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Abstract
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1 Introduction

The theory of time scales was introduced and developed by Hilger [13] to
unify both continuous and discrete analysis. Time scales theory presents us
with the tools necessary to understand and explain the mathematical structure
underpinning the theories of discrete and continuous dynamic systems and
allows us to connect them. The theory is widely applied to various situations
like epidemic models, the stock market and mathematical modeling of physical
and biological systems. Certain economically important phenomena contain
processes that feature elements of both the continuous and discrete.

In recent years, the existence of positive solutions of the higher order
boundary value problems (BVPs) on time scales have been studied extensively
due to their striking applications to almost all area of science, engineering and
technology. The existence of positive solutions are studied by many authors.
A few papers along these lines are Henderson [11], Anderson [1, 2], Kaufmann
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[15], Anderson and Avery [3], DaCunha, Davis and Singh [10], Peterson, Raf-
foul and Tisdell [18], Sun and Li [19], Luo and Ma [17], Cetin and Topal [8],
Karaca [14] and Anderson and Karaca [4].

In this paper, we are concerned with the existence of positive solutions for
the 3nth order BVP on time scales,

(−1)ny∆(3n)

(t) = f(t, y(t)), t ∈ [t1, σ(t3)] (1.1)

satisfying the general three-point boundary conditions,

α3i−2,1y
∆(3i−3)

(t1) + α3i−2,2y
∆(3i−2)

(t1) + α3i−2,3y
∆(3i−1)

(t1) = 0,

α3i−1,1y
∆(3i−3)

(t2) + α3i−1,2y
∆(3i−2)

(t2) + α3i−1,3y
∆(3i−1)

(t2) = 0,

α3i,1y
∆(3i−3)

(σ(t3)) + α3i,2y
∆(3i−2)

(σ(t3)) + α3i,3y
∆(3i−1)

(σ(t3)) = 0,















(1.2)

for 1 ≤ i ≤ n, where n ≥ 1, α3i−2,j , α3i−1,j, α3i,j, for j = 1, 2, 3, are real
constants, t1 < t2 < σ(t3) and f : [t1, σ(t3)] × R

+ → R
+ is continuous. For

convenience, we use the following notations. For 1 ≤ i ≤ n, let us denote
βij = α3i−3+j,1tj +α3i−3+j,2, γij = α3i−3+j,1t

2
j +α3i−3+j,2(tj +σ(tj))+2α3i−3+j,3,

where j = 1, 2; βi3 = α3i,1σ(t3) + α3i,2 and γi3 = α3i,1(σ(t3))
2 + α3i,2(σ(t3) +

σ2(t3)) + 2α3i,3. Also, for 1 ≤ i ≤ n, we define

mijk
=

α3i−3+j,1γik − α3i−3+k,1γij

2(α3i−3+j,1βik − α3i−3+k,1βij )
, Mijk

=
βijγik − βikγij

α3i−3+j,1βik − α3i−3+k,1βij

,

where j, k = 1, 2, 3 and let pi = max{mi12 , mi13 , mi23},

qi = min

{

mi23 +
√

m2
i23

−Mi23 , mi13 +
√

m2
i13

−Mi13

}

,

di = α3i−2,1(βi2γi3 −βi3γi2)−βi1(α3i−1,1γi3 −α3i,1γi2)+γi1(α3i−1,1βi3 −α3i,1βi2)
and lij = α3i−3+j,1σ(s)σ2(s) − βij(σ(s) + σ2(s)) + γij , where j = 1, 2, 3. We
assume the following conditions throughout this paper:

(A1) α3i−2,1 > 0, α3i−1,1 > 0, α3i,1 > 0 and
α3i,2

α3i,1
>

α3i−1,2

α3i−1,1
>

α3i−2,2

α3i−2,1
, for all

1 ≤ i ≤ n,

(A2) pi ≤ t1 < t2 < σ(t3) ≤ qi and 2α3i−2,3α3i−2,1 > α2
3i−2,2,

2α3i−1,3α3i−1,1 < α2
3i−1,2, 2α3i,3α3i,1 > α2

3i,2, for all 1 ≤ i ≤ n,

(A3) m2
i23
> Mi23 , m

2
i12
< Mi12 , m

2
i13
> Mi13 and di > 0, for all 1 ≤ i ≤ n,

(A4) The point t ∈ [t1, σ(t3)] is not left dense and right scattered at the same
time.
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This paper is organized as follows. In Section 2, we construct the Green’s
function for the homogeneous problem corresponding to (1.1)-(1.2) and esti-
mate bounds for the Green’s function. In Section 3, we establish a criteria for
the existence of at least two positive solutions for the BVP (1.1)-(1.2) by using
an Avery-Henderson fixed point theorem [5]. We also establish the existence
of at least 2m positive solutions for an arbitrary positive integer m. Finally
as an application, we give an example to illustrate our result.

2 Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous prob-
lem corresponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

Let Gi(t, s) be the Green’s function for the homogeneous BVP,

−y∆3

(t) = 0, t ∈ [t1, σ(t3)], (2.1)

satisfying the general three-point boundary conditions,

α3i−2,1y(t1) + α3i−2,2y
∆(t1) + α3i−2,3y

∆2

(t1) = 0,

α3i−1,1y(t2) + α3i−1,2y
∆(t2) + α3i−1,3y

∆2

(t2) = 0,

α3i,1y(σ(t3)) + α3i,2y
∆(σ(t3)) + α3i,3y

∆2

(σ(t3)) = 0,















(2.2)

for 1 ≤ i ≤ n.

Lemma 2.1 For 1 ≤ i ≤ n, the Green’s function Gi(t, s) for the homogeneous
BVP (2.1)-(2.2) is given by

Gi(t, s) =







































Gi(t,s)
t∈[t1,t2] =







Gi1(t, s), t1 < σ(s) < t ≤ t2 < σ(t3)
Gi2(t, s), t1 ≤ t < s < t2 < σ(t3)
Gi3(t, s), t1 ≤ t < t2 < s < σ(t3)

Gi(t,s)
t∈[t2,σ(t3)] =







Gi4(t, s), t1 < t2 < σ(s) < t ≤ σ(t3)
Gi5(t, s), t1 < t2 ≤ t < s < σ(t3)
Gi6(t, s), t1 ≤ σ(s) < t2 < t < σ(t3)

(2.3)

where

Gi1(t, s) =
1

2di

[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2) − t2(α3i−1,1βi3−

α3i,1βi2)]li1,
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Gi2(t, s) =
1

2di

{[−(βi1γi3 − βi3γi1) + t(α3i−2,1γi3 − α3i,1γi1) − t2(α3i−2,1βi3−

α3i,1βi1)]li2 + [(βi1γi2 − βi2γi1) − t(α3i−2,1γi2 − α3i−1,1γi1)+

t2(α3i−2,1βi2 − α3i−1,1βi1)]li3},

Gi3(t, s) =
1

2di

[(βi1γi2 − βi2γi1) − t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi4(t, s) =
1

2di

{[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2) − t2(α3i−1,1βi3−

α3i,1βi2)]li1 + [(βi1γi3 − βi3γi1) − t(α3i−2,1γi3 − α3i,1γi1)+

t2(α3i−2,1βi3 − α3i,1βi1)]li2},

Gi5(t, s) =
1

2di

[(βi1γi2 − βi2γi1) − t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi6(t, s) =
1

2di

[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2) − t2(α3i−1,1βi3−

α3i,1βi2)]li1.

Lemma 2.2 Assume that the conditions (A1)-(A4) are satisfied. Then, for
1 ≤ i ≤ n, the Green’s function Gi(t, s) of (2.1)-(2.2) is positive, for all
(t, s) ∈ [t1, σ(t3)] × [t1, t3].

Proof: For 1 ≤ i ≤ n, the Green’s function Gi(t, s) is given in (2.3). We prove
the result for Gi1(t, s). Then, Gi1(t, s) = gi1(t)li1(s), where

gi1(t) =
1

2di

[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2) − t2(α3i−1,1βi3−

α3i,1βi2)].

Using the conditions (A1) and (A4), gi1(t) has maximum at t = mi23 , and
hence gi1(t) > 0 on [t1, σ(t3)] by conditions (A2) and (A3). From conditions
(A2) and (A4), li1(s) > 0 on [t1, t3].
Therefore,

Gi1(t, s) > 0, for all (t, s) ∈ [t1, σ(t3)] × [t1, t3].

Similarly, we can establish the positivity of the Green’s function in the remain-
ing cases. 2
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Theorem 2.3 Assume that the conditions (A1)-(A4) are satisfied. Then, for
1 ≤ i ≤ n, the Green’s function Gi(t, s) satisfies the following inequality,

miGi(σ(s), s) ≤ Gi(t, s) ≤ Gi(σ(s), s), for all (t, s) ∈ [t1, σ(t3)] × [t1, t3],
(2.4)

where

0 < mi = min

{

Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}

< 1.

Proof: For 1 ≤ i ≤ n, the Green’s function Gi(t, s) is given (2.3) in six different
cases. In each case, we prove the inequality as in (2.4).

Case 1. For t1 < σ(s) < t ≤ t2 < σ(t3).
Gi(t,s)

Gi(σ(s),s)
=

Gi1
(t,s)

Gi1
(σ(s),s)

=
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2) − t2(α3i−1,1βi3 − α3i,1βi2)]

[−(βi2γi3 − βi3γi2) + σ(s)(α3i−1,1γi3 − α3i,1γi2) − (σ(s))2(α3i−1,1βi3 − α3i,1βi2)]
.

From (A1)-(A4), we have Gi1(t, s) ≤ Gi1(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
=

Gi1(t, s)

Gi1(σ(s), s)
≥

Gi1(t, s)

Gi1(t1, s)
≥
Gi1(σ(t3), s)

Gi1(t1, s)
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and Gi(t, s) ≥
Gi1

(σ(t3),s)

Gi1
(t1,s)

Gi(σ(s), s), for all

(t, s) ∈ [t1, σ(t3)] × [t1, t3].

Case 2. For t1 ≤ t < t2 < s < σ(t3).
Gi(t,s)

Gi(σ(s),s)
=

Gi3
(t,s)

Gi3
(σ(s),s)

=
[(βi1γi2 − βi2γi1) − t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2 − α3i−1,1βi1)]

[(βi1γi2 − βi2γi1) − σ(s)(α3i−2,1γi2 − α3i−1,1γi1) + (σ(s))2(α3i−2,1βi2 − α3i−1,1βi1)]
.

From (A1)-(A4), we have Gi3(t, s) ≤ Gi3(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
=

Gi3(t, s)

Gi3(σ(s), s)
≥

Gi3(t, s)

Gi3(σ(t3), s)
≥

Gi3(t1, s)

Gi3(σ(t3), s)
.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and Gi(t, s) ≥
Gi3

(t1,s)

Gi3
(σ(t3),s)

Gi(σ(s), s), for all

(t, s) ∈ [t1, σ(t3)] × [t1, t3].
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Case 3. For t1 ≤ t < s < t2 < σ(t3).
From (A1)-(A4) and case 2, we have Gi2(t, s) ≤ Gi2(σ(s), s) and also

Gi(t, s)

Gi(σ(s), s)
≥ min

{

Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)

}

.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and

Gi(t, s) ≥ min

{

Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)

}

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)] × [t1, t3].

Case 4. For t1 < t2 < σ(s) < t ≤ σ(t3).
From (A1)-(A4) and case 1, we have Gi4(t, s) ≤ Gi4(σ(s), s) and

Gi(t, s)

Gi(σ(s), s)
≥ min

{

Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}

.

Therefore, Gi(t, s) ≤ Gi(σ(s), s) and

Gi(t, s) ≥ min

{

Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)] × [t1, t3].

Case 5. For t1 < t2 ≤ t < s < σ(t3).

From case 2, we haveGi(t, s) ≤ Gi(σ(s), s) andGi(t, s) ≥
Gi3

(t1,s)

Gi3
(σ(t3),s)

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)] × [t1, t3].

Case 6. For t1 ≤ σ(s) < t2 < t < σ(t3).

From case 1, we haveGi(t, s) ≤ Gi(σ(s), s) andGi(t, s) ≥
Gi1

(σ(t3),s)

Gi1
(t1,s)

Gi(σ(s), s),

for all (t, s) ∈ [t1, σ(t3)] × [t1, t3].

From all above cases, for 1 ≤ i ≤ n, we have

miGi(σ(s), s) ≤ Gi(t, s) ≤ Gi(σ(s), s), for all (t, s) ∈ [t1, σ(t3)] × [t1, t3],
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where

0 < mi = min

{

Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}

< 1.

2

Lemma 2.4 Assume that the conditions (A1)-(A4) are satisfied and Gi(t, s)
is defined as in (2.3). Take H1(t, s) = G1(t, s) and recursively define

Hj(t, s) =

∫ σ(t3)

t1

Hj−1(t, r)Gj(r, s)∆r, for 2 ≤ j ≤ n.

Then Hn(t, s) is the Green’s function for the homogeneous BVP corresponding
to (1.1)-(1.2).

Lemma 2.5 Assume that the conditions (A1)-(A4) hold. If we define

K =

n−1
∏

j=1

Kj and L =

n−1
∏

j=1

mjLj ,

then the Green’s function Hn(t, s) in Lemma 2.4 satisfies

0 ≤ Hn(t, s) ≤ K ‖ Gn(·, s) ‖, for all (t, s) ∈ [t1, σ(t3)] × [t1, t3]

and

Hn(t, s) ≥ mnL ‖ Gn(·, s) ‖, for all (t, s) ∈ [t2, σ(t3)] × [t1, t3],

where mn is given as in Theorem 2.3,

Kj =

∫ σ(t3)

t1

‖ Gj(·, s) ‖ ∆s > 0, for 1 ≤ j ≤ n,

Lj =

∫ σ(t3)

t2

‖ Gj(·, s) ‖ ∆s > 0, for 1 ≤ j ≤ n

and ‖ · ‖ is defined by

‖ x ‖= max
t∈[t1,σ(t3)]

|x(t)|.
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3 Multiple Positive Solutions

In this section, we establish the existence of at least two positive solutions
for the BVP (1.1)-(1.2) by using an Avery-Henderson functional fixed point
theorem. And then, we establish the existence of at least 2m positive solutions
for an arbitrary positive integer m.

Let B be a real Banach space. A nonempty closed convex set P ⊂ B is
called a cone, if it satisfies the following two conditions:

(i) y ∈ P, λ ≥ 0 implies λy ∈ P , and

(ii) y ∈ P and −y ∈ P implies y = 0.

Let ψ be a nonnegative continuous functional on a cone P of the real
Banach space B. Then for a positive real number c′, we define the sets

P (ψ, c′) = {y ∈ P : ψ(y) < c′}

and

Pa = {y ∈ P :‖ y ‖< a}.

In obtaining multiple positive solutions of the BVP (1.1)-(1.2), the follow-
ing Avery-Henderson functional fixed point theorem will be the fundamental
tool.

Theorem 3.1 [5] Let P be a cone in a real Banach space B. Suppose α and γ
are increasing, nonnegative continuous functionals on P and θ is nonnegative
continuous functional on P with θ(0) = 0 such that, for some positive numbers
c′ and k, γ(y) ≤ θ(y) ≤ α(y) and ‖ y ‖≤ kγ(y), for all y ∈ P (γ, c′). Suppose
that there exist positive numbers a′ and b′ with a′ < b′ < c′ such that θ(λy) ≤
λθ(y), for all 0 ≤ λ ≤ 1 and y ∈ ∂P (θ, b′). Further, let T : P (γ, c′) → P be a
completely continuous operator such that
(B1) γ(Ty) > c′, for all y ∈ ∂P (γ, c′),
(B2) θ(Ty) < b′, for all y ∈ ∂P (θ, b′),
(B3) P (α, a′) 6= ∅ and α(Ty) > a′, for all y ∈ ∂P (α, a′).
Then, T has at least two fixed points y1, y2 ∈ P (γ, c′) such that
a′ < α(y1) with θ(y1) < b′ and b′ < θ(y2) with γ(y2) < c′.

Let

M = mn

n−1
∏

j=1

mjLj

Kj

(3.1)
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Let B = {y : y ∈ C[t1, σ(t3)]} be the Banach space equipped with the norm

‖ y ‖= max
t∈[t1,σ(t3)]

|y(t)|.

Define the cone P ⊂ B by

P = {y ∈ B : y(t) ≥ 0 on [t1, σ(t3)] and min
t∈[t2,σ(t3)]

y(t) ≥ M ‖ y ‖},

where M is given as in (3.1).
Define the nonnegative, increasing, continuous functionals γ, θ and α on

the cone P by

γ(y) = min
t∈[t2,σ(t3)]

y(t), θ(y) = max
t∈[t2,σ(t3)]

y(t) and α(y) = max
t∈[t1,σ(t3)]

y(t).

We observe that for any y ∈ P ,

γ(y) ≤ θ(y) ≤ α(y) (3.2)

and

‖ y ‖≤
1

M
min

t∈[t2,σ(t3)]
y(t) =

1

M
γ(y) ≤

1

M
θ(y) ≤

1

M
α(y). (3.3)

Theorem 3.2 Suppose there exist 0 < a′ < b′ < c′ such that f satisfies the
following conditions.
(D1) f(t, y) > c′

Πn
j=1mjLj

, for t ∈ [t2, σ(t3)] and y ∈ [c′, c′

M
],

(D2) f(t, y) < b′

Πn
j=1Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0, b′

M
],

(D3) f(t, y) > a′

Πn
j=1mjLj

, for t ∈ [t2, σ(t3)] and y ∈ [a′, a′

M
],

where mn and M are defined in Theorem 2.3 and (3.1) respectively. Then the
BVP (1.1)-(1.2) has at least two positive solutions y1 and y2 such that

a′ < max
t∈[t1,σ(t3)]

y1(t) with max
t∈[t2,σ(t3)]

y1(t) < b′,

b′ < max
t∈[t2,σ(t3)]

y2(t) with min
t∈[t2,σ(t3)]

y2(t) < c′.

Proof: Define the operator T : P → B by

Ty(t) =

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s. (3.4)

It is obvious that a fixed point of T is the solution of the BVP (1.1)-(1.2). We
seek two fixed points y1, y2 ∈ P of T . First, we show that T : P → P . Let
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y ∈ P . From Theorem 2.3 and Lemma 2.5, we have Ty(t) ≥ 0 on [t1, σ(t3)]
and also,

Ty(t) =

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≤ K

∫ σ(t3)

t1

‖ Gn(·, s) ‖ f(s, y(s))∆s

so that

‖ Ty ‖≤ K

∫ σ(t3)

t1

‖ Gn(·, s) ‖ f(s, y(s))∆s.

Next, if y ∈ P , then we have

Ty(t) =

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≥ mnL

∫ σ(t3)

t1

‖ Gn(·, s) ‖ f(s, y(s))∆s

≥
mnL

K
‖ Ty ‖= M ‖ Ty ‖ .

Hence Ty ∈ P and so T : P → P . Moreover, T is completely continuous. From
(3.2) and (3.3), for each y ∈ P , we have γ(y) ≤ θ(y) ≤ α(y) and ‖ y ‖≤ 1

M
γ(y).

Also, for any 0 ≤ λ ≤ 1 and y ∈ P , we have θ(λy) = maxt∈[t2,σ(t3)](λy)(t) =
λmaxt∈[t2,σ(t3)] y(t) = λθ(y). It is clear that θ(0) = 0. We now show that the
remaining conditions of Theorem 3.1 are satisfied.
Firstly, we shall verify that condition (B1) of Theorem 3.1 is satisfied. Since
y ∈ ∂P (γ, c′), from (3.3) we have that c′ = mint∈[t2,σ(t3)] y(t) ≤‖ y ‖≤ c′

M
. Then

γ(Ty) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≥ min
t∈[t2,σ(t3)]

∫ σ(t3)

t2

Hn(t, s)f(s, y(s))∆s

>
c′

Πn
j=1mjLj

mnL

∫ σ(t3)

t2

‖ Gn(·, s) ‖ ∆s = c′,

using hypothesis (D1).
Now we shall show that condition (B2) of Theorem 3.1 is satisfied. Since
y ∈ ∂P (θ, b′), from (3.3) we have that 0 ≤ y(t) ≤‖ y ‖≤ b′

M
, for [t1, σ(t3)].
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Thus

θ(Ty) = max
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

<
b′

Πn
j=1Kj

K

∫ σ(t3)

t1

‖ Gn(·, s) ‖ ∆s = b′,

by hypothesis (D2).
Finally, using hypothesis (D3), we shall show that condition (B3) of Theorem
3.1 is satisfied. Since 0 ∈ P and a′ > 0, P (α, a′) 6= ∅. Since y ∈ ∂P (α, a′),
a′ = maxt∈[t1,σ(t3)] y(t) ≤‖ y ‖≤ a′

M
, for t ∈ [t2, σ(t3)]. Therefore,

α(Ty) = max
t∈[t1,σ(t3)]

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

≥

∫ σ(t3)

t1

Hn(t, s)f(s, y(s))∆s

>
a′

Πn
j=1mjLj

mnL

∫ σ(t3)

t2

‖ Gn(·, s) ‖ ∆s = a′.

Thus, all the conditions of Theorem 3.1 are satisfied and so there exist at least
two positive solutions y1, y2 ∈ P (γ, c′) for the BVP (1.1)-(1.2). This completes
the proof of the theorem. 2

Theorem 3.3 Let m be an arbitrary positive integer. Assume that there exist
numbers ar(r = 1, 2, · · ·, m + 1) and bs(s = 1, 2, · · ·, m) with 0 < a1 < b1 <

a2 < b2 < · · · < am < bm < am+1 such that

f(t, y) >
ar

Πn
j=1mjLj

, for t ∈ [t2, σ(t3)] and y ∈ [ar,
ar

M
], r = 1, 2, · · ·, m+ 1,

(3.5)

f(t, y) <
bs

Πn
j=1Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0,
bs

M
], s = 1, 2, · · ·, m. (3.6)

Then the BVP (1.1)-(1.2) has at least 2m positive solutions in P am+1 .

Proof: We use induction on m. For m = 1, we know from (3.5) and (3.6) that
T : P a2 → Pa2 , then, it follows from Avery-Henderson fixed point theorem
that the BVP (1.1)-(1.2) has at least two positive solutions in P a2 . Next, we
assume that this conclusion holds for m = l. In order to prove this conclusion
holds for m = l+1. We suppose that there exist numbers ar(r = 1, 2, · · ·, l+2)
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and bs(s = 1, 2, · · ·, l+1) with 0 < a1 < b1 < a2 < b2 < · · · < al+1 < bl+1 < al+2

such that

f(t, y) >
ar

Πn
j=1mjLj

, for t ∈ [t2, σ(t3)] and y ∈ [ar,
ar

M
], r = 1, 2, · · ·, l + 2,

(3.7)

f(t, y) <
bs

Πn
j=1Kj

, for t ∈ [t1, σ(t3)] and y ∈ [0,
bs

M
], s = 1, 2, · · ·, l + 1.

(3.8)
By assumption, the BVP (1.1)-(1.2) has at least 2l positive solutions yi(i =
1, 2, · · ·, 2l) in P al+1

. At the same time, it follows from Theorem 3.2, (3.7) and

(3.8) that the BVP (1.1)-(1.2) has at least two positive solutions y1, y2 in P al+2

such that al+1 < α(y1) with θ(y1) < bl+1 and bl+1 < θ(y2) with γ(y2) < al+2.
Obviously y1 and y2 are different from yi(i = 1, 2, · · ·, 2l). Therefore, the BVP
(1.1)-(1.2) has at least 2l+2 positive solutions in P al+2

, which shows that this
conclusion holds for m = l + 1. 2

4 Example

Let us consider an example to illustrate the usage of the Theorem 3.2. Let
n = 2 and T = {0}∪{ 1

2n+1 : n ∈ N}∪ [1
2
, 3

2
]. Now, consider the following BVP,

y∆6

(t) =
800(y + 1)4

73(y2 + 999)
, t ∈ [0, σ(1)] ∩ T (4.1)

subject to the boundary conditions,

1

2
y(0) − y∆(0) + 2y∆2

(0) = 0,

2y
(1

2

)

− 3y∆
(1

2

)

+ 2y∆2
(1

2

)

= 0,

y(σ(1)) +
1

2
y∆(σ(1)) +

1

3
y∆2

(σ(1)) = 0,

3

4
y∆3

(0) − 2y∆4

(0) + 3y∆5

(0) = 0,

y∆3
(1

2

)

− 2y∆4
(1

2

)

+ y∆5
(1

2

)

= 0,

y∆3

(σ(1)) +
1

2
y∆4

(σ(1)) +
1

2
y∆5

(σ(1)) = 0.











































































(4.2)
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Then the conditions (A1)-(A4) are satisfied. The Green’s function G1(t, s) in
Lemma 2.1 is

G1(t, s) =







































G1(t,s)

t∈[0, 1
2
]
=







G11(t, s), 0 < σ(s) < t ≤ 1
2
< σ(1)

G12(t, s), 0 ≤ t < s < 1
2
< σ(1)

G13(t, s), 0 ≤ t < 1
2
< s < σ(1)

G1(t,s)

t∈[ 1
2
,σ(1)]

=







G14(t, s), 0 < 1
2
< σ(s) < t ≤ σ(1)

G15(t, s), 0 < 1
2
≤ t < s < σ(1)

G16(t, s), 0 ≤ σ(s) < 1
2
< t < σ(1)

where

G11(t, s) =
12

481

[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]

,

G12(t, s) =
12

481

{[26

3
−

8

3
t−

7

4
t2

][

2σ(s)σ2(s) + 2(σ(s) + σ2(s)) +
3

2

]

+
[13

2
+

29

4
t+ t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) +

8

3

]}

,

G13(t, s) =
12

481

[13

2
+

29

4
t+ t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) +

8

3

]

,

G14(t, s) =
12

481

{[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]

+
[

−
26

3
+

8

3
t+

7

4
t2

][

2σ(s)σ2(s) + 2(σ(s) + σ2(s)) +
3

2

]}

,

G15(t, s) =
12

481

[13

2
+

29

4
t+ t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) +

8

3

]

,

G16(t, s) =
12

481

[91

12
+

23

6
t− 5t2

][1

2
σ(s)σ2(s) + (σ(s) + σ2(s)) + 4

]

.

The Green’s function G2(t, s) in Lemma 2.1 is

G2(t, s) =







































G2(t,s)

t∈[0, 1
2
]
=







G21(t, s), 0 < σ(s) < t ≤ 1
2
< σ(1)

G22(t, s), 0 ≤ t < s < 1
2
< σ(1)

G23(t, s), 0 ≤ t < 1
2
< s < σ(1)

G2(t,s)

t∈[ 1
2
,σ(1)]

=







G24(t, s), 0 < 1
2
< σ(s) < t ≤ σ(1)

G25(t, s), 0 < 1
2
≤ t < s < σ(1)

G26(t, s), 0 ≤ σ(s) < 1
2
< t < σ(1)

where

G21(t, s) =
16

635

[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]

,
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G22(t, s) =
16

635

{[

15 −
15

4
t−

25

8
t2

][

σ(s)σ2(s) +
3

2
(σ(s) + σ2(s)) +

1

4

]

+
[17

2
+

93

16
t+

7

8
t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) + 3

]}

,

G23(t, s) =
16

635

[17

2
+

93

16
t+

7

8
t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) + 3

]

,

G24(t, s) =
16

635

{[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]

+
[

− 15 +
15

4
t+

25

8
t2

][

σ(s)σ2(s) +
3

2
(σ(s) + σ2(s)) +

1

4

]}

,

G25(t, s) =
16

635

[17

2
+

93

16
t+

7

8
t2

][

σ(s)σ2(s) −
3

2
(σ(s) + σ2(s)) + 3

]

,

G26(t, s) =
16

635

[39

8
+

11

4
t− 3t2

][3

4
σ(s)σ2(s) + 2(σ(s) + σ2(s)) + 6

]

.

From Theorem 2.3 and Lemma 2.5, we get

m1 = 0.4406779661, K1 = 0.6552328771, L1 = 0.183991684,

m2 = 0.5596707819, K2 = 0.7449516076, L2 = 0.2551181102.

Therefore, K = 0.6552328771, L = 0.08108108108 and M = 0.06925585335.
Clearly f is continuous and increasing on [0,∞). If we choose a′ = 0.0001,
b′ = 0.04 and c′ = 100 then 0 < a′ < b′ < c′ and f satisfies

(i) f(t, y) > 8637.8676 = c′

Π2
j=1mjLj

, for t ∈ [1
2
, σ(1)] and y ∈ [100, 1443.9212],

(ii) f(t, y) < 0.081947 = b′

Π2
j=1Kj

, for t ∈ [0, σ(1)] and y ∈ [0, 0.577568],

(iii) f(t, y) > 0.008637 = a′

Π2
j=1mjLj

, for t ∈ [1
2
, σ(1)] and y ∈ [0.0001, 0.001443].

Then all the conditions of Theorem 3.2 are satisfied. Thus by Theorem 3.2,
the BVP (4.1)-(4.2) has at least two positive solutions y1 and y2 satisfying

0.0001 < max
t∈[0,σ(1)]

y1(t) with max
t∈[ 1

2
,σ(1)]

y1(t) < 0.04,

0.04 < max
t∈[ 1

2
,σ(1)]

y2(t) with min
t∈[ 1

2
,σ(1)]

y2(t) < 100.
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