Perturbed integral equations in modular function spaces

By
A.Hajji - E.Hanebaly

Abstract. We focus our attention on a class of perturbed integral equations in modular spaces, by using fixed point Theorem I. 1 (see [1]).

Keywords. Modular space, Integral equation.
A.M.S Subject Classifications: 46A80, 45G10

1 Introduction

In the present work, we focus our attention on a class of perturbed integral equation which can be written as

$$
\begin{equation*}
u(t)=\exp (-t A) f_{0}+\int_{0}^{t} \exp ((s-t) A) T u(s) d s \tag{I}
\end{equation*}
$$

in the modular space $C^{\varphi}=C\left([0, b], L^{\varphi}\right)$ (see [1]), where L^{φ} is the Musielak-Orlicz space, f_{0} is a fixed element in $L^{\varphi}, A: L^{\varphi} \rightarrow L^{\varphi}$ is a linear operator and $T: L^{\varphi} \rightarrow L^{\varphi}$ is $\rho-c$-Lipschitz, i.e. there exists $k>0$ such that $\rho(c(T x-T y)) \leq k \rho(x-y)$ for any x, y in L^{φ} (ρ being a modular). Since ρ is not subadditive, then the sum of these operators is not necessarily ρ-Lipschitz and the convexity of the integral presents a more delicate problem. Therefore, it is natural in our study to introduce c_{0} constant c_{0} and assume some hypotheses on A, T, and b.
For more details about the concepts of the above mentioned modular spaces, we refer the reader to the books by Musielak [4] and Kozlowski [3].
We begin by recalling the definition below.
Definition 1.1 Let X be an arbitrary vector space over $K=(\mathbb{R}$ or $\mathbb{C})$
a) A functional $\rho: X \rightarrow[0,+\infty]$ is called a pseudomodular if
i) $\rho(0)=0$.
ii) $\rho(\alpha x)=\rho(x)$ for $\alpha \in K$ with $|\alpha|=1, \quad \forall x \in X$.
iii) $\rho(\alpha x+\beta y) \leq \rho(x)+\rho(y)$ for $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. If in place of iii) there holds also:
iii') $\rho(\alpha x+\beta y) \leq \alpha^{s} \rho(x)+\beta^{s} \rho(y)$ for $\alpha, \beta \geq 0$ and $\alpha^{s}+\beta^{s}=1$, with an $s \in(0,1[$, then the pseudomodular ρ is called s-convex. 1-convex pseudomodular are called convex. If besides i) there holds also.
$\left.i^{\prime}\right) \rho(x)=0$ implies $x=0$, then ρ is called a modular.
b) If ρ is a pseudomodular in X, then.
$X_{\rho}=\{x \in X / \rho(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0\}$ is called a modular space.
c) If ρ is a convex modular, then $\|x\|_{\rho}=\inf \left\{u>0, \rho\left(\frac{x}{u}\right) \leq 1\right\}$ is called the Luxemburg norm.

Recall that ρ has the Fatou property if: $\rho(x-y) \leq \lim \inf \rho\left(x_{n}-y_{n}\right)$, whenever $x_{n} \xrightarrow{\rho} x$ and $y_{n} \xrightarrow{\rho} y$.
And we say that ρ satisfies the Δ_{2}-condition if:
$\rho\left(2 x_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$ whenever $\rho\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$, for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X_{ρ}.

2 Perturbed integral equation class

In this section, we will study the existence of solution of the following perturbed integral equation:

$$
\begin{equation*}
u(t)=\exp (-t A) f_{0}+\int_{0}^{t} \exp ((s-t) A) T u(s) d s \tag{I}
\end{equation*}
$$

We present the general hypotheses of the equation (I).
H_{1}) Let ρ be a modular of the Musielak-Orlicz space L^{φ}, convex satisfying the $\Delta_{2^{-}}$ condition and $\rho_{a}(u)=\sup _{t \in[0, b]} \exp (-a t) \rho(u(t))$ is a modular of $C\left([0, b], L^{\varphi}\right)$ with $a>0$ (see [1]).
$\left.H_{2}\right)$ Let $A: L^{\varphi} \rightarrow L^{\varphi}$ be a linear application, assume that there exist $\alpha_{0}>\max \left(e^{-1}, e b^{2}\right)$ and $M>0$ such that $\rho\left(\alpha_{0} A x\right) \leq M \rho(x)$ for any $x \in L^{\varphi}$.
$\left.H_{3}\right)$ Let $T: L^{\varphi} \rightarrow L^{\varphi}$ be $\rho-c$-Lipschitz with $c>0$, i.e there exists $k>0$ such that $\rho(c(T x-T y)) \leq k \rho(x-y)$ for any $x, y \in L^{\varphi}$.
$\left.H_{4}\right)$ Let f_{0} be fixed element in L^{φ}.
Theorem 2.1 Under these conditions $H_{1}-H_{4}$ and for all $b>0$, the perturbed integral equation (I) has a solution $u \in C\left([0, b], L^{\varphi}\right)$.

Remark.

If we restrict our attention to the Banach space $\left(L^{\varphi},\|\cdot\|_{\rho}\right)$. Then the equation (I) can be written as follows:

$$
u^{\prime}(t)+A u(t)=T u(t) \quad(*)
$$

Thus, if $A \equiv I$ then $(*)$ becomes

$$
u^{\prime}(t)+(I-T) u(t)=0 .
$$

But the latter equation has been treated before in [1] and [4]. This let us to reduce the study to the case $A \not \equiv I$ when ($*$) can be written in the form below:

$$
u^{\prime}(t)+(I-[T+(I-A)]) u(t)=0 .
$$

Set $B=I-A$. It follows from the fact that ρ is not subadditive that $T+B$ is not necessarily ρ-Lipschitz contrary to the situation in [1] and [2].
We cite first the theorem below which we shall use in the proof of Theorem 2.1.
Theorem 2.2. (See [1])
Let X_{ρ} be a ρ-complete modular space. Assume that ρ is an s-convex, satisfying the Δ_{2} condition and having the Fatou property. Let B be a ρ-closed subset of X_{ρ} and $T: B \rightarrow B$ a mapping such that
$(*) \quad \exists c, k \in R^{+} \quad: \quad c>\max (1, k), \quad \rho(c(T x-T y)) \leq k^{s} \rho(x-y)$ for any $x, y \in B$.
Then T has a fixed point.

Proof of Theorem 2.1.

$1^{\text {st }}$) step.
We use the following property. Under the hypotheses of Theorem 2.1, the operator A is continuous from ($L^{\varphi},\|\cdot\| \rho$) to itself. Indeed, we have $\rho\left(\alpha_{0} A x\right) \leq M \rho(x)$ for any $x \in L^{\varphi}$. Let $\left(x_{n}\right)_{n \in N}$ be a sequence in L^{φ} such that $\left\|x_{n}\right\|_{\rho} \rightarrow 0$ as $n \rightarrow+\infty$. So $\rho\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow$ $+\infty$, which implies that $\rho\left(\alpha_{0} A x_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. By Δ_{2}-condition, $\left\|\alpha_{0} A x_{n}\right\|_{\rho} \rightarrow 0$ as $n \rightarrow+\infty$. Hence $\left\|A x_{n}\right\|_{\rho} \rightarrow 0$ as $n \rightarrow+\infty$. Thus, there exists a constant $c>0$ such that $\|A x\|_{\rho} \leq c\|x\|_{\rho}$, for any $x \in L^{\varphi}$.
Therefore, $\exp (A)(x)=\sum_{m=0}^{+\infty} \frac{A^{m}}{m!}(x)$ make a sense.
$\left.2^{\text {end }}\right)$ step.
We claim that $\frac{e b}{\alpha_{0}}<\frac{1}{b}$. Indeed, since $\alpha_{0}>\max \left\{e^{-1}, e b^{2}\right\}$ we have:
a) If $e^{-1} \geq e b^{2}$ then $e^{2} b^{2} \leq 1$ therefore $\frac{e b}{\alpha_{0}}<\frac{e^{2} b^{2}}{b} \leq \frac{1}{b}$.
b) If $e b^{2} \geq e^{-1}$ then $e^{2} b^{2} \geq 1$ therefore $\frac{e b}{\alpha_{0}}<\frac{e b}{e b^{2}}=\frac{1}{b}$.

Hence in both cases we have $\frac{e b}{\alpha_{0}}<\frac{1}{b}$, we choose c_{0} such that $\frac{e b}{\alpha_{0}} \leq c_{0}<\frac{1}{b}$ and $c=\frac{e}{c_{0}}$.
Then $c_{0} b<1$. Let $\lambda>1$ such that $1<\lambda<\frac{1}{c_{0} b}$.
We consider $S: C\left([0, b], L^{\varphi}\right) \rightarrow C\left([0, b], L^{\varphi}\right)$ defined by.
$S u(t)=\exp (-t A) f_{0}+\int_{0}^{t} \exp ((s-t) A) T u(s) d s$ for any $u \in C\left([0, b], L^{\varphi}\right)$. It is clear that $S u(t) \in L^{\varphi}$ for each $t \in[0, b]$. As $S u$ is continuous from $[0, b]$ into $\left(L^{\varphi},\|\cdot\|_{\rho}\right)$, then, $S u$ is ρ-continuous from $[0, b]$ into $\left(L^{\varphi}, \rho\right)$. Let $u, v \in C\left([0, b], L^{\varphi}\right)$, we have

$$
\lambda(S u(t)-S v(t))=\int_{0}^{t} \lambda \exp ((s-t) A)(T u-T v)(s) d s . \text { We put } T u-T v=x
$$

Let $K=\left\{t_{0}, t_{1}, \ldots . . t_{n}\right\}$ be any subdivision of $[0, t]$. $\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)$ is $\|\cdot\|_{\rho}$-convergent, and consequently, ρ-convergent to $\int_{0}^{t} \lambda \exp ((s-t) A) x(s) d s$ in L^{φ} when, $|K|=\sup \left\{\left|t_{i+1}-t_{i}\right|, i=0, \ldots, n-1\right\} \rightarrow 0$ as $n \rightarrow+\infty$. By Fatou property we have
$\rho\left(\int_{0}^{t} \lambda \exp ((s-t) A) x(s) d s\right) \leq \lim \inf \rho\left(\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)\right)$.
And $\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)=\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) c_{0} \frac{1}{c_{0}} \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)$.
Moreover $\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) c_{0} \leq \lambda c_{0} b \leq 1$
Then $\rho\left(\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)\right) \leq \sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) c_{0} \rho\left(\frac{1}{c_{0}} \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)\right)$.
$3^{r d}$ step. In this part, we show that

$$
\rho\left(\frac{1}{c_{0}} \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)\right) \leq \exp (M-1) \rho\left(\frac{e}{c_{0}} x\left(t_{i}\right)\right)
$$

We have $\frac{1}{c_{0}} \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)=\sum_{m=0}^{+\infty} \frac{1}{c_{0}} \frac{\left(t-t_{i}\right)^{m}}{m!} A^{m}\left((-1)^{m} x\left(t_{i}\right)\right)$.
And since $\sum_{m=0}^{+\infty} \frac{\exp (-1)}{m!}=1$, then $\rho\left(\frac{1}{c_{0}} \exp \left(\left(t-t_{i}\right) A\right) x\left(t_{i}\right)\right) \leq \sum_{m=0}^{+\infty} \frac{\exp (-1)}{m!} \rho\left(\frac{e}{c_{0}} b^{m} A^{m} x\left(t_{i}\right)\right)$.
We have $\alpha_{0} \geq \frac{e b}{c_{0}}>0$, and since $\alpha_{0}>\max \left(e^{-1}, e b^{2}\right)$, then $\alpha_{0}>b$. Indeed,
i) if $e^{-1} \geq e b^{2}$, then $e^{2} b^{2} \leq 1$ which implies that $e b \leq 1$. Therefore $b \leq e^{-1}<\alpha_{0}$.
ii) if $e b^{2} \geq e^{-1}$, then $e^{2} b^{2} \geq 1$ which implies that $e b \geq 1$. Therefore $e b^{2} \geq b$ and $\alpha_{0}>b$. From the hypothesis $\rho\left(\alpha_{0} A x\left(t_{i}\right)\right) \leq M \rho\left(x\left(t_{i}\right)\right)$,
we have

$$
\begin{aligned}
\rho\left(\alpha_{0} b A^{2} x\left(t_{i}\right)\right) & \leq M \rho\left(b A x\left(t_{i}\right)\right) \\
& \leq M \rho\left(\alpha_{0} A x\left(t_{i}\right)\right) \\
& \leq M^{2} \rho\left(x\left(t_{i}\right)\right)
\end{aligned}
$$

Which implies that $\rho\left(\frac{e}{c_{0}} b^{m} A^{m} x\left(t_{i}\right)\right) \leq M^{m} \rho\left(x\left(t_{i}\right)\right) \leq M^{m} \rho\left(\frac{e}{c_{0}} x\left(t_{i}\right)\right)$ for any m in \mathbb{N}^{*}. Therefore,

$$
\begin{aligned}
\rho\left(\frac{1}{c_{0}} \exp \left(\left(t_{i}-t\right) A\right) x\left(t_{i}\right)\right) & \leq \sum_{m=0}^{+\infty} \frac{\exp (-1) M^{m}}{m!} \rho\left(\frac{e}{c_{0}} x\left(t_{i}\right)\right) \\
& =\exp (M-1) \rho\left(\frac{e}{c_{0}} x\left(t_{i}\right)\right) .
\end{aligned}
$$

$4^{\text {th }}$ Step. We have

$$
\begin{aligned}
\rho(\lambda(S u(t)-S v(t))) & \leq \lim \inf \left(\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) c_{0} \exp (M-1) k \rho(u-v)\left(t_{i}\right)\right) \\
& \leq k \lambda \exp (M-1) \lim \inf \left(\sum_{i=0}^{n-1}\left(t_{i+1}-t_{i}\right) c_{0} \exp \left(a t_{i}\right)\right) \rho_{a}(u-v) \\
& =\lambda k \exp (M-1) \int_{0}^{t} c_{0} \exp (a s) d s \quad \rho_{a}(u-v)
\end{aligned}
$$

therefore

$$
\exp (-a t) \rho(\lambda(S u(t)-S v(t))) \leq k \lambda \exp (M-1) \int_{0}^{t} c_{0} \exp (a(s-t)) d s \quad \rho_{a}(u-v)
$$

Hence,

$$
\rho_{a}(\lambda(s u-s v)) \leq k \lambda \exp (M-1) \frac{c_{0}}{a}\left(1-e^{-a b}\right) \rho_{a}(u-v) .
$$

It suffices to take $a>k e^{M-1} c_{0}$, then we have $\lambda k \exp (M-1) \frac{c_{0}}{a}\left(1-e^{-a b}\right)<\lambda$. By Theorem 2.2, S has a fixed point which is a solution of the equation (I).

Remark

In third step, instead of the combination convex $\sum_{m=0}^{\infty} \frac{e^{-1}}{m!}=1$, we may choose the combination convex $\sum_{m=0}^{\infty} \frac{e^{-1} b^{m}}{m!}=1$, which gives the conclusion of theorem under the following hypotheses:
$H_{2}^{\prime} \quad A: \quad L^{\varphi} \rightarrow L^{\varphi}$ is a linear application, and there exists $M>0$ such that : $\rho(A x) \leq M \rho(x)$ for any $x \in L^{\varphi}$.
$H_{3}^{\prime} T: \quad L^{\varphi} \rightarrow L^{\varphi}$ is an application and for $\alpha_{0}=\frac{\exp (b)}{c_{0}}$ with $c_{0} b<1$ there exists $k>0$ such that: $\rho\left(\alpha_{0}(T x-T y)\right) \leq k \rho(x-y)$.
Consider now the following perturbed integral equation.

$$
u(t)=\exp (-t) \exp (-t A) f_{0}+\int_{0}^{t} \exp (s-t) \exp ((s-t) A) T u(s) d s \quad(I I)
$$

The same techniques than in the proof of Theorem 2.1 are used to establish Theorem 2.3 below by taking care of the choose of λ in $\left(1, \frac{1}{1-e^{-b}}\right]$, which gives
$\rho\left(\int_{0}^{t} \lambda e^{s-t} e^{(s-t) A} x(s) d s\right) \leq \liminf \left(\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) e^{t_{i}-t} \rho\left(e^{\left(t_{i}-t\right) A} x\left(t_{i}\right)\right)\right.$ and
$\sum_{i=0}^{n-1} \lambda\left(t_{i+1}-t_{i}\right) e^{t_{i}-t} \leq \lambda \int_{0}^{t} e^{s-t} d s \leq 1$.
Theorem 2.3 Assume that for $\alpha_{1} \geq e b$, there exists $M>0$ such that $\rho\left(\alpha_{1} A x\right) \leq M \rho(x)$ for any $x \in L^{\varphi}$ and there exists $k>0$ such that $\rho(e(T x-T y)) \leq k \rho(x-y)$ for any x, y in L^{φ}. Then, the perturbed integral equation (II) has a solution $u \in C\left([0, b], L^{\varphi}\right)$.

Remark.

By using the same technics as in the proof of Theorem 2.3, we can prove the existence of a solution of the equation below:

$$
u(t)=e^{-t} f_{0}+\int_{0}^{t} \varphi(s-t) e^{(s-t)} T u(s) d s
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}_{*}^{+}$is a continuous function satisfying $\int_{0}^{b} \varphi(-s) d s<1$.

Conclusion

Concerning the equations (I) and (II), Theorem 2.1 and Theorem 2.3 give local solutions
because of the constraint on b. In this frame, we notice that if A is ρ-Lipschitz i.e. if there exists $M>0$ such that $\rho(A x) \leq M \rho(x)$ for any $x \in L^{\varphi}$, then the equation (I) and the equation (II) have a solution in $\left[0, \frac{1}{e}\right]$.

Example of the equation (I).

Let φ be a Musielak-Orlicz function on a measurable space $([0,1], \mathcal{A}, \mu), \rho_{\varphi}$ be a modular defined by

$$
\rho_{\varphi}(u)=\int_{0}^{1} \varphi(s,|u(s)|) d s
$$

for any $u \in L^{\varphi}$ and $\alpha_{0}>\max \left(e^{-1}, e b^{2}\right), \quad c_{0} \in\left[\frac{e b}{\alpha_{0}}, \frac{1}{b}\left[\right.\right.$. Assume that ρ_{φ} is convex satisfying the Δ_{2}-condition.
In this example, we study the existence of a solution of the following integral equation

$$
u(t)=\exp (-t A) f_{0}+\int_{0}^{t} \exp [(s-t) A]\left(\int_{0}^{1} K_{1}(\xi, u(s)) d \xi\right) d s \quad\left(I^{\prime}\right)
$$

where $K_{1}:[0,1] \times L^{\varphi} \rightarrow L^{\varphi}$ is a measurable function satisfying

1) $\lim _{\lambda \rightarrow 0^{+}} \int_{0}^{1} \varphi\left(\xi, \lambda\left|\left(\int_{0}^{1} K_{1}(s, u) d s\right) . \xi\right|\right) d \xi=0$ for any $u \in L^{\varphi}$.
2) $\left.\left|\left(\int_{0}^{1}\left(K_{1}(\xi, u(s))-K_{1}(\xi, v(s))\right) d \xi\right)\right|\right) \leq k|(u-v)(s)|$, for any u, v in L^{φ}, with $\left.k \in\right] 0,1[$. f_{0} is a fixed element in L^{φ} and the operator A is equal to $k_{0} I$, where I is the identity function of L^{φ} with $k_{0} \leq \frac{1}{\alpha_{0}}$.
Let T be a mapping from L^{φ} into L^{φ} defined by

$$
T u=\int_{0}^{1} \frac{c_{0}}{e} K_{1}(s, u) d s
$$

Hence, we have $\rho_{\varphi}\left(\alpha_{0} k_{0} x\right) \leq \alpha_{0} k_{0} \rho_{\varphi}(x)$ for any $x \in L^{\varphi}$, i.e. $\rho\left(\alpha_{0} A x\right) \leq \alpha_{0} k_{0} \rho(x)$ for any $x \in L^{\varphi}$.
Now, we show that T is $\rho-\frac{e}{c_{0}}$-Lipschitz.
At first, by 1), we have $\int_{0}^{1} \varphi(\xi, \lambda|T u(\xi)|) d \xi \rightarrow 0$ as $\lambda \rightarrow 0^{+}$. Hence, by the definition of $L^{\varphi}, T u \in L^{\varphi}$ for any $u \in L^{\varphi}$.
On the other hand, let $x, y \in L^{\varphi}$

$$
\begin{aligned}
\rho_{\varphi}\left(\frac{e}{c_{0}}(T x-T y)\right) & =\int_{0}^{1} \varphi\left(s, \frac{e}{c_{0}}|(T x-T y) \cdot(s)|\right) d s \\
& \left.=\int_{0}^{1} \varphi\left(s, \mid \int_{0}^{1}\left(K_{1}(\xi, x(s))-K_{1}(\xi, y(s))\right) d \xi\right) \mid\right) d s
\end{aligned}
$$

Therefore, by 2)

$$
\begin{aligned}
\rho_{\varphi}\left(\frac{e}{c_{0}}(T x-T y)\right) & \leq \int_{0}^{1} \varphi(s, k|(x-y)(s)|) d s \\
& =\rho_{\varphi}(k(u-v)) \\
& =k \rho_{\varphi}(u-v)
\end{aligned}
$$

Hence T is $\rho-\frac{e}{c_{0}}$-Lipschitz. So by Theorem 2.1 the equation $\left(I^{\prime}\right)$ has a solution in $C\left([0, b], L^{\varphi}\right)$.

References

[1] Ait Taleb.A, Hanebaly.E. A fixed point theorem and its application to integral equations in modular function spaces.Proc. Amer. Math. Soc.127, no 8, 2335-2342 (1999) 128 , no. 2, 419-426 (2000).
[2] Khamsi, M.A. Nonlinear Semigroups in Modular Function Spaces. Thèse d'état. Département de Mathématique, Rabat (1994).
[3] Kozlowski.W.M. Modular Function Spaces. Dekker New-York (1988).
[4] Musielak.J. Orlicz Spaces and Modular Spaces. L.N vol. 1034, S.P. (1983).
Department of Mathematics And Informatic
BP. 1014, Rabat
Morocco
E-mail: hajid2@yahoo.fr
E-mail: hanebaly@fsr.ac.ma

