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Abstract

We present conditions under which all solutions of the fractional
differential equation with the Caputo derivative

cDα
a x(t) = f(t, x(t)), a > 1, α ∈ (1, 2), (1)

are asymptotic to at + b as t → ∞ for some real numbers a, b.
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1 Introduction

In the asymptotic theory of n−th order nonlinear ordinary differential equa-
tions

y(n) = f(t, y, y′, . . . , y(n−1)) (2)

the classical problem is to to establish some conditions for the existence of a
solution which approach to a polynomial of degree 1 ≤ m ≤ n−1 as t → ∞.

The first paper concerning this problem was published by D. Caligo [3] in
1941. He proved that if

|A(t)| <
k

t2+ρ
(3)

for all large t, where k, ρ are given, then any solution y(t) of the linear
differential equation

y′′(t) + A(t)y(t) = 0, t > 0, (4)

can be represented asymptotically as y(t) = c1t + c2 + o(1) when t → +∞,
c1, c2 ∈ R (see [1]). The first paper on the nonlinear second order differential
equations

y′′(t) = f(t, y(t)) (5)

was published b W.F.Trench [27] (1963). He proved a sufficient condition on
the existence of a solution of the equation (5) which is asymptotic to a + bt

as t → +∞, for some real numbers a, b. Different conditions under which all
solutions of the equation

y′′(t) = f(t, y(t)) (6)

is approaching to a + bt as t → ∞ for some real numbers a, b. The asymp-
totic behavior of solutions of this type of equation has been discussed by
D. S.Cohen [5] (1967), J. Tong [26] (1982), T. Kusano and W.F.Trench [10]
(1985) and [11] (1985) and others. This problem has been solved for the
equation

y′′(t) = f(t, y(t), y′(t)) (7)

by F.M.Dannan [8] (1985), A.Constantin [6] (1993) and [7] (2005), Y.V. Ro-
govchenko [23] (1998), S. P. Rogovchenko [24] (2000), O. G. Mustafa, Y. V. Ro-
govchenko [19] (2002), O. Lipovan [12] (2003) and others. In the proofs of
their results the key role plays the Bihari inequality (see [2]) which is a
generalization of the Gronwall inequality. Some results on the existence of
solutions of the n-th order differential equation

y(n)(t) = f(t, y(t)) (8)
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approaching to a polynomial function of the degree m with 1 ≤ m ≤ n − 1
are proved by Ch. G. Philos, I. K. Purnaras and P. Ch. Tsamatos [21]
(2004). Their proofs are based on an application of the Schauder Fixed
Point Theorem. The paper by R. P. Agarwal, S. D. Djebali, T. Moussaoui
and O. G. Mustafa [1] (2007) surveys the literature concerning the topic in
asymptotic integration theory of ordinary differential equations. Several con-
ditions under which all solutions of the one dimensional p-Laplacian equation

(|y′|p−1y′)′ = f(t, y, y′), p > 1 (9)

are asymptotic to a + bt as t → ∞ for some real numbers a, b are proved in
[17](2008) and some sufficient conditions for the existence of solutions of the
equation

(Φ(y(n))′ = f(t, y), n ≥ 1, (10)

where Φ: R → R is an increasing homeomorphism with a locally Lipschitz
inverse satisfying Φ(0) = 0 are given in the paper [16] (2010).

The aim of this paper is to give some conditions under which all solutions
of the fractional differential equation (1) are asymptotic to a+bt as t → ∞ for
some real numbers a, b. The proof of this result is based on a desingularization
method proposed by the author in the paper [14] (see also [15]) in the study
of nonlinear integral inequalities with weakly singular kernels.

2 Fractional Differential equations

with the Caputo’s derivative

Consider the initial value problem

cDα
a x(t) = f(t, x(t)), t ≥ a > 1, 1 < α < 2, (11)

x(a) = c0, x′(a) = c2, (12)

where
cDα

a x(t) :=
1

Γ(2 − α)

∫ t

a

(t − s)α−1x′′(s)ds (13)

is the Caputo derivative of the order α ∈ (1, 2) of a C2-scalar valued function

x(t) defined on the interval [a∞), x′′(t) = d2x(t)
dt2

. This definition has been
given by M. Caputo in the paper [4]. For the definition of the Caputo deriva-
tive of order α ∈ (n − 1, n), n ≥ 1 see [20] and also the monographs [18],
[25]. We assume that any solution x(t) of this problem exists on the interval
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[a,∞). One can show that the initial value problem (11), (12) is equivalent
to the integral equation

x(t) = c0 + c1(t − a) +
1

Γ(α)

∫ t

a

(t − s)α−1f(s, x(s))ds. (14)

Since α > 1 the function x(t) is differentiable and therefore (14) yields

x′(t) = c1 +
1

Γ(α − 1)

∫ t

a

(t − s)α−2f(s, x(s))ds. (15)

Lemma 1 (see [22], [13]) Let β, γ and p be positive constants such that
p(β − 1) + 1] > 0, p(β − 1) + 1 > 0. Then

∫ t

0

(t − s)p(β−1)sp(γ−1)ds = tΘB, t ≥ 0 (16)

where B := B[p(γ − 1) + 1, p(β − 1) + 1], B[ξ, η] =
∫ 1

a
sξ−1(1 − s)η−1ds,

(ξ > 0, η > 0) and Θ = p(β + γ − 2) + 1.

Theorem 1 Suppose that 1 < α < 2, p > 1, p(α−2)+1 > 0, a > 1, q = p

p−1

and the function f(t, u) satisfies the following conditions:

(i) f(t, u) is continuous in D = {(t, v) : t ∈ [0,∞), v ∈ R};

(ii) There are continuous nonnegative functions h : R+ := [0,∞) → R+,
g : R+ → R+, and γ > 0 with p(γ − 1) + 1 > 0 such that

|f(t, x)| ≤ tγ−1h(t)g

(

|x|

t

)

, t > 0, (t, x) ∈ D, (17)

where γ = 3 − α + 1
p
, i.e. Θ := p(α + γ − 3) + 1 = 0 and

∫

∞

a

h(s)qds < ∞. (18)

(iii)
∫

∞

a

τ q−1dτ

g(τ)q
= ∞. (19)

Then every solution x(t) of the equation (11) is asymptotic to c + dt for
t → ∞, where c, d ∈ R.
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Proof. By applying the condition (17) we obtain from the (14) and (15)

|x(t)| ≤ Ct + B1

∫ t

a

(t − s)α−1h(s)sγ−1g

(

|x|

s

)

, )ds, (20)

where C = |c1| + |c2|, B1 = 1
Γ(α)

, i. e.

|x(t)| ≤ Ct + B1

∫ t

a

(t − s)α−1h(s)sγ−1g

(

|x|

s

)

ds

≤ Ct + B(t − a)

∫ t

a

(t − s)α−2h(s)sγ−1g

(

|x|

s

)

ds

(21)

This yields the inequality

|x(t)|

t
≤ C + B

∫ t

a

(t − s)α−2h(s)sγ−1g

(

|x|

s

)

ds. (22)

If we denote by z(t) the right-hand side of the inequality (22) we obtain
the inequalities:

|x(t)|

t
≤ z(t), (23)

|x′(t)| ≤ z(t). (24)

Since the function g is nondecreasing, the inequality (23) yields

g

(

|x(t)|

t

)

≤ g(z(t)) (25)

and from (22) we obtain

z(t) ≤ 1 + C + B1

∫ t

a

(t − s)β−1h(s)sγ−1k(s)g (z(s)) ds, (26)

0 < β = α − 1 < 1. By applying the Hölder inequality and Lemma 1 we
obtain

∫ t

a

(t − s)β−1sγ−1h(s)g(z(s))ds

≤

(
∫ t

a

(t − s)p(β−1)sp(γ−1)ds

)

1

p

(
∫ t

a

h(s)qg(z(s))q

)

1

q

≤

(
∫ t

0

(t − s)p(β−1)sp(γ−1)ds

)

1

p

(
∫ t

a

h(s)qg(z(s))q

)

1

p

≤ BB1t
Θ

(
∫ t

a

h(s)qg(z(s))q

)

1

q

≤ BB1t
Θ

(
∫ t

a

h(s)qg(z(s))q

)

1

q

,
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where B = B[p(γ−1)+1, p(β−1)+1], Θ = p(β+γ−2)+1 = p(α+γ−3)+1 =
0, i.e.

∫ t

a

(t − s)β−1sγ−1h(s)g(z(s))ds ≤ BB1

(
∫ t

a

h(s)qg(z(s))q

)

1

q

. (27)

Using this inequality and the elementary inequality (a + b)q ≤ 2q−1(aq + bq),
a, b ≥ 0 we obtain from (26)

z(t)q ≤ 2q−1[(1 + C)q + (BB1)

∫ t

a

k(s)qg(z(s))qds]. (28)

If we denote u(t) = z(t)q, i.e. z(t) = u(t)
1

q , P1 = 2q−1[(1 + c)q], Q1 =
2q−1(B1)

q then

u(t) ≤ P1 + Q1

∫ t

a

h(s)qg(u(t)
1

q )qds, t ≥ a. (29)

Denote

ω(v) = g(v
1

q )q, Ω(u) =

∫ u

u0

dσ

ω(σ)
, u0 = u(a). (30)

Since Ω(u) = q
∫ v

v0

τq−1dτ
g(τ)q , where v0 = (u0)

1

q , v = u
1

q the condition (iii) of

Theorem 1 implies that limu→∞ Ω(u) = ∞, i.e. Ω([u0,∞)) = [0,∞) then by
the Bihari lemma

u(t) ≤ K0 := Ω−1[Ω(P1) + Q1

∫

∞

a

h(s)qds] < ∞. (31)

Since u(t) = z(t)
1

q we obtain that z(t) ≤ K := K
q
0 and from (24), (25) we

have
|x(t)|

t
≤ K1, |x′(t)| ≤ K1, t ≥ a. (32)

From the condition (ii) of Theorem 1 we have
∫ t

a

(t − s)β−1|f(s, x(s))|ds ≤

∫ t

a

(t − s)β−1sγ−1h(s)g(z(s))ds

≤ z(t) ≤ K1, t ≥ a,

(33)

therefore
∫

∞

a
(t− s)β−1|f(s, x(s))|ds exists. Therefore form the equality (15)

it follows that limt→∞ x′(t) = d exists and by the l’Hospital rule we conclude
that

lim
t→∞

u(t)

t
= lim

t→0
x′(t) = d, (34)

so the proof is now complete.
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3 Example

Let p > 1, α = 2 − 1
2p

, γ = 3 − α − 1
p
, i.e. p(α + γ − 3) + 1 = 0, q = p

p−1
,

i.e. 1
p

+ 1
q

= 1, g(u) = u
q−1

q [ln(2 + u)]
1

q , u ≥ 0, f(t, u) = tγ−1h(t)g(u
t
), where

h : R+ → R+ is a continuous function with
∫

∞

a
h(s)qds < ∞. Obviously

1 < α < 2, p(α − 2) + 1 = 1
2
, p(γ − 1) + 1 = 1 − 1

2p
> 0 and

∫

∞

a

τ q−1

g(τ)q
dτ =

∫

∞

a

1

ln(2 + τ)
dτ = ∞. (35)

Therefore the function f(t, u) satisfy the conditions (i)–(iii) of Theorem 1.
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