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Abstract

In this paper we apply a cone theoretic fixed point theorem and obtain conditions for the

existence of positive solutions to the three-point nonlinear second order boundary value

problem

u
′′(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1)

u(0) = 0, αu(η) = u(1),

where 0 < η < 1 and 0 < α < 1

η
.

AMS Subject Classifications: 34B20.
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1 Introduction

In this paper, we are concerned with determining values for λ so that the three-point nonlinear
second order boundary value problem

u′′(t) + λ a(t)f(u(t)) = 0, t ∈ (0, 1) (1.1)

u(0) = 0, αu(η) = u(1), (1.2)

where 0 < η < 1,

(A1) the function f : [0,∞) → [0,∞) is continuous,

(A2) a : [0, 1] → [0,∞) is continuous and does not vanish identically on any subinterval,

(L1) lim
x→0

f(x)
x

= ∞,

(L2) lim
x→∞

f(x)
x

= ∞,

(L3) lim
x→0

f(x)
x

= 0,
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(L4) lim
x→∞

f(x)
x

= 0,

(L5) lim
x→0

f(x)
x

= l with 0 < l <∞,

and

(L6) lim
x→∞

f(x)
x

= L with 0 < L <∞

has positive solutions. In the case λ = 1, Ruyun Ma [11] showed the existence of positive
solutions of (1.1)-(1.2) when f is superlinear (l = 0 and L = ∞), or f is sublinear (l = ∞ and
L = 0). In this research it is not required that f be either sublinear or superlinear. As in [8]
and [11], the arguments that we present here in obtaining the existence of a positive solution of
(1.1)-(1.2), rely on the fact that solutions are concave downward. In arriving at our results, we
make use of Krasnosel’skii fixed point theorem [10]. The existence of positive periodic solutions
of nonlinear functional differential equations have been studied extensively in recent years. For
some appropriate references we refer the reader to [1], [2], [3], [4], [5], [6], [8], [9], [12], [13], [14],
[15], [16] and the references therein.
In section 2, we state some known results and Krasnosel’skii fixed point theorem [10]. In section
3, we construct the cone of interest and present a lemma, four theorems and a corollary. In each
of the theorems and the corollary, an open interval of eigenvalues is determined, which in return,
imply the existence of a positive solution of (1.1)-(1.2) by appealing to Krasnosel’skii fixed point
theorem.
We say that u(t) is a solution of (1.1)-(1.2) if u(t) ∈ C[0, 1] and u(t) satisfies (1.1)-(1.2).

2 Preliminaries

Theorem 2.1 (Krasnosel’skii) Let B be a Banach space, and let P be a cone in B. Suppose Ω1

and Ω2 are bounded open subsets of B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and suppose that

T : P ∩ (Ω2\Ω1) → P

is a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

In arriving at our results, we need to state four preliminary Lemmas. Consider the boundary
value problem

u′′(t) + y(t) = 0, t ∈ (0, 1), (I)

u(0) = 0, αu(η) = u(1), (II)
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Lemma 2.2 Let αη 6= 1. Then, for y ∈ C[0, 1], the boundary value problem (I) − (II) has the
unique solution

u(t) = λ
[

−

∫ t

0

(t− s)y(s)ds−
αt

1 − αη

∫ η

0

(η − s)y(s)ds

+
t

1− αη

∫ 1

0

(1 − s)y(s)ds
]

. (2.1)

The proof of (2.1) follows along the lines of the proof that is given in [7] in the case λ = 1, and
hence we omit it.

The proofs of the next three lemmas can be found in [11].

Lemma 2.3 Let 0 < α < 1
η

and assume (A1) and (A2) hold. Then, the unique solution of

(I) − (II) is non-negative for all t ∈ (0, 1).

Lemma 2.4 Let αη > 1 and assume (A1) and (A2) hold. Then, (I) − (II) has no positive
solution.

Lemma 2.5 Let 0 < α < 1
η

and assume (A1) and (A2) hold. Then, the unique solution of

(I) − (II) satisfies

inf u(t)
t∈[η,1]

≥ γ||u||,

where γ = min{αη, α(1−η)
1−αη

, η}.

The proofs of Lemmas 2.3, 2.4 and 2.5 depend on the fact that under conditions (A1) and
(A2) the solution u(t) concave downward for t ∈ (0, 1).

3 Main Results

Assuming (A1) and (A2), it follows from Lemmas 2.3 and 2.4, that (1.1)-(1.2) has a non-negative
solution if and only if α < 1

η
. Therefore, throughout this paper we assume that α < 1

η
. Let

B = C[0, 1], with ||y|| = sup
t∈[0,1]

|y(t)|.

Define a cone, P , by

P = {y ∈ C[0, 1] : y(t) ≥ 0, t ∈ (0, 1) and min
t∈[η,1]

y(t) ≥ γ‖y‖}.

Define an integral operator T : P → B

Tu(t) = λ
[

−

∫ t

0

(t− s)a(s)f(u(s))ds −
αt

1 − αη

∫ η

0

(η − s)a(s)f(u(s))ds

+
t

1 − αη

∫ 1

0

(1 − s)a(s)f(u(s))ds
]

. (3.1)
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By Lemma 2.2, (1.1)-(1.2) has a solution u = u(t) if and only if u solves the operator defined by
(3.1). Note that, for 0 < α < 1/η, the first two terms on the right of (3.1) are less than or equal
to zero. We seek a fixed point of T in the cone P .

For the sake of simplicity, we let

A =

∫ 1

0 (1 − s)a(s)ds

1 − αη
, (3.2)

and

B =
η

∫ 1

η
(1 − s)a(s)ds

1 − αη
. (3.3)

Lemma 3.1 Assume that (A1) and (A2) hold. If T is given by (3.1), then T : P → P and is
completely continuous.

Proof: Let φ, ψ ∈ C[0, 1]. In view of A1, given an ε > 0 there exists a δ > 0 such that for
||φ− ψ|| < δ we have

sup
t∈[0,1]

|f(φ) − f(ψ)| <
ε

A[2 + α(1 − η)]
.

Using (3.1) we have for t ∈ (0, 1),

|(Tφ)(t) − (Tψ)(t)| ≤

∫ 1

0

(1 − s)a(s)|f(φ(s)) − f(φ(s))|ds

+
α

1 − αη

∫ 1

0

(1 − s)a(s)|f(φ(s)) − f(φ(s))|ds

+
1

1 − αη

∫ 1

0

(1 − s)a(s)|f(φ(s)) − f(φ(s))|ds

≤ [(1 − αη)A + αA+A]|f(φ(s)) − f(φ(s))|

≤ A[2 + α(1 − η)] sup
t∈[0,1]

|f(φ) − f(ψ)| < ε.

Thus, T is continuous. Notice from Lemma 2.3 that, for u ∈ P , Tu(t) ≥ 0 on [0, 1]. Also, by
Lemma 2.5, TP ⊂ P . Thus, we have shown that T : P → P . Next, we show that f maps bonded
sets into bounded sets. Let D be a positive constant and define the set

K = {x ∈ C[0, 1] : ||x|| ≤ D}.

Since A1 holds, for any x, y ∈ K, there exists a δ > 0 such that if ||x− y|| < δ, implies

|f(x) − f(y)| < 1.

We choose a positive integer N so that δ > D
N
. For x(t) ∈ C[0, 1], define xj(t) = jx(t)

N
, for

j = 0, 1, 2, ...., N. For x ∈ K,

||xj − xj−1|| = sup
t∈[0,1]

∣

∣

∣

jx(t)

N
−

(j − 1)x(t)

N

∣

∣

∣

≤
||x||

N
≤
D

N
< δ.
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Thus, |f(xj) − f(xj − 1)| < 1. As a consequence, we have

f(x) − f(0) =
N

∑

j=1

(

f(xj) − f(xj−1)
)

,

which implies that

|f(x)| ≤

N
∑

j=1

|f(xj) − f(xj−1)| + |f(0)|

< N + |f(0)|.

Thus, f maps bounded sets into bounded sets. It follows from the above inequality and (3.1),
that

||(Tx)(t)|| ≤ λ
t

1 − αη

∫ 1

0

(1 − s)a(s)|f(x(s))|ds

≤
1

1 − αη

∫ 1

0

(1 − s)a(s)(N + |f(0)|)

≤ A(N + |f(0)|).

Next, for t ∈ (0, 1), we have

(Tx)′(t) = λ
[

−

∫ t

0

a(s)f(u(s))ds−
α

1 − αη

∫ η

0

(η − s)a(s)f(u(s))ds

+
1

1− αη

∫ 1

0

(1 − s)a(s)f(u(s))ds
]

.

Hence,

|(Tx)′(t)| ≤
1

1 − αη

∫ 1

0

(1 − s)a(s)|f(x(s))|ds

≤ A(N + |f(0)|).

Thus, the set

{(Tx) : x ∈ P , ||x|| ≤ D}

is a family of uniformly bounded and equicontinuous functions on the set t ∈ [0, 1]. By Ascoli-
Arzela Theorem, the map T is completely continuous. This completes the proof.

Theorem 3.2 Assume that (A1), (A2), (L5) and (L6) hold. Then, for each λ satisfying

1

γBL
< λ <

1

Al
(3.4)

(1.1)-(1.2) has at least one positive solution.
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Proof: We construct the sets Ω1 and Ω2 in order to apply Theorem 2.1. Let λ be given as in
(3.4), and choose ε > 0 such that

1

γB(L− ε)
≤ λ ≤

1

A(l + ε)
.

By condition (L5), there exists H1 > 0 such that f(y) ≤ (l + ε)y, for 0 < y ≤ H1. So, choosing
u ∈ P with ||u|| = H1, we have

(Tu)(t) ≤ λ
t

1 − αη

∫ 1

0

(1 − s)a(s)f(u(s))ds

≤ λ
t

1 − αη

∫ 1

0

(1 − s)a(s)(l + ε)u(s)ds

≤ λ
1

1 − αη

∫ 1

0

(1 − s)a(s)(l + ε)||u||ds

= λ
1

1 − αη

∫ 1

0

(1 − s)a(s)(l + ε)H1ds

≤ λA(l + ε)‖u‖ ≤ ‖u‖.

Consequently, ||Tu|| ≤ ||u||. So, if we set

Ω1 = {y ∈ P : ‖y‖ < H1},

then
||Tu|| ≤ ||u||, for u ∈ P ∩ ∂Ω1. (3.5)

Next we construct the set Ω2. Considering (L6) there exists H2 such that f(y) ≥ (L − ε)y, for

all y ≥ H2. Let H2 = max{2H1,
H2

γ
} and set

Ω2 = {y ∈ P : ‖y‖ < H2}.

If u ∈ P with ||u|| = H2, then
min

t∈[η,1]
y(t) ≥ γ||y|| ≥ H2.

Thus, by a similar argument as in [11], we have

(Tu)(η) ≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)f(u(s))ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)(L− ε)u(s)ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)(L− ε)γ||u||ds

= λ
γη

1 − αη

∫ 1

η

(1 − s)a(s)(L− ε)H2ds

≥ λBγ(L− ε)‖u‖

≥ ‖u‖.
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Thus, ||Tu‖ ≥ ||u||. Hence

||Tu‖ ≥ ||u||, for u ∈ P ∩ ∂Ω2. (3.6)

Applying (i) of Theorem 2.1 to (3.5) and (3.6) yields that T has a fixed point u ∈ P ∩ (Ω2\Ω1).
The proof is complete.

Theorem 3.3 Assume that (A1), (A2), (L5) and (L6) hold. Then, for each λ satisfying

1

γBl
< λ <

1

AL
(3.7)

(1.1)-(1.2) has at least one positive solution.

Proof: We construct the sets Ω1 and Ω2 in order to apply Theorem 2.1. Let λ be given as in
(3.7), and choose ε > 0 such that

1

γB(l − ε)
≤ λ ≤

1

A(L+ ε)
.

By condition (L5), there exists H1 > 0 such that f(y) ≤ (l − ε)y, for 0 < y ≤ H1. So, choosing
u ∈ P with ||u|| = H1, we have

(Tu)(η) ≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)f(u(s))ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)(l − ε)u(s)ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)(l − ε)γ||u||ds

= λ
γη

1 − αη

∫ 1

η

(1 − s)a(s)(l − ε)H1ds

≥ λBγ(l − ε)‖u‖

≥ ‖u‖.

Thus, ||Tu‖ ≥ ||u||. So, if we let

Ω1 = {y ∈ P : ‖y‖ < H1},

then

||Tu|| ≥ ||u||, for u ∈ P ∩ ∂Ω1. (3.8)

Next we construct the set Ω2. Considering (L6) there exists H2 such that f(y) ≤ (L + ε)y, for
all y ≥ H2.
We consider two cases; f is bounded and f is unbounded. The case where f is bounded is straight
forward. If f(y) is bounded by Q > 0, set

H2 = max{2H1, λQA}.
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Then if u ∈ P and ||u|| = H2, we have

(Tu)(t) ≤ λ
t

1 − αη

∫ 1

0

(1 − s)a(s)f(u(s))ds

≤ λ
Q

1 − αη

∫ 1

0

(1 − s)a(s)ds

= λAQ

≤ H2

= ‖u‖.

Consequently, ||Tu|| ≤ ||u||. So, if we set

Ω2 = {y ∈ P : ‖y‖ < H2},

then
||Tu|| ≤ ||u||, for u ∈ P ∩ ∂Ω2. (3.9)

When f is unbounded, we let H2 > max{2H1, H2} be such that f(y) ≤ f(H2), for 0 < y ≤ H2.
For u ∈ P with ||u|| = H2,

(Tu)(t) ≤ λ
t

1 − αη

∫ 1

0

(1 − s)a(s)f(u(s))ds

≤ λ
1

1 − αη

∫ 1

0

(1 − s)a(s)f(H2)ds

≤ λ
1

1 − αη

∫ 1

0

(1 − s)a(s)(L+ ε)H2ds

= λ
1

1 − αη

∫ 1

0

(1 − s)a(s)(L+ ε)||u||ds

= λA(L+ ε)||u||

≤ ‖u‖.

Consequently, ||Tu|| ≤ ||u||. So, if we set

Ω2 = {y ∈ P : ‖y‖ < H2},

then
||Tu|| ≤ ||u||, for u ∈ P ∩ ∂Ω2. (3.10)

Applying (ii) of Theorem 2.1 to (3.8) and (3.9) yields that T has a fixed point u ∈ P ∩ (Ω2\Ω1).
Also, applying (ii) of Theorem 2.1 to (3.8) and (3.10) yields that T has a fixed point u ∈
P ∩ (Ω2\Ω1). The proof is complete.

Theorem 3.4 Assume that (A1), (A2), (L1) and (L6) hold. Then, for each λ satisfying

0 < λ <
1

AL
(3.11)
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(1.1)-(1.2) has at least one positive solution.

Proof: Apply (L1) and choose H1 > 0 such that if 0 < y < H1, then

f(y) ≥
y

λγB
.

Define

Ω1 = {y ∈ P : ‖y‖ < H1}.

If y ∈ P ∩ ∂Ω1, then

(Tu)(η) ≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)f(u(s))ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)
u(s)

λγB
ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)
γ||u||

λγB
ds

≥ ‖u‖.

In particular, ||Tu‖ ≥ ||u||, for all u ∈ P ∩ ∂Ω1. In order to construct Ω2, we let λ be given as in
(3.11), and choose ε > 0 such that

0 ≤ λ ≤
1

A(L+ ε)
.

The construction of Ω2 follows along the lines of the construction of Ω2 in Theorem 3.3, and
hence we omit it. Thus, by (ii) of Theorem 2.1, (1.1)-(1.2) has at least one positive solution.

Theorem 3.5 Assume that (A1), (A2), (L2) and (L5) hold. Then, for each λ satisfying

0 < λ <
1

Al
(3.12)

(1.1)-(1.2) has at least one positive solution.

Proof: Assume (L5) holds. Then, we may take the set Ω1 to be the one obtained for Theorem
3.1. That is,

Ω1 = {y ∈ P : ‖y‖ < H1}.

Hence, we have

||Tu|| ≤ ||u||, for u ∈ P ∩ ∂Ω1.

Next, we assume (L2). Choose H2 > 0 such that f(y) ≥ y
λγB

, for y ≥ H2. Let H2 =

max{2H1,
H2

γ
} and set

Ω2 = {y ∈ P : ‖y‖ < H2}.
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If u ∈ P with ||u|| = H2,

(Tu)(η) ≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)f(u(s))ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)
u(s)

λγB
ds

≥ λ
η

1 − αη

∫ 1

η

(1 − s)a(s)
γ||u||

λγB
ds

≥ ‖u‖.

Consequently,

||Tu|| ≥ ||u||, for u ∈ P ∩ ∂Ω2.

Applying (i) of Theorem 2.1 yields that T has a fixed point u ∈ P ∩ (Ω2\Ω1).
We state the next results as corollary, because by now, its proof can be easily obtained from the
proofs of the previous results.

Corollary 3.6 Assume that (A1) and (A2) hold. Also, if either (L3) and (L6) hold, or, (L4) and
(L5) hold, then (1.1)-(1.2) has at least one positive solution if λ satisfies either 1/(γBL) < λ, or,
1/(γBl) < λ.
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