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1. INTRODUCTION

There exists a large classical theory concerning the asymptotic behavior
of the solutions of the “perturbed” equation

ẋ = Ax+ F (t, x) (1)

determined by the behavior of the homogenous equation

ẋ = Ax. (2)

An early account is found in the book of Bellman [4], with progressive
treatments in Coppel [6], Hale [8] , Kartsatos [11], Yoshizawa [18] etc.

In addition to stability problems, special attention has been devoted to
the boundedness of solutions on IR+ = [0,+∞[ or on IR; although numer-
ous results have been obtained, this field is not exhausted. During the last
few years, very interesting results concerning the existence of bounded solu-
tions have been established; we mention, in particular, the ones of Mawhin,
Ortega, Tineo and Ward ([12], [13], [14], [15], [16], [17]).
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A behavior stronger than the boundedness is the one when the solutions
admit finite limits on the boundary of the definition domain interval; in
particular +∞ when this interval is IR+ or ±∞ when this interval is IR. The
solutions of this type are called convergent and their existence has been the
object of many works (see e.g. [1], [9], [10]). In the same direction, during the
last several years inverstigators have considered the problem of the existence
of solutions satisfying boundary conditions of type x (+∞) = x (−∞), where
x (±∞) := lim

t→±∞
x (t) .

Such a problem will be considered in the present paper; more precisely,
we shall prove the existence of solutions for an equation of type (1) , satis-
fying the boundary condition

x (+∞) = x (−∞) = 0. (3)

A solution of a differential functional equation, satisfying the condition
(3) is called evanescent solution.

It is well-known that the problem of the existence of evanescent solu-
tions on IR+ is closely related to the problem of the asymptotic stability; in
this sense an interesting result is contained in [5]. The results of this note
concern the existence of solutions for the problem (1) , (3) and yield certain
generalizations of the results contained in [14], related to the existence of
the bounded solutions of the equation (1) .

The second section of the paper is devoted to the notations and the
main classical results. In the third section a general existence theorem for
the linear equation with continuous perturbations is given. This result is
used in the next section for the n−th order nonresonant linear equation
with constant coefficients and continuous perturbations. Finally, in the fifth
section the case of certain nonlinear perturbations is considered.

2. NOTATIONS AND PRELIMINARY RESULTS

In what follows A will be a constant matrix n × n and f : IR → IRn,
g : IRn → IR, h : IR → IR, F : IR × IRn → IRn will be continuous functions.
Consider the following spaces

C : = {x : IR → IRn, x continuous and bounded}

C0 : = {x : IR → IR, x ∈ C, x (+∞) = x (−∞) = 0}

Cn
0 : =

{

y : IR → IR, y of class Cn, y(p) (±∞) = 0, p ∈ 0, n− 1
}

P0 : = {y : IR → IR, y continuous and admits an evanescent primitive} .
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C is a Banach space with the norm

‖x‖∞ := sup
t∈IR

|x (t)| ,

where |·| represents a norm in IRn; C0 is a subspace of C.
Cn

0 endowed with the norm

‖y‖n :=
n

∑

j=1

sup
t∈IR

∣

∣

∣yj (t)
∣

∣

∣ ,

it becomes a Banach space.
Notice that C0 6⊂ P0 and P0 6⊂ C0, as shown respectively by p (t) = 1

1+t2

and p (t) =sgn (t) sin t2, P (t) =
(

∫ t
0 p (s) ds−

∫ ∞
0 sin s2 ds

)′
.

Denote by (aj)j∈1,n the eigenvalues of the matrix A.
Definition 1. The matrix A is called nonresonant iff no aj lies on

the imaginary axis.
This classical result is due to Perron (see e.g. [7], p. 150 and [8], p. 22).
Proposition 1. Suppose that no eigenvalue of A lies on the imaginary

axis (i.e. A is nonresonant). Then, for every f ∈ C, the equation

ẋ = Ax+ f (t) (4)

has a unique bounded solution x. This solution satisfies the inequality

|x (t)| ≤
k · ‖f‖∞

a
, (5)

where k > 0 is a constant and a ∈]0, min
1≤j≤n

|aj|]. This solution is given by

the equality

x (t) =

∫ t

−∞

P−e
A(t−s)f (s) ds−

∫ +∞

t
P+e

A(t−s)f (s) ds, (6)

where P−, P+ are two supplementary projectors in IRn, commuting with A.
Furthermore,

∣

∣

∣eAtP−x
∣

∣

∣ ≤ ke−at |P−x| , t ≥ 0, (7)

∣

∣

∣eAtP+x
∣

∣

∣ ≤ keat |P+x| , t ≤ 0, (8)

with k > 0 and x ∈ IRn.
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In the special case of a nonhomogenous scalar linear differential equation,

L [y] (t) = h (t) , (9)

associated to the linear differential operator with constant coefficients aj,

L [y] (t) := y(n) + an−1y
(n−1) + ...+ a1y

′ + a0y, (10)

the above result implies the existence of a unique bounded solution for every
bounded function h, if and only if no zero of the characteristic polynomial

L (λ) := λn + an−1λ
n−1 + ...+ a1λ+ a0 (11)

lies on the imaginary axis (i.e. L is nonresonant).
In this case, the estimate (5) can be written under the form

‖y‖n ≤
k ‖h‖∞

a
. (12)

Remark 1. A evanescent solution for (9) is a solution y such that
y(j) (±∞) = 0, j ∈ 0, n− 1.

3. LINEAR EQUATIONS WITH CONTINUOUS FORCING

TERM

The first result on the existence of a evanescent solution is the following.
Theorem 1. Suppose that A is nonresonant. Then for every evanes-

cent function f, the equation (1) has an unique evanescent solution and this
solution satisfies (5) .

Proof. The unique bounded solution of (1) is given by (6) . It remains
to prove that this solution is evanescent.

By using (7) one gets

∣

∣

∣

∣

∫ t

−∞

P−e
A(t−s)f (s) ds

∣

∣

∣

∣

≤ ke−at

∫ t

−∞

eas |P−f (s)| ds. (13)

The integral appearing in the right side of the inequality (13) is a non-
decreasing real function; if in addition it is bounded, then the right side of
(13) tends to 0 as t→ +∞. If this integral is not bounded, then it will tend
to +∞ as t→ +∞.
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By L’Hospital rule one deduces

lim
t→+∞

1

eat

∫ t

−∞

eas |P−f (s)| ds = lim
t→+∞

eat |P−f (t)|

aeat
=

= lim
t→+∞

|P−f (t)|

a
= 0.

Analogously, from
∣

∣

∣

∣

∫ +∞

t
P+e

A(t−s)f (s) ds

∣

∣

∣

∣

≤ keat

∫ +∞

t
e−as |P+f (s)| ds

one obtains

lim
t→−∞

∫ +∞

t
P+e

A(t−s)f (s) ds = 0.

Therefore, for x given by (6) one has

lim
t→+∞

x (t) = 0.

A similar reasoning shows that

lim
t→−∞

x (t) = 0,

which ends the proof. 2

Corrolary 1. If L is nonresonant, then for every evanescent h, the
equation (9) has an unique evanescent solution y and this solution satisfies
(12) .

4. LINEAR EQUATIONS OF n− ORDER WITH

CONTINUOUS FORCING TERM

Another result is contained in the following theorem.

Theorem 2. Suppose that λ = 0 is a simple zero for (11) and (11) has
no other zero on the imaginary axis. Then the equation (9) has an unique
evanescent solution if and only if h ∈ P0.

Proof. If n = 1, by our assumption L [y] = y ′ and the result is obvious.
Assume now that n ≥ 2. We first prove the necessity. Let y be an

evenescent solution for (9); by integrating the both members of (9) one gets

y(n−1) (t) + ...+ a1y (t) =

∫ t

0
h (s) ds+ y(n−1) (0) + ...+ a1y (0) , (14)
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since, by our assumtion, a0 = 0. Then the primitive of h

H (t) =

∫ t

0
h (s) ds+ y(n−1) (0) + ...+ a1y (0)

is evenescent.
We now prove the sufficiency. Let h ∈ P0 and consider the equation

z(n−1) + an−1z
(n−2) + ...+ a1z = H (t) , (15)

when H is the (unique) evanescent primitive of h.
By the assumptions, every zero of the characteristic polynomial associ-

ated to (15) has no zero real part and the equation (15) an unique solution
z such that

z(j) (±∞) = 0, j ∈ 0, n− 2. (16)

But, from (15) it results that

z(n−1) (±∞) = 0.

By (15) one obtains

z(n) + an−1z
(n−1) + ...+ a1z

′ = h (t) ,

and the proof is complete. 2

Corrolary 2. The equation

y′′ (t) + cy′ (t) = h (t) , c 6= 0 (17)

has a unique evanescent solution if and only if h ∈ P0.

Theorem 3. Assume that L is nonresonant. Then the equation (9) has
a evanescent solution if and only if h = ϕ+ ψ, when ϕ ∈ P0 and ψ ∈ C0.

Proof.

The necessity. Let y be a evanescent solution for (9). Then

ϕ (t) = y(n) (t) ,

ψ (t) = an−1y
(n−1) (t) + ...+ a1y

′ (t) + a0y (t) .

The sufficiency. Let

Λ :=
dn

dtn
+ bn−1

dn−1

dtn−1
+ ...+ b1

d

dt
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be a linear differential operator satisfying the conditions of theorem 2; then
the equation

Λ [y] (t) = ϕ (t)

has an evenescent solution u. If one changes the variable

y := z + u,

then z is the unique evanescent solution of the equation

L [z] (t) = Λ [u] (t) − L [u] (t) + ψ (t) . (18)

This last equation has an unique evanescent solution since the right side
of (18) is a evanescent function. 2

Corrolary 3. Let p ∈ C be given and let b > 0 and c 6= 0 or b < 0. Then
the equation

y′′ + cy′ + by = p (t)

has a evanescent solution if and only if p ∈ P0 + C0.

5. NONLINEAR PERTURBATION OF A NONRESONANT

EQUATION

In [13] the problem of the existence of bounded solutions for an equation
of type

L [y] (t) = h (t, y (t)) ,

where h : IR × IR → IR is a continuous and bounded function and L is
nonresonant, is considered.

In this section the problem of the existence of the evanescent solutions
for the equation

L [y] (t) = h
(

t, y (t) , y′ (t) , ..., y(n−1) (t)
)

, (19)

where h : IR × IR → IR is a continuous and bounded function and L is
nonresonant, is considered; the method of proof will be different by the one
used in [13].

Let h : IR × IR → IR be a continuous and bounded function. Set

M := sup
IRn+1

|h (t, y1, ..., yn)| , ρ =
kM

a
, (20)
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where k, a are the constants appearing in (12) and

Bρ = {(y1, ..., yn) , |yi| ≤ ρ} .

Theorem 4. Suppose that L is nonresonant and the limits

lim
t→±∞

h (t, y1, ..., yn) = 0 (21)

exist and are uniform on Bρ. Then the equation (19) admits at least a evanes-
cent solution.

Proof. Consider the Fréchet space

Cc := {x : IR → IRn, x continuous} ,

endowed with the seminorms family

|x|m := sup
t∈[−m,m]

{|x (t)|} .

Set
S := {x ∈ Cc, |x (t)| ≤ ρ, t ∈ IR} .

Obviously, S is a closed convex and bounded set in Cc. As usual, we
transform the equation (9) under the form

ẋ = Ax+ F (t, x) . (22)

Define on S the operator H : S → Cc by the equality

(Hx) (t) :=

∫ t

−∞

P−e
A(t−s)F (s, x (s)) ds−

∫ +∞

t
P+e

A(t−s)F (s, x (s)) ds.

(23)
We shall apply to S the Schauder’s fixed point theorem on the set S ⊂ Cc.

By Proposition 1, the boundedness of F and (20) it follows

HS ⊂ S, (24)

which shows in addition that the family HS is uniformly bounded on the
compacts of IR.

Since
y = Hx
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and
ẏ (t) = Ay (t) + F (t, x (t)) ,

there results
|ẏ (t)| ≤ ‖A‖ ρ+M

and so the family HS is equi-continuous on the compact of IR (in fact on
IR).

Finally, the continuity of H results from hypotheses in an elementary
way.

Therefore, H admits at least a fixed point x ∈ S; since for this x one has

F (·, x (·)) ∈ C0,

the conclusion of the theorem follows by Proposition 1. 2

Corrolary 4. Let L be nonresonant, g : IRn → IR be a continuous
and bounded function and α : IR → IR be a continuous and evanescent and
p : IR → IR be continuous. Then the equation

L [y] (t) + α (t) g
(

y (t) , y′ (t) , ..., y(n−1) (t)
)

= p (t) (25)

admits evanescent solutions if and only if p ∈ P0 + C0.

Proof. Let u be a evanescent solution for the equation

L [u] (t) = p (t) , (26)

which exists from Theorem 3. Setting y = z + u, our problem is reduced to
finding a evanescent solution for

L [z] (t) = −α (t) g
(

u (t) + z (t) , u′ (t) + z′ (t) , ..., u(n−1) (t) + z(n−1) (t)
)

and the existence of such solution follows from Theorem 4. 2

Corollary 5. Let p, q : IR → IR be two continuous functions and α :
IR → IR be a evanescent function. Let also b, c ∈ IR be with b < 0 or b > 0
and c 6= 0. Then the equation

y′′ (t) + by′ (t) + cy (t) + α (t) g (y (t)) = p (t) (27)

admits evanescent solutions if and only if p ∈ P0 + C0.

A similar result can be obtained for the equation

L [y] (t) + g (y (t)) = p (t) , (28)

EJQTDE, 2002 No. 9 p. 9



or, more generally, for the equation (22) , where a ≡ 1.

Theorem 5. Suppose that:
i) L is nonresonant;
ii) g : IR → IR is a continuous and bounded function satisfying the con-

ditions
g (0) = 0 (29)

|g (y1) − g (y2)| ≤ L |y1 − y2| , (∀) yi ∈ IR, |yi| ≤ ρ, i ∈ 1, 2; (30)

iii) p : IR → IR is a function in C0;
iv) the following inequality holds

kL < a. (31)

Then the equation (25) admits a unique evanescent solution.

The proof is reduced to an application of Banach’s theorem to operator
H on the closed ball in C0 having the center in 0 and radius ρ. 2

From this theorem it follows

Corollary 6. Let b, c ∈ IR satisfying the same conditions as in Corollary
5. If (29) , (30) , (31) are fulfilled and p : IR → IR is a continuous function,
then the equation

y′′ (t) + cy′ (t) + by (t) + g (y (t)) = p (t)

admits evanescent solutions if and only if p ∈ P0 + C0.
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