Oscillation criteria for third order delay nonlinear differential equations

Elmetwally M. Elabbasy, Taher S. Hassan*, and Bassant M. Elmatary

Abstract. The purpose of this paper is to give oscillation criteria for the third order delay nonlinear differential equation

$$
\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}\right]^{\prime}+q(t) f(x(g(t)))=0
$$

via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

1. Introduction

In this paper, we are concerned with the oscillation of third order delay nonlinear differential equation

$$
\begin{equation*}
\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}\right]^{\prime}+q(t) f(x(g(t)))=0 \tag{1.1}
\end{equation*}
$$

where the following conditions are satisfied
(A1): $a_{1}(t), a_{2}(t)$ and $q(t) \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$;
(A2): α_{1}, α_{2} are quotient of odd positive integers;
(A3): $f \in C(\mathbb{R}, \mathbb{R})$ such that $x f(x)>0, f^{\prime}(x)>0$ for all $x \neq 0$ and $-f(-x y) \geq f(x y) \geq f(x) f(y)$ for $x y>0$;
(A4): $g(t) \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right), g(t) \leq t$ for $t \in\left[t_{0}, \infty\right)$ and $\lim _{t \rightarrow \infty} g(t)=\infty$.
We mean by a solution of equation (1.1) a function $x(t):\left[t_{x}, \infty\right) \rightarrow \mathbb{R}, t_{x} \geq$ t_{0} such that $x(t), a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}, a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}$ are continuous and differentiable for all $t \in\left[t_{x}, \infty\right)$ and satisfies (1.1) for all $t \in\left[t_{x}, \infty\right)$ and satisfy $\sup \{|x(t)|: t \geq T\}>0$ for any $T \geq t_{x}$. A solution of equation (1.1) is called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory. In the sequel it will be always assumed that equation (1.1) has nontrivial solutions which exist for all $t_{0} \geq 0$. Equation (1.1) is called oscillatory if all solutions are oscillatory. In the last few years, the oscillation theory and asymptotic behavior of differential equations and their applications have received more and more attentions, the reader is referred to the papers $[\mathbf{1}]-[\mathbf{1 8}]$ and the references cited therein. Our aim

[^0]is to investigate the oscillatory criteria for all solutions of equation (1.1) with the cases, for $k=1,2$
\[

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{k}^{-\frac{1}{\alpha_{k}}}(t) d t=\infty \tag{1.2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{k}^{-\frac{1}{\alpha_{k}}}(t) d t<\infty \tag{1.3}
\end{equation*}
$$

Our results have different natural as they are Riccati transformation technique and depend on new comparison principles that enable us to deduce properties of the third order nonlinear differential equation from oscillation the first order nonlinear delay differential equation. Recently, $[\mathbf{7}, \mathbf{1 2}]$ establish oscillation criteria for the third order nonlinear differential equation of the form

$$
\left(a(t)\left(x^{\prime \prime}(t)\right)^{\alpha}\right)^{\prime}+q(t) f(x(g(t)))=0
$$

via comparison with first order oscillatory differential equations.
The purpose of this paper is to extend the above mentioned oscillation criteria which is established by $[\mathbf{7}, \mathbf{1 2}]$, for the more general third order delay differential equation (1.1) for both of the cases (1.2) and (1.3). Hence our results will improve and extend results in $[\mathbf{7}, \mathbf{1 2}]$, and many known results on nonlinear oscillation.

2. Main Results

Before stating our main results, we start with the following lemmas which will play an important role in the proofs of our main results. We let,

$$
\delta\left(t, t_{0}\right):=\int_{t_{0}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(v) d v, \delta_{k}(t):=\int_{t}^{\infty} a_{k}^{-\frac{1}{\alpha_{k}}}(v) d v, k=1,2 .
$$

Lemma 2.1. Assume that, for all sufficiently large $T_{1} \in\left[t_{0}, \infty\right)$, there is a $T>T_{1}$ such that $g(t)>T_{1}$ for $t \geq T$ and (H1) either

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(t) d t=\infty \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{T}^{\infty}\left(a_{2}^{-\frac{1}{\alpha_{2}}}(s)\left(\int_{T}^{s}\left(q(r) f\left(\delta_{2}^{\frac{1}{\alpha_{1}}}(g(r))\right) f(\delta(g(r), T))\right) d r\right)^{\frac{1}{\alpha_{2}}}\right) d s=\infty \tag{2.2}
\end{equation*}
$$

(H2) either

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(t) d t=\infty \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\left(a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left(\int_{t_{0}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{t_{0}}^{u}\left(q(v) f\left(\delta_{1}(v)\right)\right) d v\right)^{\frac{1}{\alpha_{2}}} d u\right)^{\frac{1}{\alpha_{1}}}\right) d s=\infty \tag{2.4}
\end{equation*}
$$

hold. Let x be an eventually positive solution of the equation (1.1). Then, either
(1) $x^{\prime}(t)>0,\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$ for all $t \geq T$;
or
(2) $x^{\prime}(t)<0,\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$ for all $t \geq T$.

Proof. Pick $t_{1} \geq t_{0}$ such that $x(g(t))>0$, for $t \geq t_{1}$. From equation (1.1), (A1) and (A3), we have, $\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}\right]^{\prime}<0$, for all $t \geq t_{1}$. Then $a_{2}(t)\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}$ is strictly decreasing on $\left[t_{1}, \infty\right)$, and thus $x^{\prime}(t)$ and $\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}$ are eventually of one sign. We claim that $\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$ on $\left[t_{1}, \infty\right)$. If not, then, we have two cases.
Case (1) There exists $t_{2} \geq t_{1}$, sufficiently large, such that

$$
x^{\prime}(t)>0 \quad \text { and } \quad\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}<0 \quad \text { for } t \geq t_{2}
$$

Case (2) There exists $t_{2} \geq t_{1}$, sufficiently large, such that

$$
x^{\prime}(t)<0 \quad \text { and } \quad\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}<0 \quad \text { for } t \geq t_{2}
$$

For the case (1), we have, $a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}$ is strictly decreasing on $\left[t_{2}, \infty\right)$ and there exists a negative constant M such that

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}<M \text { for all } t \geq t_{2}
$$

Dividing by $a_{2}(t)$ and integrating from t_{2} to t, we get

$$
a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} \leq a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)^{\alpha_{1}}+M^{\frac{1}{\alpha_{2}}} \int_{t_{2}}^{t} a_{2}^{-\frac{1}{\alpha_{2}}}(s) d s
$$

Letting $t \rightarrow \infty$, and using (2.1) then $a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} \rightarrow-\infty$, which contradicts that $x^{\prime}(t)>0$. Hence (2.2) is satisfied, we have

$$
\begin{aligned}
x(t)-x\left(t_{3}\right) & =\int_{t_{3}}^{t} x^{\prime}(u) d u \\
& =\int_{t_{3}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(u)\left(a_{1}(u)\left(x^{\prime}(u)\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}} d u \\
& \geq\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}} \int_{t_{3}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(u) d u, \quad \text { for } t \geq t_{3}
\end{aligned}
$$

and hence

$$
x(t) \geq\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}} \int_{t_{3}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(u) d u \quad \text { for } t \geq t_{3}
$$

EJQTDE, 2012 No. 5, p. 3

There exists a $t_{4} \geq t_{3}$ with $g(t) \geq t_{3}$ for all $t \geq t_{4}$ such that

$$
x(g(t)) \geq\left(a_{1}(g(t))\left(x^{\prime}(g(t))\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}} \delta\left(g(t), t_{3}\right) \quad \text { for } t \geq t_{4} .
$$

From Eq.(1.1), (A3) and the above inequality, we get, for $t \geq t_{4}$,

$$
\begin{equation*}
0 \geq\left(a_{2}(t)\left(y^{\prime}(t)\right)^{\alpha_{2}}\right)^{\prime}+q(t) f\left(y^{\frac{1}{\alpha_{1}}}(g(t))\right) f\left(\delta\left(g(t), t_{3}\right)\right), \tag{2.5}
\end{equation*}
$$

where $y(t):=a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}$. It is clear that $y(t)>0$ and $y^{\prime}(t)<0$. It follows that

$$
-a_{2}(t)\left(y^{\prime}(t)\right)^{\alpha_{2}} \geq-a_{2}\left(t_{4}\right)\left(y^{\prime}\left(t_{4}\right)\right) \quad \text { for } \quad t \geq t_{4}
$$

thus

$$
-y^{\prime}(t) \geq-\frac{a_{2}^{\frac{1}{\alpha_{2}}}\left(t_{4}\right) y^{\prime}\left(t_{4}\right)}{a_{2}^{\frac{1}{\alpha_{2}}}(t)} \text { for } t \geq t_{4}
$$

Integrating the above inequality from t to ∞, we get

$$
y(t) \geq-a_{2}^{\frac{1}{\alpha_{2}}}\left(t_{4}\right) y^{\prime}\left(t_{4}\right) \delta_{2}(t)
$$

then,

$$
y(t) \geq k_{1} \delta_{2}(t), \quad \text { for } \quad t \geq t_{5}
$$

where $k_{1}:=-a_{2}^{\frac{1}{\alpha_{2}}}\left(t_{4}\right) y^{\prime}\left(t_{4}\right)>0$. There exists a $t_{5} \geq t_{4}$ with $g(t) \geq t_{4}$ for all $t \geq t_{5}$ such that

$$
y(g(t)) \geq k_{1} \delta_{2}(g(t)) \quad \text { for all } \quad t \geq t_{5}
$$

By integrating (2.5) from t_{5} to t and using the above inequality, we obtain

$$
\left.\int_{t_{5}}^{t} q(r) f\left(k_{1}^{\frac{1}{\alpha_{1}}} \delta_{2}^{\frac{1}{\alpha_{1}}}(g(r))\right) f\left(\delta\left(g(r), t_{3}\right)\right)\right) d r \leq a_{2}\left(t_{5}\right)\left(y^{\prime}\left(t_{5}\right)\right)^{\alpha_{2}}-a_{2}(t)\left(y^{\prime}(t)\right)^{\alpha_{2}}
$$

Using (A3), we get

$$
\left(\frac{b}{a_{2}(t)} \int_{t_{5}}^{t}\left(q(r) f\left(\delta_{2}^{\frac{1}{\alpha_{1}}}(g(r)) f\left(\delta\left(g(r), t_{3}\right)\right)\right) d r\right)^{\frac{1}{\alpha_{2}}} \leq-y^{\prime}(t)\right.
$$

where $b:=f\left(k_{1}^{\frac{1}{\alpha_{1}}}\right)$. Integrating the above inequality from t_{5} to ∞, we get

$$
b^{\frac{1}{\alpha_{2}}} \int_{t_{5}}^{\infty}\left(a_{2}^{\frac{-1}{\alpha_{2}}}(s)\left(\int_{t_{5}}^{s}\left(q(r) f\left(\delta_{2}^{\frac{1}{\alpha_{1}}}(g(r))\right) f\left(\delta\left(g(r), t_{3}\right)\right)\right) d r\right)^{\frac{1}{\alpha_{2}}}\right) d s \leq y\left(t_{5}\right)<\infty
$$

which contradicts the condition (2.2).
For the case (2), we have

$$
a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} \leq a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)^{\alpha_{1}}=k<0 .
$$

Dividing by $a_{1}(t)$ and integrating from t_{2} to t, we get

$$
x(t) \leq x\left(t_{2}\right)+k^{\frac{1}{\alpha_{1}}} \int_{t_{2}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(s) d s
$$

EJQTDE, 2012 No. 5, p. 4

Letting $t \rightarrow \infty$, then (2.3) yields $x(t) \rightarrow-\infty$ this contradicts the fact that $x(t)>$ 0 . Otherwise, if (2.4) is satisfied. One can choose $t_{3} \geq t_{2}$ with $g(t) \geq t_{2}$ for all $t \geq t_{3}$ such that

$$
\begin{aligned}
x(g(t)) & >-\left(a_{1}(g(t))\left(x^{\prime}(g(t))\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}} \delta_{1}(g(t)) \\
& \geq k_{2} \delta_{1}(g(t)), \quad \text { for all } t \geq t_{3}
\end{aligned}
$$

where $k_{2}:=-\left(a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)^{\alpha_{1}}\right)^{\frac{1}{\alpha_{1}}}>0$. Thus equation (1.1) and (A3) yield

$$
\begin{aligned}
\left(a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}\right)^{\prime} & =-q(t) f(x(g(t))) \\
& \leq L q(t) f\left(\delta_{1}(g(t))\right)
\end{aligned}
$$

where $L:=-f\left(k_{2}\right)$. Integrating the above inequality from t_{3} to t, we get

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}} \leq L \int_{t_{3}}^{t}\left(q(s) f\left(\delta_{1}(g(s))\right) d s\right.
$$

Hence,

$$
\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime} \leq L^{\frac{1}{\alpha_{2}}} a_{2}^{-\frac{1}{\alpha_{2}}}(t)\left(\int_{t_{3}}^{t}\left(q(s) f\left(\delta_{1}(g(s))\right) d s\right)^{\frac{1}{\alpha_{2}}}\right.
$$

Again integrating the above inequality from t_{3} to t, we get

$$
a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} \leq L^{\frac{1}{\alpha_{2}}} \int_{t_{3}}^{t} a_{2}^{-\frac{1}{\alpha_{2}}}(s)\left(\int_{t_{3}}^{s}\left(q(u) f\left(\delta_{1}(g(u))\right) d u\right)^{\frac{1}{\alpha_{2}}} d s\right.
$$

It follows that

$$
x^{\prime}(t) \leq k a_{1}^{-\frac{1}{\alpha_{1}}}(t)\left(\int _ { t _ { 3 } } ^ { t } a _ { 2 } ^ { - \frac { 1 } { \alpha _ { 2 } } } (s) \left(\int_{t_{3}}^{s}\left(q(u) f\left(\delta_{1}(g(u)) d u\right)^{\frac{1}{\alpha_{2}}} d s\right)^{\frac{1}{\alpha_{1}}}\right.\right.
$$

where $k:=L^{\frac{1}{\alpha_{1} \alpha_{2}}}$. Finally, integrating the last inequality from t_{3} to t, we have

$$
\begin{aligned}
& x(t) \leq \\
& k \int_{t_{3}}^{t}\left(a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left(\int_{t_{3}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{t_{3}}^{u}\left(q(v) f\left(\delta_{1}(g(v))\right) d v\right)^{\frac{1}{\alpha_{2}}} d u\right)^{\frac{1}{\alpha_{1}}}\right) d s\right.
\end{aligned}
$$

From condition (2.4), we get $x(t) \rightarrow-\infty$ as $t \rightarrow \infty$ which contradicts that $x(t)$ is a positive solution of (1.1). Then, we have $\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$ for $t \geq t_{1}$ and of one sign thus either $x^{\prime}(t)>0$ or $x^{\prime}(t)<0$. The proof is complete.

Lemma 2.2. Assume that (H1) and (H2) hold. Let $x(t)$ be an eventually positive solution of the equation (1.1) for all $t \in\left[t_{0}, \infty\right)$ and suppose that Case (2) of Lemma EJQTDE, 2012 No. 5, p. 5
2.1 holds. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(v)\left[\int_{v}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{u}^{\infty} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u\right]^{\frac{1}{\alpha_{1}}} d v=\infty \tag{2.6}
\end{equation*}
$$

then $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
Proof. Pick $t_{1} \geq t_{0}$ such that $x(g(t))>0$, for $t \geq t_{1}$. Since $x(t)$ is positive decreasing solution of the equation (1.1) then, we get, $\lim _{t \rightarrow \infty} x(t)=l_{1} \geq 0$. Assume $l_{1}>0$, then, $x(g(t)) \geq l_{1}$ for $t \geq t_{2} \geq t_{1}$. Integrating equation (1.1) from t to ∞, we find

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}} \geq \int_{t}^{\infty} q(s) f(x(g(s))) d s
$$

It follows from (A3) and (A4) that

$$
\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime} \geq\left(\frac{f\left(l_{1}\right)}{a_{2}(t)}\right)^{\frac{1}{\alpha_{2}}}\left(\int_{t}^{\infty} q(s) d s\right)^{\frac{1}{\alpha_{2}}}
$$

Integrating the above inequality from t to ∞, we get

$$
-x^{\prime}(t) \geq \frac{f^{\frac{1}{\alpha_{1} \alpha_{2}}}\left(l_{1}\right)}{a_{1}^{\frac{1}{\alpha_{1}}}(t)}\left[\int_{t}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{u}^{\infty} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u\right]^{\frac{1}{\alpha_{1}}}
$$

By integrating the last inequality from t_{2} to ∞, we find that

$$
x\left(t_{2}\right) \geq f^{\frac{1}{\alpha_{1} \alpha_{2}}}\left(l_{1}\right) \int_{t_{2}}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(v)\left[\int_{v}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{u}^{\infty} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u\right]^{\frac{1}{\alpha_{1}}} d v
$$

This contradicts to the condition (2.6), then $\lim _{t \rightarrow \infty} x(t)=0$.
Theorem 2.1. Let (H1), (H2) and $g^{\prime}(t)>0$ on $\left[t_{0}, \infty\right)$ hold and there exists a function $\xi(t)$ such that

$$
\begin{equation*}
\xi^{\prime}(t) \geq 0, \xi(t)>t \text { and } g(\xi(\xi(t)))<t \tag{2.7}
\end{equation*}
$$

If both first order delay equations

$$
\begin{equation*}
y^{\prime}(t)+q(t) f\left(y^{\frac{1}{\alpha_{1} \alpha_{2}}}(g(t))\right) f\left(\int_{t_{0}}^{g(t)} a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left[\int_{t_{0}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d s\right)=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(t)+a_{1}^{-\frac{1}{\alpha_{1}}}(t) f^{\frac{1}{\alpha_{1} \alpha_{2}}}\left(x((\eta(t)))\left[\int_{t}^{\xi(t)} a_{2}^{-\frac{1}{\alpha_{2}}}(s)\left(\int_{s}^{\xi(s)} q(u) d u\right)^{\frac{1}{\alpha_{2}}} d s\right]^{\frac{1}{\alpha_{1}}}=0\right. \tag{2.9}
\end{equation*}
$$

where $\eta(t):=g(\xi(\xi(t)))$, are oscillatory, then equation (1.1) is oscillatory.
EJQTDE, 2012 No. 5, p. 6

Proof. Assume (1.1) has a nonoscillatory solution. Then, without loss of generality, there is a $t_{1} \geq t_{0}$, sufficiently large such that $x(t)>0$ and $x(g(t))>0$ on $\left[t_{1}, \infty\right)$. From equation (1.1), (A1) and (A3), we have $\left[a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}\right]^{\prime}<$ 0 for all $t \geq t_{1}$. That is $a_{2}(t)\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}$ is strictly decreasing on $\left[t_{1}, \infty\right)$ and thus $\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}$ and $x^{\prime}(t)$ are eventually of one sign. Then, from Lemma 2.1, we have the following cases, for $t_{2} \geq t_{1}$, is sufficiently large
(1) $x^{\prime}(t)>0,\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$;
(2) $x^{\prime}(t)<0,\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}>0$.

For the case (1), we have

$$
\begin{aligned}
a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} & =a_{1}\left(t_{2}\right)\left(x^{\prime}\left(t_{2}\right)\right)^{\alpha_{1}}+\int_{t_{2}}^{t} a_{2}^{-\frac{1}{\alpha_{2}}}(s) y^{\frac{1}{\alpha_{2}}}(s) d s \\
& \geq y^{\frac{1}{\alpha_{2}}}(t) \int_{t_{2}}^{t} a_{2}^{-\frac{1}{\alpha_{2}}}(s) d s
\end{aligned}
$$

where $y(t):=a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}}$. It follows that

$$
x^{\prime}(t) \geq a_{1}^{-\frac{1}{\alpha_{1}}}(t) y^{\frac{1}{\alpha_{1} \alpha_{2}}}(t)\left[\int_{t_{2}}^{t} a_{2}^{-\frac{1}{\alpha_{2}}}(s) d s\right]^{\frac{1}{\alpha_{1}}}
$$

Integrating the above inequality from t_{2} to t, we get

$$
\begin{aligned}
x(t) & \geq \int_{t_{2}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(s) y^{\frac{1}{\alpha_{1} \alpha_{2}}}(s)\left[\int_{t_{2}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d s \\
& \geq y^{\frac{1}{\alpha_{1} \alpha_{2}}}(t) \int_{t_{2}}^{t} a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left[\int_{t_{2}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d s
\end{aligned}
$$

There exists $t_{3} \geq t_{2}$ such that $g(t) \geq t_{2}$ for all $t \geq t_{3}$. Then

$$
x(g(t)) \geq y^{\frac{1}{\alpha_{1} \alpha_{2}}}(g(t)) \int_{t_{2}}^{g(t)} a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left[\int_{t_{2}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d s, \text { for all } t \geq t_{3}
$$

Thus equation (1.1) and (A3) yield, for all $t \geq t_{3}$.

$$
\begin{aligned}
-y^{\prime}(t) & =q(t) f(x(g(t))) \\
& \geq q(t) f\left(y^{\frac{1}{\alpha_{1} \alpha_{2}}}(g(t))\right) f\left(\int_{t_{2}}^{g(t)} a_{1}^{-\frac{1}{\alpha_{1}}}(s)\left[\int_{t_{2}}^{s} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d s\right) .
\end{aligned}
$$

Integrating the above inequality from t to ∞, we get

$$
y(t) \geq \int_{t}^{\infty} q(s) f\left(y^{\frac{1}{\alpha_{1} \alpha_{2}}}(g(s))\right) f\left(\int_{t_{2}}^{g(s)} a_{1}^{-\frac{1}{\alpha_{1}}}(v)\left[\int_{t_{2}}^{v} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u\right]^{\frac{1}{\alpha_{1}}} d v\right) d s
$$

EJQTDE, 2012 No. 5, p. 7

The function $y(t)$ is obviously strictly decreasing. Hence, by Theorem 1 in [18] there exists a positive solution of equation (2.8) which tends to zero this contradicts that (2.8) is oscillatory.

For the case (2). Integrating equation (1.1) from t to $\xi(t)$, we obtain

$$
a_{2}(t)\left\{\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime}\right\}^{\alpha_{2}} \geq \int_{t}^{\xi(t)} q(s) f(x(g(s))) d s
$$

Using (2.7)and (A3), we get

$$
\left(a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}}\right)^{\prime} \geq a_{2}^{-\frac{1}{\alpha_{2}}}(t) f^{\frac{1}{\alpha_{2}}}(x(g(\xi(t))))\left(\int_{t}^{\xi(t)} q(s) d s\right)^{\frac{1}{\alpha_{2}}}
$$

Integrating again the last inequality from t to $\xi(t)$, we get

$$
-a_{1}(t)\left(x^{\prime}(t)\right)^{\alpha_{1}} \geq \int_{t}^{\xi(t)} a_{2}^{-\frac{1}{\alpha_{2}}}(u) f^{\frac{1}{\alpha_{2}}}(x(g(\xi(u))))\left(\int_{u}^{\xi(u)} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u
$$

It follows that

$$
-x^{\prime}(t) \geq f^{\frac{1}{\alpha_{2} \alpha_{1}}}(x(\eta(t))) a_{1}^{-\frac{1}{\alpha_{1}}}(t)\left[\int_{t}^{\xi(t)} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{u}^{\xi(u)} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u\right]^{\frac{1}{\alpha_{1}}}
$$

By integrate the above inequality from t to ∞, we have

$$
x(t) \geq f^{\frac{1}{\alpha_{2} \alpha_{1}}}(x(\eta(t))) \int_{t}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(v)\left[\int_{v}^{\xi(v)} a_{2}^{-\frac{1}{\alpha_{2}}}(u)\left(\int_{u}^{\xi(u)} q(s) d s\right)^{\frac{1}{\alpha_{2}}} d u\right]^{\frac{1}{\alpha_{1}}} d v
$$

In view of Theorem 1 in [18] there exists a positive solution of equation (2.9) which tends to zero which contradicts that (2.9) is oscillatory then equation (1.1) is oscillatory. The proof is complete.

The following result is obtained by combining case (1) in the proof of Theorem 2.1 with Lemma 2.2.

Theorem 2.2. Assume that the first order delay equation (2.8) is oscillatory, (2.6), (H1) and (H2) hold. Then every solution $x(t)$ of equation (1.1) is either oscillatory or tends to zero as $t \rightarrow \infty$.

Remark 2.1. Let $a_{1}(t)=1$ and $\alpha_{1}=1$ Theorem 2.1 and Theorem 2.2 are reduced to [7, Theorem 3 and Theorem 2].

In the following examples are given to illustrate the main results.
EJQTDE, 2012 No. 5, p. 8

Example 2.1. Consider the third order delay differential equation

$$
\begin{equation*}
\left(\left[t\left(\frac{1}{t^{2}}\left(y^{\prime}(t)\right)^{\frac{1}{3}}\right)^{\prime}\right]^{3}\right)^{\prime}+\frac{1}{t} y\left(t^{\frac{1}{5}}\right)=0, \quad t \geq 1 \tag{2.10}
\end{equation*}
$$

We note that

$$
f(y)=y, \quad g(t)=t^{\frac{1}{5}}<t, \quad g^{\prime}(t)>0, \quad \lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty} t^{\frac{1}{5}}=\infty
$$

and

$$
a_{1}(t)=\frac{1}{t^{2}}, \quad a_{2}(t)=t, \quad \alpha_{1}=\frac{1}{3}, \quad \alpha_{2}=3
$$

and

$$
\int_{1}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(u) d u=\infty, \int_{1}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u=\infty
$$

It easy to see that condition (2.6) holds and Eq.(2.8), reduces to

$$
\begin{equation*}
y^{\prime}(t)+\frac{1}{t}\left(b_{1} t^{\frac{9}{5}}+b_{2} t^{\frac{5}{3}}+b_{3} t^{\frac{23}{15}}-b_{4} t^{\frac{7}{5}}\right) y\left(t^{\frac{1}{5}}\right)=0 \tag{2.11}
\end{equation*}
$$

where $b_{1}, b_{2}, b_{3}, b_{4}$ are constants. On the other hand, Theorem 2.1.1 in [17] guarantees oscillation of (2.11) provided that

$$
\lim _{t \rightarrow \infty} \int_{t^{\frac{1}{5}}}^{t} \frac{1}{s}\left(b_{1} s^{\frac{9}{5}}+b_{2} s^{\frac{5}{3}}+b_{3} s^{\frac{23}{15}}-b_{4} s^{\frac{7}{5}}\right) d s>\frac{1}{e}
$$

and according to Theorem 2.2. every nonoscillatory solution of Eq.(2.10) tends to zero as $t \rightarrow \infty$.

Example 2.2. Consider the third order delay differential equation

$$
\begin{equation*}
\left(t^{3}\left(t^{6}\left(y^{\prime}(t)\right)\right)^{\prime}\right)^{\prime}+t^{11} y\left(\frac{t}{2}\right)=0, \quad t \geq 1 \tag{2.12}
\end{equation*}
$$

We note that

$$
f(y)=y, g(t)=t^{\frac{1}{5}}<t, g^{\prime}(t)>0, \lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty} \frac{t}{2}=\infty
$$

and

$$
a_{1}(t)=t^{4}, \quad a_{2}(t)=t^{3}, \quad \alpha_{1}=\alpha_{2}=1
$$

and

$$
\int_{1}^{\infty} a_{1}^{-\frac{1}{\alpha_{1}}}(u) d u=\frac{1}{5}<\infty, \int_{1}^{\infty} a_{2}^{-\frac{1}{\alpha_{2}}}(u) d u=\frac{1}{2}<\infty .
$$

It easy to see that conditions(2.6), (2.2) and (2.4) hold. Eq.(2.8), reduces to

$$
\begin{equation*}
y^{\prime}(t)+t^{11} \frac{\left(t^{7}-112 t^{2}+320\right)}{35 t^{7}} y\left(\frac{t}{2}\right)=0 \tag{2.13}
\end{equation*}
$$

EJQTDE, 2012 No. 5, p. 9
on the other hand, Theorem 2.1.1 in [17] guarantees oscillation of (2.13) provided that

$$
\lim _{t \rightarrow \infty} \int_{t / 2}^{t} t^{11} \frac{\left(t^{7}-112 t^{2}+320\right)}{35 t^{7}}>\frac{1}{e}
$$

and according to Theorem 2.2. every nonoscillatory solution of Eq.(2.12) tends to zero as $t \rightarrow \infty$.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer, Dordrecht, 2000.
[2] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor \mathcal{E}^{3} Francis, London, 2003
[3] R. P. Agarwal, S. R. Grace and D. O'Regan, On the oscillation of certain functional differential equations via comparison methods, J. Math. Anal. Appl. 286 (2003) 577-600
[4] R. P. Agarwal, S. R. Grace and D. O'Regan, The oscillation of certain higher order functional differential equations, Adv. math. comput. Modell. 37 (2003) 705-728.
[5] R. P. Agarwal, S. R. Grace and T. Smith, Oscillation of certain third order functional differential equations, Adv. Math. Sci. Appl. 16 (2006) 69-94.
[6] B. Baculikova and J. Džurina, Oscillation of third-order functional differential equations, E. J.. Qualitative Theory of Diff. Equ. 43 (2010) 1-10.
[7] B. Baculikova and J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Letters 24 (2011) 466-470.
[8] B. Baculikova, E. M. Elabbasy, S. H. Saker, and J. Džurina, Oscillation criteria for third- order nonlinear differential equations, Math. Slovaca 58 (2008) 201-220.
[9] T. A. Chanturia, On some asymptotic properties of solutions of ordinary differential equations, Dok1. Akad. Nauk SSSR, 235 (1977), No5.: Soviet Math. dok1. 18, No4 (1977, 11231126).
[10] L. H. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order nonlinear functional dynamic equations on time scales, Differential equations and Dynamical Systems 18(2010)199-227.
[11] L. H. Erbe, Q. Kong and B. Z. Zhang, Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995.
[12] S. R. Grace, R. P. Agarwal, R. Pavani and E. Thandapani, On the oscillation certain third order nonlinear functional differential equations, Appl. Math. Comput. 202 (2008)102-112. Zbl 1154.34368.
[13] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford 1991.
[14] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. comput. Modelling. 49 (2009) 1573-1586. Zbl 1175.34086.
[15] Y. Kitamura, Oscillation of functional differential equations with general deviating arguments, Hiroshima Math. J. 15 (1985) 445-491.
[16] T. Kusano, and B. S. Lalli, On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J. 24 (1994) 549-563.
[17] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Macel Dekker, New York, 1987, Zbl 0832.34071.
[18] Ch. G. Philos, On the nonoscillatory solutions tending to zero at ∞ to differential equations with positive delays, Arch. Math. 36 (1981) 168-178.

EJQTDE, 2012 No. 5, p. 10

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, EGYpt

E-mail address: emelabbasy@mans.edu.eg (E. M. Elabbasy)
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt

E-mail address: tshassan@mans.edu.eg (T. S. Hassan)
Department of Mathematics, Faculty of Science, Mansoura University, New Damietta 34517, Egypt

E-mail address: bassantmarof@yahoo.com (B. M. Elmatary)

[^0]: 2000 Mathematics Subject Classification. 34C10, 34C15.
 Key words and phrases. Oscillation, third order, differential equations.

 * Corresponding author.

