ON SINGULAR SOLUTIONS FOR SECOND ORDER DELAYED DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

Abstract

Asymptotic properties and estimate of singular solutions (either defined on a finite interval only or trivial in a neighbourhood of ∞) of the second order delay differential equation with p-Laplacian are investigated.

1. Introduction

In this paper, we consider the second order nonlinear delay differential equation

$$
\begin{equation*}
\left(a(t)\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}+r(t)|y(\varphi(t))|^{\lambda} \operatorname{sgn} y(\varphi(t))=0 \tag{1}
\end{equation*}
$$

where $p>0, \lambda>0, a \in C^{0}\left(\mathbb{R}_{+}\right), r \in C^{0}\left(\mathbb{R}_{+}\right), \varphi \in C^{0}\left(\mathbb{R}_{+}\right), a(t)>0, r(t)>0$, $\varphi(t) \leq t$ on \mathbb{R}_{+}and $\lim _{t \rightarrow \infty} \varphi(t)=\infty$.

If $p=\lambda$, it is known as the half-linear equation, while if $\lambda>p$, we say that equation (1) is of the super-half-linear type, and if $\lambda<p$, we will say that it is of the sub-half-linear type.

We begin by defining what is mean by a solution of equation (1) as well as some basic properties of solutions.

Definition 1. Let $T \in(0, \infty], \varphi_{0}=\inf _{t \in \mathbb{R}_{+}} \varphi(t), \phi \in C^{0}\left[\varphi_{0}, 0\right]$, and $y_{0}^{\prime} \in \mathbb{R}$. We say that a function y is a solution of (1) on $[0, T)$ (with the initial conditions $\left(\phi, y_{0}^{\prime}\right)$) if $y \in C^{0}\left[\varphi_{0}, T\right), y \in C^{1}[0, T), a\left|y^{\prime}\right|^{p-1} y^{\prime} \in C^{1}[0, T)$, (1) holds on $[0, T), y(t)=\phi(t)$ on $\left[\varphi_{0}, 0\right]$, and $y_{+}^{\prime}(0)=y_{0}^{\prime}$.

We assume that solutions are defined on their maximal interval of existence to the right.

Equation (1) can be written as the equivalent system

$$
\begin{align*}
& y_{1}^{\prime}=a^{-\frac{1}{p}}(t)\left|y_{2}\right|^{\frac{1}{p}} \operatorname{sgn} y_{2}, \\
& y_{2}^{\prime}=-r(t)|y(\varphi(t))|^{\lambda} \operatorname{sgn} y(\varphi(t)) . \tag{2}
\end{align*}
$$

The relationship between a solution y of (1) and a solution $\left(y_{1}, y_{2}\right)$ of the system (2) is

$$
\begin{equation*}
y_{1}(t)=y(t) \quad \text { and } \quad y_{2}(t)=a(t)\left|y^{\prime}(t)\right|^{p-1} y^{\prime}(t), \tag{3}
\end{equation*}
$$

and when discussing a solution y of (1), we will often use (3) without mention.

[^0]Definition 2. Let y be a solution of (1) defined on $[0, T), T \leq \infty$. It is called singular of the 1 st kind if $T=\infty, \tau \in(0, \infty)$ exists such that $y \equiv 0$ on $[\tau, \infty)$ and y is nontrivial in any left neighbourhood of τ. Solution y is called singular of the 2nd kind if $T<\infty$ and put $\tau=T$. It is called proper if $T=\infty$ and it is nontrivial in any neighbourhood of ∞. Singular solutions of either 1st or 2 nd kind are called singular.

Note, that a solution of (1) is either proper, or singular or trivial on $\left(\varphi_{0}, \infty\right)$. Singular solutions of the second kind are sometimes called noncontinuable. When discussing singular solutions, τ will be the number in Definition 2 in all the paper without mention.

Remark 1. If y is a singular solution of (1) of the 2 nd kind, then it is defined on $[0, \tau), \tau<\infty$ and it cannot be defined at $t=\tau$; so, $\limsup _{t \rightarrow \tau}\left(\left|y_{1}(t)\right|+\left|y_{2}(t)\right|\right)=\infty$. From this and from (2)

$$
\begin{equation*}
\limsup _{t \rightarrow \tau}\left|y_{2}(t)\right|=\infty \tag{4}
\end{equation*}
$$

Definition 3. Let y be a singular solution of (1) of the 1st kind (of the 2nd kind). Then it is called oscillatory if there exists a sequence of its zeros tending to τ and it is called nonoscillatory otherwise.

Singular solutions of (1) without delay, i.e. of

$$
\begin{equation*}
\left(a(t)\left|y^{\prime}\right|^{p-1} y^{\prime}\right)^{\prime}+r(t)|y|^{\lambda} \operatorname{sgn} y=0 \tag{5}
\end{equation*}
$$

have been studied by many authors, see e.g. [1, 5], [9]-[16] and the references therein. Note, that the first existence results are obtained in [12] for $p=1, a=1$ and $r \leq 0$. In the monography of Kiguradze and Chanturia [13] it is a good overview of results for $p=1$ and $a=1$.

Eq. (5) may have singular solutions. Heidel [11] (Coffman, Ulrych [9]) proved the existence of an equation of type (5), $a \equiv 1, p=1$ with singular solutions of the 1 st kind (of the 2 nd kind) in case $\lambda<p(\lambda>p)$; in this case r is continuous but not of locally bounded variation. If a and r are smooth enough, then singular solutions of (5) do not exist (see Theorem A below). As concerns to Eq. (1), the existence of singular solutions of the second kind are investigated in [4] in case $r \leq 0$. The existence and properties of singular solutions of either the first kind or of the second kind in case $r \geq 0$ seem not to be studied at all.

The following theorem sums up results concerning to Eq. (5).
Theorem A. Let $r \in C^{0}\left(\mathbb{R}_{+}\right)$and $r(t)>0$ on \mathbb{R}_{+}.
(i) If $\lambda \geq p$, then there exists no singular solution of (5) of the 1 st kind.
(ii) If $\lambda \leq p$, then there exists no singular solution of (5) of the 2nd kind.
(iii) If $a^{\frac{1}{p}} r \in C^{1}\left(\mathbb{R}_{+}\right)$, then all solutions of (5) are proper.

Proof. (i), (ii): See Theorems 1.1 and 1.2 in [15]. (iii): It follows from Theorem 2 in [5].

Note that estimates of such kind of solutions are proved by Kvinikadze, see references in [13]. In [1] (for $p=1, a=1, r \leq 0$) precise asymptotic formulas of all EJQTDE, 2012 No. 3, p. 2
solutions are obtained for differential equations of the third and fourth orders, see also [3]. About uniform estimates of solutions of quasi-linear ordinary differential equations see [2]. In [16] estimates of singular solutions of the second kind of a system of second order differential equations (of the form (5)) are derived.

Theorem B ([16], Theorem 2). Let $r \in C^{0}\left(\mathbb{R}_{+}\right)$and $r(t)>0$ on \mathbb{R}_{+}. Let $\lambda>p$, y be a singular solution of (5) of the second kind, $T \in[0, \tau), \tau-T \leq 1, r_{0}=$ $\max _{T \leq s \leq \tau} r(s), C_{0}=2^{\lambda+2}$ in case $p>1$ and $C_{0}=2^{2 \lambda+1}$ in case $p \leq 1$. Then a positive constant $C=C\left(p, \lambda, \tau, r_{0}\right)$ exists such that

$$
\left|y_{2}(t)\right|+C_{0} r_{0}|y(t)|^{\lambda} \geq C(\tau-t)^{-\frac{p(\lambda+1)}{\lambda-p}}, \quad t \in[T, \tau)
$$

It is important to study the existence of proper/singular solutions. When studying solutions of (1) and (5), some authors sometimes investigate properties of solutions that are defined on \mathbb{R}_{+}only without proving the existence of them. Moreover, sometimes, proper solutions have crucial role in a definition of some problems, see e.g. the limit-point/limit-circle problem in [6], [8]. Furthermore, noncontinuable solutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems), see e.g. [4].

Our goal is to study properties of singular solutions and to extend Theorems A and B to (1).

For convenience, we define the constants and the function

$$
\delta=\frac{p+1}{p}, \quad \gamma=\frac{p+1}{p(\lambda+1)}, \quad R(t)=a^{\frac{1}{p}}(t) r(t), \quad t \in \mathbb{R}_{+} .
$$

If y is a solution of (1), then we set on its interval of existence

$$
\begin{equation*}
F(t)=R^{-1}(t)\left|y_{2}(t)\right|^{\delta}+\gamma|y(t)|^{\lambda+1} \tag{6}
\end{equation*}
$$

Notice that $F(t) \geq 0$ for every solution of (1) and

$$
\begin{equation*}
F^{\prime}(t)=-\frac{R^{\prime}(t)}{R^{2}(t)}\left|y_{2}(t)\right|^{\delta}+\delta y^{\prime}(t) e(t) \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
e(t) \stackrel{\text { def }}{=}|y(t)|^{\lambda} \operatorname{sgn} y(t)-|y(\varphi(t))|^{\lambda} \operatorname{sgn} y(\varphi(t)) . \tag{8}
\end{equation*}
$$

From (6)

$$
\begin{align*}
|y(t)| & \leq\left(\gamma^{-1} F(t)\right)^{\frac{1}{\lambda+1}}, \quad\left|y_{2}(t)\right| \leq[R(t) F(t)]^{\frac{p}{p+1}}, \tag{9}\\
\left|y^{\prime}(t)\right| & \leq a^{-\frac{1}{p}}(t) R^{\frac{1}{p+1}}(t) F^{\frac{1}{p+1}}(t)
\end{align*}
$$

2. Singular solutions of the 2nd kind

The following theorem shows that such solutions do not exist in case $\lambda \leq p$.
Theorem 1. If $\lambda \leq p$, then all solutions of (1) are defined on \mathbb{R}_{+}
Proof. It is proved in Lemma 7 in [6] for $r<0$, for arbitrary r the proof is the same, it is necessary to replace r by $|r|$.

EJQTDE, 2012 No. 3, p. 3

The following theorem gives us basic properties.
Theorem 2. Let y be a singular solution of (1) of the second kind. Then it is oscillatory and $\varphi(\tau)=\tau$. If, moreover, $R \in C^{1}\left(\mathbb{R}_{+}\right)$, then $\varphi(t) \not \equiv t$ in any left neighbourhood of τ.

Proof. Suppose, contrarily, that $\varphi(\tau)<\tau$. Then an interval $I=\left[\tau_{1}, \tau\right)$ exists such that $\tau_{1}<\tau$ and $\sup _{t \in I} \varphi(t)<\tau$. From this and from (1) we have $\left|y_{2}^{\prime}(t)\right|=$ $r(t)|y(\varphi(t))|^{\lambda} \leq \sup _{t \in I} r(t)|y(\varphi(t))|^{\lambda}<\infty$. Hence, y_{2} is bounded on I that contradicts (4). Hence, $\varphi(\tau)=\tau$.

Let y be nonoscillatory. Suppose, for the simplicity, that y is positive in a left neighbourhood of τ. Then, with respect to $\varphi(\tau)=\tau, \tau_{1}<\tau$ exists such that

$$
\begin{equation*}
y(\varphi(t))>0 \quad \text { on } \quad I \stackrel{\text { def }}{=}\left[\tau_{1}, \tau\right) \tag{10}
\end{equation*}
$$

As according to (2) and (10), y_{2} is decreasing on I and (4) implies

$$
\begin{equation*}
\lim _{t \rightarrow \tau-} y_{2}(t)=-\infty \tag{11}
\end{equation*}
$$

From this $\tau_{2} \in I$ exists such that

$$
\begin{equation*}
y^{\prime}(t)<0 \quad \text { on } \quad\left[\tau_{2}, \tau\right) \tag{12}
\end{equation*}
$$

and the integration of (1) and (11)

$$
\int_{\tau_{2}}^{\tau} r(t) y^{\lambda}(\varphi(t)) d t=y_{2}\left(\tau_{2}\right)-\lim _{t \rightarrow \tau-} y_{2}(t)=\infty
$$

Hence, $\limsup _{t \rightarrow \tau-} y(t)=\infty$ that contradicts (12) and y is oscillatory.
Let y be a singular solution of (1) and $\varphi(t) \equiv t$ on a left neighbourhood J on τ. Then y is a singular solution of (5) on J. A contradiction with Theorem A(iii) proves that $\varphi(t) \not \equiv t$ in any left neighbourhood of τ.

Remark 2. According to Theorem 1 there exists no singular solution of (1) of the second kind in case $\varphi(t)<t$ on \mathbb{R}_{+}; all solutions are defined on \mathbb{R}_{+}. This fact was used by many authors for special types of (1), see e.g. [10], [4] $(r<0)$.

The following two lemmas serve us for estimate of solutions.
Lemma 1. Let $\omega>1, t_{0} \in \mathbb{R}_{+}, K>0, Q$ be a continuous nonnegative function on $\left[t_{0}, \infty\right)$ and u be continuous and nonnegative on $\left[t_{0}, \infty\right)$ satisfying

$$
\begin{equation*}
u(t) \leq K+\int_{t_{0}}^{t} Q(s) u^{\omega}(s) d s \quad \text { on } \quad\left[t_{0}, T\right), T \leq \infty \tag{13}
\end{equation*}
$$

If

$$
\begin{equation*}
(\omega-1) K^{\omega-1} \int_{t_{0}}^{\infty} Q(s) d s<1 \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq K\left[1-(\omega-1) K^{\omega-1} \int_{t_{0}}^{t} Q(s) d s\right]^{1 /(1-\omega)}, \quad t \in\left[t_{0}, T\right) \tag{15}
\end{equation*}
$$

Proof. It is proved in Lemma 2.1 in [14] for $m=\omega$ and $p=1$.
Lemma 2. Let $\lambda>p, \int_{0}^{\infty} r(s)\left(\int_{0}^{s} a^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda} d s<\infty, y$ be a solution of (1) defined on $[0, T), T \leq \infty$ and let $t_{0} \in[0, T)$. If $y_{*}=\max _{\varphi\left(t_{0}\right) \leq s \leq t_{0}}|y(s)|$ and

$$
\begin{equation*}
\left[\left|y_{2}\left(t_{0}\right)\right|+2^{\lambda} y_{*}^{\lambda} \int_{t_{0}}^{\infty} r(s) d s\right]^{\frac{\lambda}{p}-1} \int_{t_{0}}^{\infty} r(s)\left(\int_{t_{0}}^{s} a^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda} d s<2^{-\lambda} \frac{p}{\lambda-p} \tag{16}
\end{equation*}
$$

Then $T=\infty$ and y is defined on \mathbb{R}_{+}.
Proof. Suppose, contrarily, that y is singular of the 2nd kind. Then $T=\tau<\infty$ and denote by

$$
v(t)=\sup _{t_{0} \leq s \leq t}\left|y_{2}(s)\right| \quad \text { for } \quad t \in I \stackrel{\text { def }}{=}\left[t_{0}, T\right)
$$

It follows from (2) that

$$
\left|y_{2}(t)\right| \leq\left|y_{2}\left(t_{0}\right)\right|+\int_{t_{0}}^{t} r(s)|y(\varphi(s))|^{\lambda} d s
$$

and

$$
|y(t)| \leq\left|y\left(t_{0}\right)\right|+\int_{t_{0}}^{t} a^{-\frac{1}{p}}(s)\left|y_{2}(s)\right|^{\frac{1}{p}} d s, \quad t \in I
$$

Hence, for $t_{0} \leq s \leq t<T$ we have

$$
\begin{aligned}
\left|y_{2}(s)\right| & \leq\left|y_{2}\left(t_{0}\right)\right|+\int_{t_{0}}^{s} r(z)\left[y_{*}+v^{\frac{1}{p}}(z) \int_{t_{0}}^{z} a^{-\frac{1}{p}}(\sigma) d \sigma\right]^{\lambda} d z \\
& \leq\left|y_{2}(t)\right|+2^{\lambda} y_{*}^{\lambda} \int_{t_{0}}^{\infty} r(\sigma) d \sigma+2^{\lambda} \int_{t_{0}}^{t} r(z)\left(\int_{t_{0}}^{z} a^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda} v^{\frac{\lambda}{p}}(z) d z
\end{aligned}
$$

From this
(17) $\quad v(t) \leq\left|y_{2}\left(t_{0}\right)\right|+2^{\lambda} y_{*}^{\lambda} \int_{t_{0}}^{\infty} r(\sigma) d \sigma+2^{\lambda} \int_{t_{0}}^{t} r(z)\left(\int_{t_{0}}^{z} a^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda} v^{\frac{\lambda}{p}}(z) d z$.

Put $\quad \omega=\frac{\lambda}{p}>1, u=v, K=\left|y_{2}\left(t_{0}\right)\right|+2^{\lambda} y_{*}^{\lambda} \int_{t_{0}}^{\infty} r(s) d s$
and $\quad Q(t)=2^{\lambda} r(t)\left(\int_{t_{0}}^{t} a^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda}$.
Then (16) and (17) imply (13) and (14), and according to Lemma 1, (15) is valid. As $T<\infty, y_{2}$ is bounded on J. A contradiction with (4) proves the statement.

Remark 3. Note that Lemma 2 is valid even if we suppose $r \geq 0$ instead of $r>0$ on \mathbb{R}_{+}.

Remark 4. The idea of the proof is due to Medved and Pekárková [14] (with $\varphi(t) \equiv t)$; it is used also in [7] for (1) with $t-\varphi(t) \leq$ const. on \mathbb{R}_{+}.

The next theorem derives an estimate from below of a singular solution of the second kind.

EJQTDE, 2012 No. 3, p. 5

Theorem 3. Let $\lambda>p$ and let y be a singular solution of (1) of the 2nd kind. Let $T \in[0, \tau), a_{*}=\min _{T \leq s \leq \tau} a(s), r_{*}=\max _{T \leq s \leq \tau} r(s)$ and $y_{*}(t)=\max _{\varphi(t) \leq s \leq t}|y(s)|$ on $[T, \tau)$. Then

$$
\begin{equation*}
\left|y_{2}(t)\right|+2^{\lambda+1} y_{*}^{\lambda}(t) r_{*}(\tau-t) \geq K(\tau-t)^{\frac{-p(\lambda+1)}{\lambda-p}} \tag{18}
\end{equation*}
$$

on $[T, \tau)$ with $K=\left(2^{-2 \lambda-1} \frac{(\lambda+1) p}{\lambda-p} a_{*}^{\frac{\lambda}{p}} r_{*}^{-1}\right)^{\frac{p}{\lambda-p}}$. Especially, a left neighbourhood I of τ exists such that

$$
\begin{equation*}
a(\tau)\left|y^{\prime}(t)\right|^{p}+2^{\lambda+1} y_{*}^{\lambda}(t) r(\tau)(\tau-t) \geq K_{1}(\tau-t)^{\frac{-p(\lambda+1)}{\lambda-p}} \tag{19}
\end{equation*}
$$

Proof. Let y be a singular solution of (1) of the 2 nd kind defined on $[0, \tau)$. Let $\bar{t} \in[T, \tau)$ be fixed. Define

$$
\begin{array}{ll}
\bar{r}(t)=r(t) & \bar{a}(t)=a(t) \text { for } t \in[0, \tau], \\
\bar{r}(t)=\frac{r(\tau)}{\tau-\bar{t}}(-t+2 \tau-\bar{t}), & \bar{a}(t)=\frac{a(\tau)}{\tau-\bar{t}}(-t+2 \tau-\bar{t}) \text { for } t \in(\tau, 2 \tau-\bar{t}] \\
\bar{r}(t)=0, & \bar{a}(t)=0 \text { for } t>2 \tau-\bar{t} ;
\end{array}
$$

note that \bar{r} and \bar{a} are continuous on \mathbb{R}_{+}and are linear on $[\tau, 2 \tau-\bar{t}$. Furthermore, we have

$$
\begin{align*}
\int_{\bar{t}}^{\infty} \bar{r}(s)\left(\int_{\bar{t}}^{s} \bar{a}^{-\frac{1}{p}}(\sigma) d \sigma\right)^{\lambda} d s & \leq r_{*} a_{*}^{-\frac{\lambda}{p}} \int_{\bar{t}}^{2 \tau-\bar{t}}(s-\bar{t})^{\lambda} d s \\
& \leq \frac{2^{\lambda+1}}{\lambda+1} r_{*} a_{*}^{-\frac{\lambda}{p}}(\tau-\bar{t})^{\lambda+1} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\bar{t}}^{\infty} r(s) d s \leq \int_{\bar{t}}^{2 \tau-\bar{t}} r_{*} d s=2 r_{*}(\tau-\bar{t}) \tag{21}
\end{equation*}
$$

Consider an auxilliary equation

$$
\begin{equation*}
\left(\bar{a}(t)\left|z^{\prime}\right|^{p-1} z^{\prime}\right)+\bar{r}(t)|z(\varphi)|^{\lambda} \operatorname{sgn} z(\varphi)=0 . \tag{22}
\end{equation*}
$$

Then $z=y$ is the singular solution of (22) of the second kind defined on $[0, \tau)$. Suppose that (18) is not valid for $t=\bar{t}$, i.e.

$$
\begin{equation*}
\left[\mid y_{2}(\bar{t})+2^{\lambda+1} y_{*}^{\lambda}(\bar{t}) r_{*}(\tau-\bar{t})\right]^{\frac{\lambda}{p}-1}<2^{-2 \lambda-1} \frac{(\lambda+1) p}{\lambda-p} a_{*}^{\frac{\lambda}{p}} r_{*}^{-1}(\tau-\bar{t})^{-\lambda-1} \tag{23}
\end{equation*}
$$

holds. We apply Lemma 2 and Remark 3 with $T=\tau$ and $t_{0}=\bar{t}$. Then it follows from (20), (21) and (23) that all assumptions of Lemma 2 are valid. Hence, z is defined on \mathbb{R}_{+}and the contradiction with z to be singular proves that (18) is valid. Furthermore, a left neighbourhood I of $t=\tau$ exists such that

$$
r_{*} \leq 2 r(\tau) \quad \text { and } \quad \frac{a(\tau)}{2} \leq a_{*} \leq 2 a(\tau)
$$

and (20) follows from this and from (18).

Remark 5. The used method of the proof of Theorem 2 is due to Pekárková [16] (for $\varphi(t) \equiv t$).

Corollary 1. Every singular solution of (1) of the second kind is unbounded.
Remark 6. In case $\varphi(t) \equiv t$, Theorem 3 gives us similar estimate than Theorem B but it can be used also for $\tau-t>1$.

Corollary 2. Let y be a singular solution of (1) of the second kind. Then a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ of local extremes and constant $M>0$ exist such that $\lim _{k \rightarrow \infty} t_{k}=\tau$ and

$$
\left|y\left(t_{k}\right)\right| \geq M\left(\tau-t_{k}\right)^{\frac{-p(\lambda+1)}{\lambda(\lambda-p)}}, \quad k=1,2, \ldots
$$

Proof. Let y be a singular solution of the 2 nd kind. Then according to Lemma 2 and Corollary 2 it is oscillatory and unbounded. Hence, an increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ exists such that $\lim _{t \rightarrow \infty} t_{k}=\tau, y$ has the local extreme at t_{k} and

$$
\left|y\left(t_{k}\right)\right| \geq|y(t)| \quad \text { for } \quad t \in\left[\varphi_{0}, t_{k}\right], k=1,2, \ldots
$$

Then $y^{\prime}\left(t_{k}\right)=0, \max _{\varphi\left(t_{k}\right) \leq s \leq t_{k}}|y(s)|=\left|y\left(t_{k}\right)\right|$, and the statement follows from (19).
3. Singular solution of the 1 St kind

This paragraph begins with some basic properties
Theorem 4. Let y be a singular solution of (1) of the first kind. Then it is oscillatory and $\varphi(\tau)=\tau$. Moreover,
(i) if $R \in C^{1}\left(\mathbb{R}_{+}\right)$, then $\varphi(t) \not \equiv t$ in any left neighbourhood of τ;
(ii) if $R \in C^{1}\left(\mathbb{R}_{+}\right), \lambda \geq p$ and φ is nondecreasing in a left neighbourhood J of τ, then a left neighbourhood J_{1} of τ exists such that $\varphi(t)<t$ on J_{1}.

Proof. Let y be a singular solution of (1) of the first kind. Then

$$
\begin{equation*}
y(t)=0 \quad \text { for } \quad t \geq \tau \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t) \not \equiv 0 \quad \text { in any left neighbourhood of } \tau . \tag{25}
\end{equation*}
$$

Suppose, contrarily, that $\varphi(\tau)<\tau$. Then $\lim _{t \rightarrow \infty} \varphi(t)=\infty$ implies the existence of τ_{1} such that $\tau_{1}>\tau$ and $\varphi(t)>\tau$ for $t \geq \tau_{1}$. Denote $I=\left[\tau, \tau_{1}\right]$. Then according to (1) and (24)

$$
\begin{equation*}
y(\varphi(t))=-r^{-\frac{1}{\lambda}}(t)\left|\left(a(t)\left|y^{\prime}(t)\right|^{p-1} y^{\prime}(t)\right)^{\prime}\right|^{1 / \lambda} \operatorname{sgn}\left(a(t)\left|y^{\prime}(t)\right|^{p-1} y^{\prime}(t)\right)^{\prime}=0 \tag{26}
\end{equation*}
$$

for $t \in I$. As $\varphi\left(\tau_{1}\right)>\tau$ we have

$$
[\varphi(\tau), \tau] \subset\left[\varphi(\tau), \varphi\left(\tau_{1}\right)\right] \subset\{\varphi(t): t \in I\}
$$

From this and from (26), $y(t)=0$ on $[\varphi(\tau), \tau]$ that contradicts (25). Hence, $\varphi(\tau)=$ τ.

We prove that y is oscillatory. Suppose, contrarily, that $y(t)>0$ in a left neighbourhood of τ; case $y(t)<0$ can be studied similarly. From this and from $\varphi(\tau)=\tau$ an interval $I_{1}=\left[\tau_{2}, \tau\right), \tau_{2}<\tau$ exists such

$$
\begin{equation*}
y(\varphi(t))>0 \quad \text { for } \quad t \in I_{1} \tag{27}
\end{equation*}
$$

As, according to (2), y_{2} is decreasing on I_{1} and (24) implies $y_{2}(\tau)=0$ we have $y_{2}>0$ on I_{1}; hence, $y^{\prime}>0$ on I_{1}. The contradiction with (27) and (24) proves that y is oscillatory.

Case (i). The proof follows from Theorem A(iii) by the same way as in the proof of Theorem 1 .

Case (ii). Let $\lambda \geq p$ and $R \in C^{1}\left(\mathbb{R}_{+}\right)$. Then (i) implies φ is nontrivial in any left neighbourhood of τ. Suppose that an increasing sequence $\left\{\tau_{k}\right\}_{k=1}^{\infty}$ exists such that $\lim _{k \rightarrow \infty} \tau_{k}=\tau$ and $\varphi\left(\tau_{k}\right)=\tau_{k}$. As φ is nondecreasing in $J,\left\{\tau_{k}\right\}$ may be choosen such that

$$
\begin{equation*}
\varphi(t) \in\left[\tau_{k}, \tau\right] \quad \text { for } \quad t \in\left[\tau_{k}, \tau\right] \tag{28}
\end{equation*}
$$

It follows from (24) and (25) that $y_{2}(\tau)=0$ and $F(\tau)=0$. Denote $\bar{F}_{k}=$ $\max _{\tau_{k} \leq s \leq \tau} F(s)$. Then (28), (7) and (9) imply

$$
\begin{aligned}
F(s)= & -\int_{s}^{\tau} F^{\prime}(\sigma) d \sigma \leq \bar{F}_{k} \int_{\tau_{k}}^{\tau} \frac{\left|R^{\prime}(\sigma)\right|}{R(\sigma)} d \sigma \\
& +2 \delta \gamma^{-\lambda} \bar{F}_{k}^{\omega} \int_{\tau_{k}}^{\tau} a^{-\frac{1}{p}}(\sigma) R^{\frac{1}{p+1}}(\sigma) d \sigma
\end{aligned}
$$

for $s \in\left[\tau_{k}, \tau\right]$ where $\omega=\frac{1}{p+1}+\frac{\lambda}{\lambda+1} \geq 1$ due to $\lambda \geq p$. Hence,

$$
\begin{equation*}
\bar{F}_{k} \leq \bar{F}_{k} \int_{\tau_{k}}^{\tau} \frac{\left|R^{\prime}(\sigma)\right|}{R(\sigma)} d \sigma+2 \delta \gamma^{-\lambda} \bar{F}_{k}^{\omega} \int_{\tau_{k}}^{\tau} a^{-\frac{1}{p}}(\sigma) R^{\frac{1}{p+1}}(\sigma) d \sigma \tag{29}
\end{equation*}
$$

$k=1,2, \ldots$ As $\lim _{k \rightarrow \infty} \bar{F}_{k}=F(\tau)=0$ and

$$
\lim _{k \rightarrow \infty} \int_{\tau_{k}}^{\tau} \frac{\left|R^{\prime}(\sigma)\right|}{R(\sigma)} d \sigma=0, \quad \lim _{k \rightarrow \infty} \int_{\tau_{k}}^{\tau} a^{-\frac{1}{p}}(\sigma) R^{\frac{1}{p+1}}(\sigma) d \sigma=0
$$

we obtain the contradiction in (29) for large k. Hence, $\left\{\tau_{k}\right\}$ does not exists and the statement holds in this case.

The following result is a consequence of Theorem 2 and Theorem 4.
Theorem 5. If $\varphi(t)<t$ on \mathbb{R}_{+}, then all solutions of (1) are proper.
Lemma 3. Let y be a singular solution of the 1 st kind, let $T \in[0, \tau)$ be such that

$$
\begin{equation*}
\int_{T}^{\tau} R^{-1}(t)\left|R^{\prime}(t)\right| d t \leq \frac{1}{2} \tag{30}
\end{equation*}
$$

$I=[T, \tau], K>0, \omega \geq 0$ and $|e(t)| \leq K(\tau-t)^{\omega}$ on I. Then

$$
F(t) \leq K_{1}(\tau-t)^{\delta(\omega+1)}, \quad t \in I
$$

where $K_{1}=\left[2 \delta(\omega+1)^{-1} K \max _{0 \leq \sigma \leq \tau} a^{-\frac{1}{p}}(\sigma) R^{\frac{1}{p+1}}(\sigma)\right]^{\delta}$.
EJQTDE, 2012 No. 3, p. 8

Proof. Let y be a singular solution of the 1st kind. Then (9) implies

$$
R^{-1}(t)\left|y_{2}(t)\right|^{\delta} \leq F(t), \quad\left|y^{\prime}(t)\right| \leq C F^{\frac{1}{p+1}}(t)
$$

on I with $C=\max _{t \in I} a^{-\frac{1}{p}}(t) R^{\frac{1}{p+1}}(t)>0$. Define $\bar{F}(t)=\max _{s \in[t, \tau]} F(s)$ for $t \in I$. From this and from (7), (8) and (30)

$$
\begin{aligned}
F(s) & =-\int_{t}^{\tau} F^{\prime}(\sigma) d \sigma \leq \int_{t}^{\tau} R^{-1}(\sigma)\left|R^{\prime}(\sigma)\right| F(\sigma) d s+\delta \int_{t}^{\tau}\left|y^{\prime}(\sigma) e(\sigma)\right| d s \\
& \leq \bar{F}(t) \int_{T}^{\tau} R^{-1}(\sigma)\left|R^{\prime}(\sigma)\right| d s+C_{1} \int_{t}^{\tau} F^{\frac{1}{p+1}}(\sigma)(\tau-\sigma)^{\omega} d s \\
& \leq \frac{\bar{F}(t)}{2}+\frac{C_{1}}{\omega+1} \bar{F}^{\frac{1}{p+1}}(t)(\tau-t)^{\omega+1}
\end{aligned}
$$

for $t \in I$ and $t \leq s \leq \tau$ where $C_{1}=\delta K C$. Hence,

$$
\bar{F}(t) \leq \frac{\bar{F}(t)}{2}+\frac{C_{1}}{\omega+1} \bar{F}^{\frac{1}{p+1}}(t)(\tau-t)^{\omega+1}
$$

or

$$
F(t) \leq \bar{F}(t) \leq K_{1}(\tau-t)^{\delta(\omega+1)} \quad \text { on } I
$$

The following theorem gives us an estimate from above of singular solutions of the 1st kind.

Theorem 6. Let y be a singular solution of (1) of the 1 st kind and $M>0$ be such that $\varphi^{\prime}(t) \leq M$ in a left neighbourhood S of τ.
(i) Let $\lambda \geq p$ and $m>0$. Then a positive constant K and a left neighbourhood J of τ exist such that

$$
|y(t)| \leq K(\tau-t)^{m}, \quad\left|y_{2}(t)\right| \leq K(\tau-t)^{\frac{(\lambda+1) m}{p+1}} \quad \text { on } \quad J
$$

(ii) Let $\lambda<p$ and $\varepsilon>0$. Then a positive constant K and a left neighbourhood J of τ exist such that

$$
|y(t)| \leq K(\tau-t)^{\frac{p+1}{p-\lambda}-\varepsilon}, \quad\left|y_{2}(t)\right| \leq K(\tau-t)^{\frac{p(\lambda+1)}{p-\lambda}-\varepsilon} \quad \text { on } \quad J .
$$

Proof. Let y be a singular solution of the 1st kind. According to Theorem $4 \varphi(\tau)=$ τ. Moreover, $\lim _{t \rightarrow \tau-} y(t)=\lim _{t \rightarrow \tau-} y_{2}(t)=0$ and an interval $I=[T, \tau] \subset S, 0 \leq T_{1}<T$ exists such that (30) and

$$
|y(t)|^{\lambda} \leq \frac{1}{2}, \quad|y(\varphi(t))|^{\lambda} \leq \frac{1}{2} \quad \text { for } \quad t \in I
$$

Hence, (8) implies $|e(t)| \leq 1$ on I and it follows from Lemma 3 (with $I=I, K=1$, $\omega=0$)

$$
\begin{equation*}
F(t) \leq K(T-t)^{\delta}, \quad t \in I \tag{31}
\end{equation*}
$$

with

$$
\begin{equation*}
K=\left[2 \delta \max _{0 \leq \sigma \leq T} a^{-\frac{1}{p}}(\sigma) R^{\frac{1}{p+1}}(\sigma)\right]^{\delta} \tag{32}
\end{equation*}
$$

EJQTDE, 2012 No. 3, p. 9

Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be such that $I_{1}=I, I_{n}=\left[T_{n}, \tau\right], T_{n}<T_{n+1}<\tau$ and $\varphi(t) \in I_{n}$ for $t \in I_{n+1}, n=1,2, \ldots ;$ this sequence exists due to $\varphi(t) \leq t$ and $\varphi(\tau)=\tau$.

We prove the estimate

$$
\begin{equation*}
F(t) \leq K_{n}(\tau-t)^{\omega_{n}} \quad \text { on } \quad I_{n} \tag{33}
\end{equation*}
$$

by the mathematical induction, where

$$
\begin{equation*}
\omega_{1}=\delta, \quad \omega_{n+1}=\delta\left[\frac{\lambda}{\lambda+1} \omega_{n}+1\right], \quad n=1,2, \ldots \tag{34}
\end{equation*}
$$

and
$K_{1}=K, \quad K_{n+1}=K\left[\gamma^{-\frac{\lambda}{\lambda+1}}\left(1+\frac{\lambda}{\lambda+1} \omega_{n}\right)^{-1}\left(1+M^{\omega_{n} \frac{\lambda}{\lambda+1}}\right) K_{n}^{\frac{\lambda}{\lambda+1}}\right]^{\delta}, \quad n=1,2, \ldots$
For $n=1$ (33) follows from (31) and (32). Suppose the validity of (33) for n. Then (6) and (33) imply

$$
|y(t)|^{\lambda} \leq\left(\gamma^{-1} F(t)\right)^{\frac{\lambda}{\lambda+1}} \leq \gamma^{-\frac{\lambda}{\lambda+1}} K_{n}^{\frac{\lambda}{\lambda+1}}(\tau-t)^{\frac{\lambda}{\lambda+1} \omega_{n}}, \quad t \in I_{n}
$$

and

$$
|y(\varphi(t))|^{\lambda} \leq \gamma^{-\frac{\lambda}{\lambda+1}} K_{n}^{\frac{\lambda}{\lambda+1}} M^{\frac{\lambda}{\lambda+1} \omega_{n}}(\tau-t)^{\frac{\lambda}{\lambda+1} \omega_{n}}, \quad t \in I_{n+1}
$$

as

$$
0 \leq \tau-\varphi(t)=\varphi(\tau)-\varphi(t)=\varphi^{\prime}(\xi)(\tau-t) \leq M(\tau-t), \quad \xi \in[t, \tau]
$$

From this and from (8)

$$
|e(t)| \leq \gamma^{-\frac{\lambda}{\lambda+1}} K_{n}^{\frac{\lambda}{\lambda+1}}\left[1+M^{\frac{\lambda}{\lambda+1} \omega_{n}}\right](\tau-t)^{\frac{\lambda}{\lambda+1} \omega_{n}}=L_{n}(\tau-t)^{w_{n}}
$$

where

$$
w_{n}=\frac{\lambda}{\lambda+1} \omega_{n} \quad \text { and } \quad L_{n}=\gamma^{-\frac{\lambda}{\lambda+1}} K_{n}^{\frac{\lambda}{\lambda+1}}\left[1+M^{w_{n}}\right] .
$$

Now, we use Lemma 3 with $I=I_{n+1}, K=L_{n}$ and $\omega=w_{n}$ and we obtain $F(t) \leq K_{n+1}(\tau-t)^{\omega_{n+1}}$. Hence, (33) holds for all $n=1,2, \ldots$ Denote by

$$
\begin{equation*}
z=\frac{\lambda(p+1)}{(\lambda+1) p} . \tag{35}
\end{equation*}
$$

We prove that

$$
\begin{align*}
& \omega_{n} \leq \delta \frac{1-z^{n}}{1-z}, \quad n=1,2 \ldots \quad \text { for } \quad z \neq 1 \tag{36}\\
& \omega_{n}=\delta n \quad \text { for } \quad z=1 .
\end{align*}
$$

If $v_{n}=\frac{\omega_{n}}{\delta}$, then (34) implies $v_{1}=1, v_{n+1}=z v_{n}+1, n=1, \ldots$ Hence, $v_{n}=$ $1+z+z^{2}+\ldots z^{n-1}=\frac{1-z^{n}}{1-z}$ in case $z \neq 1$ and $v_{n}=n$ in case $z=1$. Now, (36) follows from this.

We have from (35) that

$$
z>1 \Leftrightarrow \lambda>p, \quad z=1 \Leftrightarrow \lambda=p, \quad z<1 \Leftrightarrow \lambda<p .
$$

Furthermore, from this and from (36) $\lim _{n \rightarrow \infty} \omega_{n}=\infty$ in case $\lambda \geq p$ and $\lim _{n \rightarrow \infty} \omega_{n}=$ $\frac{\delta}{1-z}=\frac{(p+1)(\lambda+1)}{p-\lambda}$ in case $\lambda<p$. Hence, the statement follows from (33) and (6).

EJQTDE, 2012 No. 3, p. 10

Acknowledgement. The research was supported by the Grant 201/11/0768 of the Grant Agency of the Czech Republic.

References

[1] I. V. Astashova, Asymptotic behaviour of solutions of some nonlinear differential equations, Dokl. Raz. Zas. Sem. Inst. Prikl. Mat. Tbilisi Univ., 1 (1985), 1-11.
[2] V. I. Astashova, Uniform estimates for positive solutions of quasi-linear ordinary differential equations (English. Russian original) Izv. Math. 72 No. 6, 1141-1160 (2008); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 72, No. 6, 85-104 (2008).
[3] V. I. Astashova, Application of dynamical systems to the study of solutions to nonlinear higher-order differential equations, J. Math. Sci. (New York) 126, No. 5, 1361-1391 (2005); translation from Sovrem. Mat. Prilozh. 8 (2003), 3-33.
[4] M. Bartušek, On noncontinuable solutions of differential equations with delay, EJQTDE, Spec. Ed. I, 2009, No. 6 (2009), 1-16.
[5] M. Bartušek, Singular solutions for the differential equations with p-Laplacian, Arch. Math. (Brno) 41 (2005), 123-128.
[6] M. Bartušek, J. R. Graef, Strong nonlinear limit-point/limit-circle properties for second order differential equations with delay, PanAmer. Math. J. 20 (2010), 31-49.
[7] M. Bartušek, M. Medveď, Existence of global solutions for systems of second-order functional-differential equations with p-Laplacian, EJDE 2008, No. 40 (2008), 1-8.
[8] M. Bartušek, J. R. Graef, Limit-point/limit-circle problem II, PanAmer. Math. J., to appear.
[9] C. V. Cofmann, D. F. Ulrich, On the continuation of solutions of a certain non-linear differential equations, Monatsh. Math. B71 (1967), 385-392.
[10] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[11] J. W. Heidel, Uniqueness, continuation and nonoscillation for a second order differential equation, Pacific J. Math. 32 (1970), 715-721.
[12] I. T. Kiguradze, Asymptotic properties of solutions of a nonlinear differential equation of Emden-Fowler type, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 965-986.
[13] I. Kiguradze, T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht-Boston-London 1993.
[14] M. Medveď, E. Pekárková, Existence of noncontinuable solutions of second order differential equations with p-Laplacian, EJDE 2007, No. 136 (2007), 1-9.
[15] D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun., Math 14, 2004.
[16] E. Pekárková, Estimations of noncontinuable solutions of second order differential equations with p-Laplacian, Arch. Math. (Brno) 46 (2010), No. 2, 135-144.
(Received September 20, 2011)

Faculty of Science, Masaryk University Brno, Kotlářská 2, 61137 Brno, The Czech Republic

E-mail address: bartusek@math.muni.cz

[^0]: 1991 Mathematics Subject Classification. 34C10, 34C15, 34D05.
 Key words and phrases. singular solutions, noncontinuable solutions, second order equations, p-Laplacian, delay.

