_{0k} and I_{1k} we have

$$0 \le f(t, u_0, u_1, u_2, u_3) \le 648e^{-2t} \left(\frac{1+u_0+u_1+u_2+u_3}{2+u_0+u_1+u_2+u_3}\right)^2 < 648e^{-2t}$$

EJQTDE, 2011 No. 79, p. 2

for any $t \in J$, $u_i \ge 0$ (i = 0, 1, 2, 3).

$$0 \le I_{0k}(u_0, u_1) \le 2^{-k} \frac{(u_0 + u_1)^2}{15 + (u_0 + u_1)^2} \le 2^{-k},$$

$$0 \le I_{1k}(u_0, u_1) \le 4^{-k} \frac{(u_0 + u_1)^{3/2}}{5 + (u_0 + u_1)^{3/2}} \le 4^{-k}$$

for any $u_0 \ge 0, u_1 \ge 0$ $(k = 0, 1, 2, \cdots)$.

We now take $\rho = 2, \lambda(t) = c(t) = e^{-2t}, \eta_{0k} = \mu_{0k} = 2^{-k}, \eta_{1k} = \mu_{1k} = 4^{-k}$, then $\lambda^* = c^* = \frac{1}{2}, \eta_0^* = \mu_0^* = 1, \eta_1^* = \mu_1^* = \frac{1}{3}, L = \frac{10}{3}$. Take a = 8, b = 10, d = 648, then the condition (H2) holds.

Take $l = \frac{1}{2}$, then $k_1 = 1, k_2 = \frac{1}{2}$. Take m = 3. Since $t_1 = 1, \lambda_0 = e^{-2}$. For $0 \le t \le \frac{1}{2}$ and $u_0 \ge 10, u_1 \ge 10, u_2 \ge 0, u_3 \ge 0$, since the function $\alpha(t) = \frac{3^{-1}+t}{2+t}$ for $t \ge 0$ is increasing, we have

$$f(t, u_0, u_1, u_2, u_3) \geq 18e^{-2t} \times 9\left(\frac{3^{-1} + u_0 + u_1 + u_2 + u_3}{2 + u_0 + u_2 + u_2 + u_3}\right)^2$$

$$\geq 162e^{-1}\left(\frac{20 + 3^{-1}}{22}\right)^2 > 20 = \frac{k_1 b}{l}.$$

This implies that the condition (H3) is true.

Take $q_0 = 1$, then $\delta = \frac{3}{10e}$. if $0 \le u_0 \le 8, 0 \le u_1 \le 8$, then $0 \le u_2 \le 8, 0 \le u_3 \le 4$. From this and the fact that the function $\frac{t}{t+1}$ is increasing it follows that

$$\frac{1+3u_0+4u_1+5u_2+6u_3}{2+u_0+u_1+u_2+u_3} \le \frac{6(1+u_0+u_1+u_2+u_3)}{2+u_0+u_1+u_2+u_3} \le \frac{29}{5} = 5.8.$$

Thus, we get

$$\begin{aligned} f(t, u_0, u_1, u_2, u_3) &= 18e^{-2t}e^{-2(10-u_0)(10-u_1)} \left(\frac{1+3u_0+4u_1+5u_2+6u_3}{2+u_0+u_1+u_2+u_3}\right)^2 \\ &\leq 18e^{-2t-8} \left(5.8\right)^2 < \frac{24}{10e}e^{-2t} = a\delta c(t). \\ I_{0k}(u_0, u_1) &= 2^{-k}\frac{u_0^2}{15+(u_0+u_1)^2} \leq \frac{64}{79} \times 2^{-k} < a\delta \mu_{0k}, \\ I_{1k}(u_0, u_1) &= 4^{-k}\frac{u_1^{3/2}}{5+(u_0+u_1)^{3/2}} \leq \frac{8^{3/2}}{5+8^{3/2}} \times 4^{-k} < a\delta \mu_{1k}. \end{aligned}$$

So, condition (H4) is satisfied. Consequently, our conclusion follows from Theorem 1 since f is a positive function so x_3 is not the zero solution.

EJQTDE, 2011 No. 79, p. 3

2 Acknowledgment

We thank Prof. J. Webb for pointing out gaps in our original example and for his help with the correction.

(Received October 13, 2011)