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spaces, by using fixed point Theorem I.1 (see [1]).
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1 Introduction

In the present work, we focus our attention on a class of perturbed integral equation which

can be written as

u(t) = exp(−tA)f0 +
∫ t

0
exp((s − t)A)Tu(s)ds (I)

in the modular space Cϕ = C([0, b], Lϕ) (see [1]), where Lϕ is the Musielak-Orlicz space,

f0 is a fixed element in Lϕ, A : Lϕ → Lϕ is a linear operator and T : Lϕ → Lϕ is

ρ − c-Lipschitz, i.e. there exists k > 0 such that ρ(c(Tx − Ty)) ≤ kρ(x − y) for any x, y

in Lϕ ( ρ being a modular ). Since ρ is not subadditive, then the sum of these operators

is not necessarily ρ-Lipschitz and the convexity of the integral presents a more delicate

problem. Therefore, it is natural in our study to introduce c0 constant c0 and assume

some hypotheses on A, T , and b.

For more details about the concepts of the above mentioned modular spaces, we refer the

reader to the books by Musielak [4] and Kozlowski [3].

We begin by recalling the definition below.

Definition 1.1 Let X be an arbitrary vector space over K = (R or IC)

a) A functional ρ : X→[0, +∞] is called a pseudomodular if

i) ρ(0) = 0 .

ii) ρ(αx) = ρ(x) for α ∈ K with |α| = 1, ∀x ∈ X.

iii) ρ(αx+βy) ≤ ρ(x)+ ρ(y) for α, β ≥ 0 and α+β = 1. If in place of iii) there holds

also:
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iii’) ρ(αx + βy) ≤ αsρ(x) + βsρ(y) for α, β ≥ 0 and αs + βs = 1 , with an s ∈ (0, 1[ ,

then the pseudomodular ρ is called s-convex. 1-convex pseudomodular are called convex.

If besides i) there holds also.

i’ )ρ(x) = 0 implies x = 0 , then ρ is called a modular.

b) If ρ is a pseudomodular in X, then .

Xρ = {x ∈ X/ρ(λx)→0 as λ→0} is called a modular space.

c) If ρ is a convex modular, then ‖x‖ρ = inf{u > 0, ρ(x
u
) ≤ 1} is called the Luxemburg

norm.

Recall that ρ has the Fatou property if: ρ(x−y) ≤ lim inf ρ(xn−yn), whenever xn
ρ
→ x

and yn
ρ
→ y.

And we say that ρ satisfies the ∆2-condition if:

ρ(2xn)→0 as n→ + ∞ whenever ρ(xn)→0 as n→ + ∞, for any sequence (xn)n∈IN in Xρ.

2 Perturbed integral equation class

In this section, we will study the existence of solution of the following perturbed integral

equation:

u(t) = exp (−tA)f0 +
∫ t

0
exp ((s − t)A) Tu(s)ds (I)

We present the general hypotheses of the equation (I).

H1 ) Let ρ be a modular of the Musielak-Orlicz space Lϕ, convex satisfying the ∆2-

condition and ρa(u) = sup
t∈[0,b]

exp (−at)ρ(u(t)) is a modular of C([0, b], Lϕ) with a > 0 ( see

[1]).

H2 ) Let A : Lϕ → Lϕ be a linear application, assume that there exist α0 > max(e−1, eb2)

and M > 0 such that ρ(α0Ax) ≤ Mρ(x) for any x ∈ Lϕ.

H3 ) Let T : Lϕ → Lϕ be ρ − c-Lipschitz with c > 0, i.e there exists k > 0 such that

ρ(c(Tx − Ty)) ≤ kρ(x − y) for any x, y ∈ Lϕ.

H4 ) Let f0 be fixed element in Lϕ.

Theorem 2.1 Under these conditions H1 − H4 and for all b > 0, the perturbed integral

equation (I) has a solution u ∈ C([0, b], Lϕ).

Remark.

If we restrict our attention to the Banach space (Lϕ, ‖.‖ρ). Then the equation (I) can be

written as follows:

u′(t) + Au(t) = Tu(t) (∗).

Thus, if A ≡ I then (∗) becomes

u′(t) + (I − T )u(t) = 0.
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But the latter equation has been treated before in [1] and [4]. This let us to reduce the

study to the case A 6≡ I when (∗) can be written in the form below:

u′(t) + (I − [T + (I − A)])u(t) = 0.

Set B = I − A. It follows from the fact that ρ is not subadditive that T + B is not

necessarily ρ-Lipschitz contrary to the situation in [1] and [2].

We cite first the theorem below which we shall use in the proof of Theorem 2.1.

Theorem 2.2 . (See [1])

Let Xρ be a ρ-complete modular space. Assume that ρ is an s-convex, satisfying the ∆2-

condition and having the Fatou property. Let B be a ρ-closed subset of Xρ and T : B → B

a mapping such that

(∗) ∃c, k ∈ R+ : c > max(1, k), ρ(c(Tx − Ty)) ≤ ksρ(x − y) for any x, y ∈ B.

Then T has a fixed point.

Proof of Theorem 2.1.

1st) step.

We use the following property. Under the hypotheses of Theorem 2.1, the operator A is

continuous from (Lϕ, ‖.‖ρ) to itself. Indeed, we have ρ(α0Ax) ≤ Mρ(x) for any x ∈ Lϕ.

Let (xn)n∈IN be a sequence in Lϕ such that ‖xn‖ρ → 0 as n → +∞. So ρ(xn) → 0 as n →

+∞, which implies that ρ(α0Axn) → 0 as n → +∞. By ∆2-condition, ‖α0Axn‖ρ → 0 as

n → +∞. Hence ‖Axn‖ρ → 0 as n → +∞. Thus, there exists a constant c > 0 such that

‖Ax‖ρ ≤ c‖x‖ρ, for any x ∈ Lϕ.

Therefore, exp (A)(x) =
+∞∑
m=0

Am

m!
(x) make a sense.

2end) step.

We claim that eb
α0

< 1
b
. Indeed, since α0 > max{e−1, eb2} we have:

a) If e−1 ≥ eb2 then e2b2 ≤ 1 therefore eb
α0

< e2b2

b
≤ 1

b
.

b) If eb2 ≥ e−1 then e2b2 ≥ 1 therefore eb
α0

< eb
eb2

= 1
b
.

Hence in both cases we have eb
α0

< 1
b
, we choose c0 such that eb

α0
≤ c0 < 1

b
and c = e

c0
.

Then c0b < 1. Let λ > 1 such that 1 < λ < 1
c0b

.

We consider S : C([0, b], Lϕ) → C([0, b], Lϕ) defined by.

Su(t) = exp (−tA)f0 +
∫ t
0 exp ((s − t)A) Tu(s)ds for any u ∈ C([0, b], Lϕ). It is clear that

Su(t) ∈ Lϕ for each t ∈ [0, b]. As Su is continuous from [0, b] into (Lϕ, ‖.‖ρ), then, Su is

ρ-continuous from [0, b] into (Lϕ, ρ). Let u, v ∈ C([0, b], Lϕ), we have

λ(Su(t) − Sv(t)) =
∫ t
0 λ exp ((s − t)A) (Tu − Tv)(s)ds . We put Tu − Tv = x.

Let K = {t0, t1, ......tn} be any subdivision of [0, t].
n−1∑
i=0

λ(ti+1 − ti) exp((ti − t)A)x(ti) is

‖.‖ρ-convergent, and consequently, ρ-convergent to
∫ t
0 λ exp((s − t)A)x(s)ds in Lϕ when,

|K| = sup{|ti+1 − ti|, i = 0, ...., n − 1} → 0 as n → +∞. By Fatou property we have
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ρ(
∫ t
0 λ exp ((s − t)A)x(s)ds) ≤ lim inf ρ(

n−1∑
i=0

λ(ti+1 − ti) exp ((ti − t)A)x(ti)).

And
n−1∑
i=0

λ(ti+1 − ti) exp ((ti − t)A)x(ti) =
n−1∑
i=0

λ(ti+1 − ti)c0
1

c0
exp ((ti − t)A)x(ti).

Moreover
n−1∑
i=0

λ(ti+1 − ti)c0 ≤ λc0b ≤ 1

Then ρ(
n−1∑
i=0

λ(ti+1 − ti) exp ((ti − t)A)x(ti)) ≤
n−1∑
i=0

λ(ti+1 − ti)c0ρ(
1

c0
exp ((ti − t)A)x(ti)).

3rd step. In this part, we show that

ρ(
1

c0
exp ((ti − t)A)x(ti)) ≤ exp (M − 1)ρ(

e

c0
x(ti))

We have 1
c0

exp ((ti − t)A)x(ti) =
+∞∑
m=0

1

c0

(t − ti)
m

m!
Am((−1)mx(ti)).

And since
+∞∑
m=0

exp(−1)

m!
= 1, then ρ( 1

c0
exp ((t − ti)A)x(ti)) ≤

+∞∑
m=0

exp (−1)

m!
ρ(

e

c0
bmAmx(ti)).

We have α0 ≥
eb
c0

> 0, and since α0 > max(e−1, eb2), then α0 > b. Indeed,

i) if e−1 ≥ eb2, then e2b2 ≤ 1 which implies that eb ≤ 1. Therefore b ≤ e−1 < α0.

ii) if eb2 ≥ e−1, then e2b2 ≥ 1 which implies that eb ≥ 1. Therefore eb2 ≥ b and α0 > b.

From the hypothesis ρ(α0Ax(ti)) ≤ Mρ(x(ti)),

we have

ρ(α0bA
2x(ti)) ≤ Mρ(bAx(ti))

≤ Mρ(α0Ax(ti))

≤ M2ρ(x(ti))

Which implies that ρ( e
c0

bmAmx(ti)) ≤ Mmρ(x(ti)) ≤ Mmρ( e
c0

x(ti)) for any m in IN ∗.

Therefore,

ρ(
1

c0

exp ((ti − t)A)x(ti)) ≤
+∞∑
m=0

exp(−1)Mm

m!
ρ(

e

c0

x(ti))

= exp (M − 1)ρ(
e

c0

x(ti)).

4th Step. We have

ρ(λ(Su(t) − Sv(t))) ≤ lim inf(
n−1∑
i=0

λ(ti+1 − ti)c0 exp (M − 1)kρ(u − v)(ti))

≤ kλ exp (M − 1) lim inf(
n−1∑
i=0

(ti+1 − ti)c0 exp (ati))ρa(u − v)

= λk exp (M − 1)
∫ t

0
c0 exp (as)ds ρa(u − v)
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therefore

exp (−at)ρ(λ(Su(t) − Sv(t))) ≤ kλ exp (M − 1)
∫ t

0
c0 exp (a(s − t))ds ρa(u − v)

Hence,

ρa(λ(su − sv)) ≤ kλ exp (M − 1)
c0

a
(1 − e−ab)ρa(u − v).

It suffices to take a > keM−1c0, then we have λk exp (M − 1) c0
a
(1 − e−ab) < λ .

By Theorem 2.2, S has a fixed point which is a solution of the equation (I).

Remark

In third step, instead of the combination convex
∞∑

m=0

e−1

m!
= 1 , we may choose the combi-

nation convex
∞∑

m=0

e−1bm

m!
= 1, which gives the conclusion of theorem under the following

hypotheses:

H ′

2 A : Lϕ → Lϕ is a linear application , and there exists M > 0 such that :

ρ(Ax) ≤ Mρ(x) for any x ∈ Lϕ.

H ′

3 T : Lϕ → Lϕ is an application and for α0 = exp (b)
c0

with c0b < 1 there exists k > 0

such that: ρ(α0(Tx − Ty)) ≤ kρ(x − y).

Consider now the following perturbed integral equation.

u(t) = exp (−t) exp (−tA)f0 +
∫ t

0
exp (s − t) exp ((s − t)A) Tu(s)ds (II).

The same techniques than in the proof of Theorem 2.1 are used to establish Theorem 2.3

below by taking care of the choose of λ in (1, 1
1−e−b ] , which gives

ρ(
∫ t
0 λes−te(s−t)Ax(s)ds) ≤ lim inf(

n−1∑
i=0

λ(ti+1 − ti)e
ti−tρ(e(ti−t)Ax(ti)) and

n−1∑
i=0

λ(ti+1 − ti)e
ti−t ≤ λ

∫ t

0
es−tds ≤ 1.

Theorem 2.3 Assume that for α1 ≥ eb, there exists M > 0 such that ρ(α1Ax) ≤ Mρ(x)

for any x ∈ Lϕ and there exists k > 0 such that ρ(e(Tx − Ty)) ≤ kρ(x − y) for any x, y

in Lϕ. Then, the perturbed integral equation (II) has a solution u ∈ C([0, b], Lϕ).

Remark.

By using the same technics as in the proof of Theorem 2.3, we can prove the existence of

a solution of the equation below:

u(t) = e−tf0 +
∫ t

0
ϕ(s − t)e(s−t)Tu(s)ds,

where ϕ : R → R+
∗

is a continuous function satisfying
∫ b
0 ϕ(−s)ds < 1.

Conclusion

Concerning the equations (I) and (II), Theorem 2.1 and Theorem 2.3 give local solutions
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because of the constraint on b. In this frame, we notice that if A is ρ-Lipschitz i.e. if

there exists M > 0 such that ρ(Ax) ≤ Mρ(x) for any x ∈ Lϕ , then the equation (I) and

the equation (II) have a solution in [0, 1
e
].

Example of the equation (I).

Let ϕ be a Musielak-Orlicz function on a measurable space ([0, 1],A, µ), ρϕ be a modular

defined by

ρϕ(u) =
∫ 1

0
ϕ(s, |u(s)|)ds,

for any u ∈ Lϕ and α0 > max(e−1, eb2), c0 ∈ [ eb
α0

, 1
b
[. Assume that ρϕ is convex satisfying

the ∆2-condition.

In this example, we study the existence of a solution of the following integral equation

u(t) = exp(−tA)f0 +
∫ t

0
exp[(s − t)A](

∫ 1

0
K1(ξ, u(s))dξ)ds (I

′

),

where K1 : [0, 1] × Lϕ → Lϕ is a measurable function satisfying

1) lim
λ→0+

∫ 1
0 ϕ(ξ, λ|(

∫ 1
0 K1(s, u)ds).ξ|)dξ = 0 for any u ∈ Lϕ.

2) |(
∫ 1
0 (K1(ξ, u(s)) − K1(ξ, v(s)))dξ)|) ≤ k|(u − v)(s)|, for any u, v in Lϕ, with k ∈]0, 1[.

f0 is a fixed element in Lϕ and the operator A is equal to k0I, where I is the identity

function of Lϕ with k0 ≤
1

α0
.

Let T be a mapping from Lϕ into Lϕ defined by

Tu =
∫ 1

0

c0

e
K1(s, u)ds.

Hence, we have ρϕ(α0k0x) ≤ α0k0ρϕ(x) for any x ∈ Lϕ, .i.e. ρ(α0Ax) ≤ α0k0ρ(x) for any

x ∈ Lϕ.

Now, we show that T is ρ − e
c0

-Lipschitz.

At first, by 1), we have
∫ 1
0 ϕ(ξ, λ|Tu(ξ)|)dξ → 0 as λ → 0+. Hence, by the definition of

Lϕ, Tu ∈ Lϕ for any u ∈ Lϕ.

On the other hand, let x, y ∈ Lϕ

ρϕ(
e

c0
(Tx − Ty)) =

∫ 1

0
ϕ(s,

e

c0
|(Tx − Ty).(s)|)ds

=
∫ 1

0
ϕ(s, |

∫ 1

0
(K1(ξ, x(s)) − K1(ξ, y(s)))dξ)|)ds

Therefore, by 2)

ρϕ(
e

c0

(Tx − Ty)) ≤
∫ 1

0
ϕ(s, k|(x − y)(s)|)ds

= ρϕ(k(u − v))

= kρϕ(u − v).
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Hence T is ρ − e
c0

-Lipschitz. So by Theorem 2.1 the equation (I
′

) has a solution in

C([0, b], Lϕ).
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