Positive Solutions of Three-Point Nonlinear Second Order Boundary Value Problem

YOUSSEF N. RAFFOUL
Department of Mathematics
University of Dayton, Dayton, OH 45469-2316
email:youssef.raffoul@notes.udayton.edu

Abstract

In this paper we apply a cone theoretic fixed point theorem and obtain conditions for the existence of positive solutions to the three-point nonlinear second order boundary value problem $$
\begin{gathered} u^{\prime \prime}(t)+\lambda a(t) f(u(t))=0, \quad t \in(0,1) \\ u(0)=0, \quad \alpha u(\eta)=u(1), \end{gathered}
$$ where $0<\eta<1$ and $0<\alpha<\frac{1}{\eta}$.

AMS Subject Classifications: 34B20.

Keywords: Cone theory; Three-point; Nonlinear second order boundary value problem; Positive solutions.

1 Introduction

In this paper, we are concerned with determining values for λ so that the three-point nonlinear second order boundary value problem

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda a(t) f(u(t))=0, \quad t \in(0,1) \tag{1.1}\\
u(0)=0, \quad \alpha u(\eta)=u(1), \tag{1.2}
\end{gather*}
$$

where $0<\eta<1$,
(A1) the function $f:[0, \infty) \rightarrow[0, \infty)$ is continuous,
(A2) $a:[0,1] \rightarrow[0, \infty)$ is continuous and does not vanish identically on any subinterval,
(L1) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\infty$,
(L2) $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\infty$,
(L3) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$,
(L4) $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0$,
(L5) $\lim _{\substack{x \rightarrow 0 \\ \text { and }}} \frac{f(x)}{x}=l$ with $0<l<\infty$,
(L6) $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=L$ with $0<L<\infty$
has positive solutions. In the case $\lambda=1$, Ruyun Ma [11] showed the existence of positive solutions of (1.1)-(1.2) when f is superlinear $(l=0$ and $L=\infty)$, or f is sublinear $(l=\infty$ and $L=0$). In this research it is not required that f be either sublinear or superlinear. As in [8] and [11], the arguments that we present here in obtaining the existence of a positive solution of (1.1)-(1.2), rely on the fact that solutions are concave downward. In arriving at our results, we make use of Krasnosel'skii fixed point theorem [10]. The existence of positive periodic solutions of nonlinear functional differential equations have been studied extensively in recent years. For some appropriate references we refer the reader to $[1],[2],[3],[4],[5],[6],[8],[9],[12],[13],[14]$, [15], [16] and the references therein.
In section 2, we state some known results and Krasnosel'skii fixed point theorem [10]. In section 3 , we construct the cone of interest and present a lemma, four theorems and a corollary. In each of the theorems and the corollary, an open interval of eigenvalues is determined, which in return, imply the existence of a positive solution of (1.1)-(1.2) by appealing to Krasnosel'skii fixed point theorem.
We say that $u(t)$ is a solution of (1.1)-(1.2) if $u(t) \in C[0,1]$ and $u(t)$ satisfies (1.1)-(1.2).

2 Preliminaries

Theorem 2.1 (Krasnosel'skii) Let \mathcal{B} be a Banach space, and let \mathcal{P} be a cone in \mathcal{B}. Suppose Ω_{1} and Ω_{2} are bounded open subsets of \mathcal{B} such that $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$ and suppose that

$$
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

is a completely continuous operator such that
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|$, $u \in \mathcal{P} \cap \partial \Omega_{2}$; or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

In arriving at our results, we need to state four preliminary Lemmas. Consider the boundary value problem

$$
\begin{align*}
& u^{\prime \prime}(t)+y(t)=0, \quad t \in(0,1) \tag{I}\\
& u(0)=0, \quad \alpha u(\eta)=u(1) \tag{II}
\end{align*}
$$

Lemma 2.2 Let $\alpha \eta \neq 1$. Then, for $y \in C[0,1]$, the boundary value problem $(I)-(I I)$ has the unique solution

$$
\begin{align*}
u(t)= & \lambda\left[-\int_{0}^{t}(t-s) y(s) d s-\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) y(s) d s\right. \\
& \left.+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) y(s) d s\right] \tag{2.1}
\end{align*}
$$

The proof of (2.1) follows along the lines of the proof that is given in $[7]$ in the case $\lambda=1$, and hence we omit it.

The proofs of the next three lemmas can be found in [11].
Lemma 2.3 Let $0<\alpha<\frac{1}{\eta}$ and assume $(A 1)$ and $(A 2)$ hold. Then, the unique solution of $(I)-(I I)$ is non-negative for all $t \in(0,1)$.

Lemma 2.4 Let $\alpha \eta>1$ and assume $(A 1)$ and $(A 2)$ hold. Then, $(I)-(I I)$ has no positive solution.

Lemma 2.5 Let $0<\alpha<\frac{1}{\eta}$ and assume ($A 1$) and ($A 2$) hold. Then, the unique solution of $(I)-(I I)$ satisfies

$$
\underset{t \in[\eta, 1]}{\inf } u(t) \geq \gamma\|u\|,
$$

where $\gamma=\min \left\{\alpha \eta, \frac{\alpha(1-\eta)}{1-\alpha \eta}, \eta\right\}$.
The proofs of Lemmas 2.3, 2.4 and 2.5 depend on the fact that under conditions (A1) and (A2) the solution $u(t)$ concave downward for $t \in(0,1)$.

3 Main Results

Assuming (A1) and (A2), it follows from Lemmas 2.3 and 2.4, that (1.1)-(1.2) has a non-negative solution if and only if $\alpha<\frac{1}{\eta}$. Therefore, throughout this paper we assume that $\alpha<\frac{1}{\eta}$. Let $\mathcal{B}=C[0,1]$, with $\|y\|=\sup _{t \in[0,1]}|y(t)|$.
Define a cone, \mathcal{P}, by

$$
\mathcal{P}=\left\{y \in C[0,1]: y(t) \geq 0, t \in(0,1) \text { and } \min _{t \in[\eta, 1]} y(t) \geq \gamma\|y\|\right\}
$$

Define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$

$$
\begin{align*}
T u(t)= & \lambda\left[-\int_{0}^{t}(t-s) a(s) f(u(s)) d s-\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) d s\right. \\
& \left.+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f(u(s)) d s\right] \tag{3.1}
\end{align*}
$$

By Lemma 2.2, (1.1)-(1.2) has a solution $u=u(t)$ if and only if u solves the operator defined by (3.1). Note that, for $0<\alpha<1 / \eta$, the first two terms on the right of (3.1) are less than or equal to zero. We seek a fixed point of T in the cone \mathcal{P}.

For the sake of simplicity, we let

$$
\begin{equation*}
A=\frac{\int_{0}^{1}(1-s) a(s) d s}{1-\alpha \eta} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{\eta \int_{\eta}^{1}(1-s) a(s) d s}{1-\alpha \eta} \tag{3.3}
\end{equation*}
$$

Lemma 3.1 Assume that ($A 1$) and (A2) hold. If T is given by (3.1), then $T: \mathcal{P} \rightarrow \mathcal{P}$ and is completely continuous.
Proof: Let $\phi, \psi \in C[0,1]$. In view of $A 1$, given an $\epsilon>0$ there exists a $\delta>0$ such that for $\|\phi-\psi\|<\delta$ we have

$$
\sup _{t \in[0,1]}|f(\phi)-f(\psi)|<\frac{\epsilon}{A[2+\alpha(1-\eta)]}
$$

Using (3.1) we have for $t \in(0,1)$,

$$
\begin{aligned}
|(T \phi)(t)-(T \psi)(t)| \leq & \int_{0}^{1}(1-s) a(s)|f(\phi(s))-f(\phi(s))| d s \\
\leq & \frac{\alpha}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)|f(\phi(s))-f(\phi(s))| d s \\
& +\frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)|f(\phi(s))-f(\phi(s))| d s \\
\leq & {[(1-\alpha \eta) A+\alpha A+A]|f(\phi(s))-f(\phi(s))| } \\
\leq & A[2+\alpha(1-\eta)] \sup _{t \in[0,1]}|f(\phi)-f(\psi)|<\epsilon
\end{aligned}
$$

Thus, T is continuous. Notice from Lemma 2.3 that, for $u \in \mathcal{P}, T u(t) \geq 0$ on $[0,1]$. Also, by Lemma 2.5, TP $\subset \mathcal{P}$. Thus, we have shown that $T: \mathcal{P} \rightarrow \mathcal{P}$. Next, we show that f maps bonded sets into bounded sets. Let D be a positive constant and define the set

$$
K=\{x \in C[0,1]:\|x\| \leq D\}
$$

Since $A 1$ holds, for any $x, y \in K$, there exists a $\delta>0$ such that if $\|x-y\|<\delta$, implies

$$
|f(x)-f(y)|<1
$$

We choose a positive integer N so that $\delta>\frac{D}{N}$. For $x(t) \in C[0,1]$, define $x_{j}(t)=\frac{j x(t)}{N}$, for $j=0,1,2, \ldots, N$. For $x \in K$,

$$
\begin{aligned}
\left\|x_{j}-x_{j-1}\right\| & =\sup _{t \in[0,1]}\left|\frac{j x(t)}{N}-\frac{(j-1) x(t)}{N}\right| \\
& \leq \frac{\|x\|}{N} \leq \frac{D}{N}<\delta
\end{aligned}
$$

Thus, $\left|f\left(x_{j}\right)-f\left(x_{j}-1\right)\right|<1$. As a consequence, we have

$$
f(x)-f(0)=\sum_{j=1}^{N}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)
$$

which implies that

$$
\begin{aligned}
|f(x)| & \leq \sum_{j=1}^{N}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|+|f(0)| \\
& <N+|f(0)|
\end{aligned}
$$

Thus, f maps bounded sets into bounded sets. It follows from the above inequality and (3.1), that

$$
\begin{aligned}
\|(T x)(t)\| & \leq \lambda \frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)|f(x(s))| d s \\
& \leq \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(N+|f(0)|) \\
& \leq A(N+|f(0)|)
\end{aligned}
$$

Next, for $t \in(0,1)$, we have

$$
\begin{aligned}
(T x)^{\prime}(t)= & \lambda\left[-\int_{0}^{t} a(s) f(u(s)) d s-\frac{\alpha}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) a(s) f(u(s)) d s\right. \\
& \left.+\frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f(u(s)) d s\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|(T x)^{\prime}(t)\right| & \leq \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)|f(x(s))| d s \\
& \leq A(N+|f(0)|)
\end{aligned}
$$

Thus, the set

$$
\{(T x): x \in \mathcal{P},\|x\| \leq D\}
$$

is a family of uniformly bounded and equicontinuous functions on the set $t \in[0,1]$. By AscoliArzela Theorem, the map T is completely continuous. This completes the proof.

Theorem 3.2 Assume that $(A 1),(A 2),(L 5)$ and (L6) hold. Then, for each λ satisfying

$$
\begin{equation*}
\frac{1}{\gamma B L}<\lambda<\frac{1}{A l} \tag{3.4}
\end{equation*}
$$

(1.1)-(1.2) has at least one positive solution.

Proof: We construct the sets Ω_{1} and Ω_{2} in order to apply Theorem 2.1. Let λ be given as in (3.4), and choose $\epsilon>0$ such that

$$
\frac{1}{\gamma B(L-\epsilon)} \leq \lambda \leq \frac{1}{A(l+\epsilon)}
$$

By condition (L5), there exists $H_{1}>0$ such that $f(y) \leq(l+\epsilon) y$, for $0<y \leq H_{1}$. So, choosing $u \in \mathcal{P}$ with $\|u\|=H_{1}$, we have

$$
\begin{aligned}
(T u)(t) & \leq \lambda \frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f(u(s)) d s \\
& \leq \lambda \frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(l+\epsilon) u(s) d s \\
& \leq \lambda \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(l+\epsilon)\|u\| d s \\
& =\lambda \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(l+\epsilon) H_{1} d s \\
& \leq \lambda A(l+\epsilon)\|u\| \leq\|u\|
\end{aligned}
$$

Consequently, $\|T u\| \leq\|u\|$. So, if we set

$$
\Omega_{1}=\left\{y \in \mathcal{P}:\|y\|<H_{1}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{3.5}
\end{equation*}
$$

Next we construct the set Ω_{2}. Considering (L6) there exists $\overline{H_{2}}$ such that $f(y) \geq(L-\epsilon) y$, for all $y \geq \overline{H_{2}}$. Let $H_{2}=\max \left\{2 H_{1}, \frac{\overline{H_{2}}}{\gamma}\right\}$ and set

$$
\Omega_{2}=\left\{y \in \mathcal{P}:\|y\|<H_{2}\right\} .
$$

If $u \in \mathcal{P}$ with $\|u\|=H_{2}$, then

$$
\min _{t \in[\eta, 1]} y(t) \geq \gamma\|y\| \geq \overline{H_{2}}
$$

Thus, by a similar argument as in [11], we have

$$
\begin{aligned}
(T u)(\eta) & \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) f(u(s)) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(L-\epsilon) u(s) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(L-\epsilon) \gamma\|u\| d s \\
& =\lambda \frac{\gamma \eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(L-\epsilon) H_{2} d s \\
& \geq \lambda B \gamma(L-\epsilon)\|u\| \\
& \geq\|u\|
\end{aligned}
$$

Thus, $\|T u\| \geq\|u\|$. Hence

$$
\begin{equation*}
\|T u\| \geq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.6}
\end{equation*}
$$

Applying (i) of Theorem 2.1 to (3.5) and (3.6) yields that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. The proof is complete.

Theorem 3.3 Assume that $(A 1),(A 2),(L 5)$ and (L6) hold. Then, for each λ satisfying

$$
\begin{equation*}
\frac{1}{\gamma B l}<\lambda<\frac{1}{A L} \tag{3.7}
\end{equation*}
$$

(1.1)-(1.2) has at least one positive solution.

Proof: We construct the sets Ω_{1} and Ω_{2} in order to apply Theorem 2.1. Let λ be given as in (3.7), and choose $\epsilon>0$ such that

$$
\frac{1}{\gamma B(l-\epsilon)} \leq \lambda \leq \frac{1}{A(L+\epsilon)}
$$

By condition (L5), there exists $H_{1}>0$ such that $f(y) \leq(l-\epsilon) y$, for $0<y \leq H_{1}$. So, choosing $u \in \mathcal{P}$ with $\|u\|=H_{1}$, we have

$$
\begin{aligned}
(T u)(\eta) & \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) f(u(s)) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(l-\epsilon) u(s) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(l-\epsilon) \gamma\|u\| d s \\
& =\lambda \frac{\gamma \eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s)(l-\epsilon) H_{1} d s \\
& \geq \lambda B \gamma(l-\epsilon)\|u\| \\
& \geq\|u\|
\end{aligned}
$$

Thus, $\|T u\| \geq\|u\|$. So, if we let

$$
\Omega_{1}=\left\{y \in \mathcal{P}:\|y\|<H_{1}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} \tag{3.8}
\end{equation*}
$$

Next we construct the set Ω_{2}. Considering (L6) there exists $\overline{H_{2}}$ such that $f(y) \leq(L+\epsilon) y$, for all $y \geq \overline{H_{2}}$.
We consider two cases; f is bounded and f is unbounded. The case where f is bounded is straight forward. If $f(y)$ is bounded by $Q>0$, set

$$
H_{2}=\max \left\{2 H_{1}, \lambda Q A\right\}
$$

EJQTDE, 2002 No. 15, p. 7

Then if $u \in \mathcal{P}$ and $\|u\|=H_{2}$, we have

$$
\begin{aligned}
(T u)(t) & \leq \lambda \frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f(u(s)) d s \\
& \leq \lambda \frac{Q}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) d s \\
& =\lambda A Q \\
& \leq H_{2} \\
& =\|u\|
\end{aligned}
$$

Consequently, $\|T u\| \leq\|u\|$. So, if we set

$$
\Omega_{2}=\left\{y \in \mathcal{P}:\|y\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.9}
\end{equation*}
$$

When f is unbounded, we let $H_{2}>\max \left\{2 H_{1}, \overline{H_{2}}\right\}$ be such that $f(y) \leq f\left(H_{2}\right)$, for $0<y \leq H_{2}$. For $u \in \mathcal{P}$ with $\|u\|=H_{2}$,

$$
\begin{aligned}
(T u)(t) & \leq \lambda \frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f(u(s)) d s \\
& \leq \lambda \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f\left(H_{2}\right) d s \\
& \leq \lambda \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(L+\epsilon) H_{2} d s \\
& =\lambda \frac{1}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s)(L+\epsilon)\|u\| d s \\
& =\lambda A(L+\epsilon)\|u\| \\
& \leq\|u\|
\end{aligned}
$$

Consequently, $\|T u\| \leq\|u\|$. So, if we set

$$
\Omega_{2}=\left\{y \in \mathcal{P}:\|y\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.10}
\end{equation*}
$$

Applying (ii) of Theorem 2.1 to (3.8) and (3.9) yields that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. Also, applying (ii) of Theorem 2.1 to (3.8) and (3.10) yields that T has a fixed point $u \in$ $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. The proof is complete.

Theorem 3.4 Assume that $(A 1),(A 2),(L 1)$ and (L6) hold. Then, for each λ satisfying

$$
\begin{equation*}
0<\lambda<\frac{1}{A L} \tag{3.11}
\end{equation*}
$$

EJQTDE, 2002 No. 15, p. 8
(1.1)-(1.2) has at least one positive solution.

Proof: Apply $(L 1)$ and choose $H_{1}>0$ such that if $0<y<H_{1}$, then

$$
f(y) \geq \frac{y}{\lambda \gamma B}
$$

Define

$$
\Omega_{1}=\left\{y \in \mathcal{P}:\|y\|<H_{1}\right\} .
$$

If $y \in \mathcal{P} \cap \partial \Omega_{1}$, then

$$
\begin{aligned}
(T u)(\eta) & \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) f(u(s)) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) \frac{u(s)}{\lambda \gamma B} d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) \frac{\gamma\|u\|}{\lambda \gamma B} d s \\
& \geq\|u\| .
\end{aligned}
$$

In particular, $\|T u\| \geq\|u\|$, for all $u \in \mathcal{P} \cap \partial \Omega_{1}$. In order to construct Ω_{2}, we let λ be given as in (3.11), and choose $\epsilon>0$ such that

$$
0 \leq \lambda \leq \frac{1}{A(L+\epsilon)}
$$

The construction of Ω_{2} follows along the lines of the construction of Ω_{2} in Theorem 3.3, and hence we omit it. Thus, by (ii) of Theorem 2.1, (1.1)-(1.2) has at least one positive solution.

Theorem 3.5 Assume that $(A 1),(A 2),(L 2)$ and ($L 5$) hold. Then, for each λ satisfying

$$
\begin{equation*}
0<\lambda<\frac{1}{A l} \tag{3.12}
\end{equation*}
$$

(1.1)-(1.2) has at least one positive solution.

Proof: Assume ($L 5$) holds. Then, we may take the set Ω_{1} to be the one obtained for Theorem 3.1. That is,

$$
\Omega_{1}=\left\{y \in \mathcal{P}:\|y\|<H_{1}\right\} .
$$

Hence, we have

$$
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{1}
$$

Next, we assume $(L 2)$. Choose $\overline{H_{2}}>0$ such that $f(y) \geq \frac{y}{\lambda \gamma B}$, for $y \geq \overline{H_{2}}$. Let $H_{2}=$ $\max \left\{2 H_{1}, \frac{\overline{H_{2}}}{\gamma}\right\}$ and set

$$
\Omega_{2}=\left\{y \in \mathcal{P}:\|y\|<H_{2}\right\}
$$

EJQTDE, 2002 No. 15, p. 9

If $u \in \mathcal{P}$ with $\|u\|=H_{2}$,

$$
\begin{aligned}
(T u)(\eta) & \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) f(u(s)) d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) \frac{u(s)}{\lambda \gamma B} d s \\
& \geq \lambda \frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) \frac{\gamma\|u\|}{\lambda \gamma B} d s \\
& \geq\|u\| .
\end{aligned}
$$

Consequently,

$$
\|T u\| \geq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2}
$$

Applying (i) of Theorem 2.1 yields that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
We state the next results as corollary, because by now, its proof can be easily obtained from the proofs of the previous results.

Corollary 3.6 Assume that ($A 1$) and ($A 2$) hold. Also, if either ($L 3$) and ($L 6$) hold, or, ($L 4$) and (L5) hold, then (1.1)-(1.2) has at least one positive solution if λ satisfies either $1 /(\gamma B L)<\lambda$, or, $1 /(\gamma B l)<\lambda$.

References

[1] A. Datta and J. Henderson, Differences and smoothness of solutions for functional difference equations, Proceedings Difference Equations 1 (1995), 133-142.
[2] S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electronic Journal of Differential Equations 59 (2001), 1-8.
[3] J. Henderson and A. Peterson, Properties of delay variation in solutions of delay difference equations, Journal of Differential Equations 1 (1995), 29-38.
[4] R.P. Agarwal and P.J.Y. Wong, On the existence of positive solutions of higher order difference equations, Topological Methods in Nonlinear Analysis 10 (1997) 2, 339-351.
[5] P.W. Eloe, Y. Raffoul, D. Reid and K. Yin, Positive solutions of nonlinear Functional Difference Equations, Computers and Mathematics With applications 42 (2001), 639-646.
[6] C.P. Gupta and S. I. Trofimchuk, A sharper condition for the stability of a three-point second order boundary value problem, Journal of Mathematical Analysis and Applications, 205 586-597 (1997).
[7] C.P. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, Journal of Mathematical Analysis and Applications, 168 540-551 (1997).
[8] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, Journal of Mathematical Analysis and Applications, 208 252-259 (1997).
[9] J. Henderson and W. N. Hudson, Eigenvalue problems for nonlinear differential equations, Communications on Applied Nonlinear Analysis 3 (1996), 51-58.
[10] M. A. Krasnosel'skii, Positive solutions of operator Equations Noordhoff, Groningen, (1964).
[11] R. MA, Positive solutions of a nonlinear three-point boundary-value problem, Electronic Journal of Differential Equations, Vol. 1999(1999), No.34, pp.1-8.
[12] R. MA, A remark on a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 183, 518-522 (1994).
[13] R. MA, Existence theorem for a second order three-point boundary value problem, Journal of Mathematical Analysis and Applications, 212, 430-442 (1997).
[14] R. MA, Positive solutions for second order three-point boundary value problem, Appl. Math. Lett., 14, 193-204 (2001).
[15] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, Journal of Difference Equations and Application 1 (1995), 263-270.
[16] W. Yin, Eigenvalue problems for functional differential equations, Journal of Nonlinear Differential Equations 3 (1997), 74-82.

