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1 Introduction and main result

In this paper, we are concerned with the following critical singular elliptic system











−∆u − t u
|x|2 = λf(x)|u|q−2u + 2α

α+β
|u|α−2u|v|β, in R

N \ {0},
−∆v − t v

|x|2 = µg(x)|v|q−2v + 2β

α+β
|u|α|v|β−2v, in R

N \ {0},
u, v ∈ D1,2(RN),

(1.1)

where λ, µ ≥ 0 with 1 < q < 2, α, β > 1 satisfying α + β = 2∗, 2∗ = 2N
N−2

, N ≥ 3

and 0 ≤ t < t = (N−2
2

)2, t is the best constant in the Hardy inequality. The weight
functions f, g satisfy the following assumptions:
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(H1) f, g are measurable functions and locally bounded in R
N \ {0}, with 0 6≡

f+, g+ ∈ C(RN \ {0}) and

f(x) =

{

O(|x|b), as |x| → 0,

O(|x|a), as |x| → ∞,
g(x) =

{

O(|x|d), as |x| → 0,

O(|x|c), as |x| → ∞,

for any a, b, c, d verifying

a, c ≤ N

2∗
(q − 2∗) < b, d.

(H2) Σf ∩ Σg 6= φ, where Σf = {x ∈ R
N : f(x) > 0}, Σg = {x ∈ R

N : g(x) > 0}.
Similar assumptions have been mentioned in [1-3]. The role of such growth condi-

tions is to get a compactness condition.
Let E = D1,2(RN) ×D1,2(RN) be a Hilbert space endowed with norm

‖z‖ =

(
∫

RN

(|∇u|2 + |∇v|2)
)

1
2

,

where z = (u, v) ∈ E.
A pair of functions (u, v) ∈ E is said to be a weak solution of problem (1.1), if

∫

RN

(∇u∇ϕ1 + ∇v∇ϕ2 − t
uϕ1

|x|2 − t
vϕ2

|x|2 )

=

∫

RN

(λf(x)|u|q−2uϕ1 + µg(x)|v|q−2vϕ2)

+
2α

α + β

∫

RN

|u|α−2u|v|βϕ1 +
2β

α + β

∫

RN

|u|α|v|β−2vϕ2

for all (ϕ1, ϕ2) ∈ E.
The corresponding energy functional of problem (1.1) is defined by

Jλ,µ(u, v) =
1

2

∫

RN

(|∇u|2 + |∇v|2 − t
u2

|x|2 − t
v2

|x|2 )

−1

q

∫

RN

(λf(x)|u|q + µg(x)|v|q) − 2

α + β

∫

RN

|u|α|v|β.

It follows from (H1)-(H2) that the functional Jλ,µ is of class C1(E, R). Moreover, the
critical points of Jλ,µ are the week solutions of problem (1.1).

Existence and multiplicity of solutions for elliptic problems with concave-convex
nonlinearities in bounded domain Ω ⊂ R

N are studied extensively.
Set α = β, α + β = p, λ = µ, u = v, then in Ω the problem (1.1) reads as the scalar

elliptic equation
{

−∆u − t u
|x|2 = λf(x)|u|q−2u + |u|p−2u, in Ω \ {0},

u ∈ H1
0 (Ω).

(1.2)
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In [5], Ambrosetti, Brezis and Cerami considered the problem (1.2) for t = 0, f(x) ≡
1, 2 < p ≤ 2∗ and proved that there exists Λ > 0 such that problem (1.2) admits at least
two positive solutions for λ ∈ (0, Λ), has a positive solution for λ = Λ and no positive
solution for λ > Λ. Chen [6] considered the problem (1.2) for f(x) ≡ 1, p = 2∗ and
proved that there exists Λ > 0 such that the problem (1.2) admits at least two positive
solutions for λ ∈ (0, Λ), 0 ≤ t < t. Successively, Tsung-Fang Wu [7] investigated the
problem (1.2) for t = 0, p = 2∗ with sign-changing weight function f and proved that
there exists Λ > 0 such that the problem (1.2) admits at least two positive solutions
for λ ∈ (0, Λ).

In whole space, Ambrosetti, Garcia and Peral [4] considered the problem (1.2) for
t = 0, p = 2∗ and proved the existence of Λ > 0 such that problem (1.2) admits at
least two non-negative solutions for λ ∈ (0, Λ), provided that f ∈ L1(RN ) ∪ L∞(RN)
and f+ 6≡ 0. More recently, under the proper hypothesis, Miotto [3] studied the same
problem above and obtained the similar results.

In recent years, much attention has been paid to the investigation of the following
elliptic system in bounded domain Ω











−∆u − t u
|x|2 = λf(x)|u|q−2u + 2α

α+β
|u|α−2u|v|β, in Ω \ {0},

−∆v − t v
|x|2 = µg(x)|v|q−2v + 2β

α+β
|u|α|v|β−2v, in Ω \ {0},

u, v ∈ H1
0(Ω).

(1.3)

Alves et [8] studied problem (1.3) with f(x) = g(x) ≡ 1, t = 0, q = 2 and proved the
existence of least energy solutions for problem (1.3) for λ, µ ∈ (0, λ1), where λ1 denoting
the first eigenvalue of −∆ in H1

0 (Ω). Liu-Han [9] also considered problem (1.3) with
f(x) = g(x) ≡ 1, 0 < t ≤ t − 1, q = 2 in bounded domain Ω, and proved that (1.3)
admits one positive solution for λ, µ ∈ (0, λ1). Subsequently, T.S.Hsu [10] considered
problem (1.3) with f(x) = g(x) ≡ 1, 0 ≤ t < t, 1 < q < 2, and proved the existence
of Λ > 0 such that problem (1.3) has at least two positive solutions, provided that

0 < λ
2

2−q + µ
2

2−q < Λ.
However, up to now, there are few papers on problem (1.1) in whole space R

N .
The purpose to this paper is to investigate the existence and multiplicity of positive
solutions of problem (1.1) by using the decomposition of the Nehari manifold.

Inspired by [3] and [10], we have the following result.
Theorem 1 Assume (H1)-(H2) hold. Then there exists a positive constant Λ such
that problem (1.1) admits at least two positive solutions, provided that λ, µ > 0 and

0 < λ
2

2−q + µ
2

2−q < Λ.
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2 Notations and preliminaries

Set D1,2(RN) = {u ∈ L2∗(RN)|∇u ∈ L2(RN)} with norm ‖u‖ =
(∫

RN |∇u|2
)

1
2 . For

t ∈ [0, t), we put

St = inf
u∈D1,2(RN )\0

∫

RN (|∇u|2 − t u2

|x|2 )
(∫

RN |u|2∗
)

2
2∗

.

Catrina and Wang [11] proved that St is achieved by the function

U(x) =
1

(

|x|
γ1√

t + |x|
γ2√

t

)

√
t
, (2.1)

where γ1 =
√

t −
√

t − t, γ2 =
√

t +
√

t − t.

Moreover, for ε > 0, Uε = ε−
N−2

2 U(x
ε
)
(

4N(t−t)
N−2

)
N−2

4

satisfies

{

−∆u − t u
|x|2 = |u|2∗−2u in R

N \ {0},
u → 0 as |x| → ∞.

Denote

St
α,β = inf

u,v∈D1,2(RN )\0

∫

RN (|∇u|2 + |∇v|2 − t u2

|x|2 − t v2

|x|2 )
(∫

RN |u|α|v|β
)

2
α+β

.

From [10], we have

St
α,β =

(

(
α

β
)

β
α+β + (

β

α
)

α
α+β

)

St.

For z = (u, v) ∈ E, let

‖z‖t =

(
∫

RN

|∇u|2 + |∇v|2 − t
u2

|x|2 − t
v2

|x|2
)

1
2

.

By Hardy inequality

∫

RN

u2

|x|2 ≤ 1

t

∫

RN

|∇u|2 for all u ∈ D1,2(RN),

we can derive that ‖ · ‖t defines an equivalent norm in E.
We define the Palais-Smale (PS) sequence and (PS)-condition in E for Jλ,µ as follows.

Definition 2.1 (i) {zn} is a (PS)c-sequence in E for Jλ,µ, if Jλ,µ(zn) = c+o(1), J
′

λ,µ(zn) =
o(1) in E−1 as n → ∞.

(ii) Jλ,µ satisfies the (PS)c-condition in E, if any (PS)c-sequence {zn} in E for Jλ,µ

has a convergent subsequence.
As consequence of the assumptions (H1)-(H2), we have
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Lemma 2.1 [3] If {un} ⊂ D1,2(RN) such that un ⇀ u weakly in D1,2(RN), then there
exists a subsequence {un} such that

lim
n→∞

∫

RN

f(x)|un|q =

∫

RN

f(x)|u|q.

The same conclusion still holds if f is replaced by g in Lemma 2.1.
Lemma 2.2 If {zn} ⊂ E is a (PS)c-sequence for Jλ,µ, then {zn} is bounded in E.

Proof. Let zn = (un, vn). On the contrary, assume that ‖zn‖t → ∞.
Put

zn = (un, vn) =
zn

‖zn‖t

,

then {zn} is bounded in E. By passing to a subsequence, we can assume that zn ⇀

z = (u, v) in E. So un ⇀ u, vn ⇀ v in D1,2(RN). By Lemma 2.1, we have

lim
n→∞

∫

RN

(λf(x)|un|q + µg(x)|vn|q) =

∫

RN

(λf(x)|u|q + µg(x)|v|q). (2.2)

Since Jλ,µ(zn) = c + o(1), J
′

λ,µ(zn) = o(1) and ‖zn‖t → ∞, then

Jλ,µ(zn) − 1

2∗
< J

′

λ,µ(zn), zn >

= (
1

2
− 1

2∗
)‖zn‖2

t − (
1

q
− 1

2∗
)

∫

RN

(λf(x)|un|q + µg(x)|vn|q)

≤ c + o(1)‖zn‖t + o(1).

So

‖zn‖2
t =

2(2∗ − q)

q(2∗ − 2)
‖zn‖q−2

t

∫

RN

(λf(x)|un|q + µg(x)|vn|q) + o(1).

It easily follows from (2.2) and 1 < q < 2, that ‖zn‖t → 0 as n → ∞, which is a
contradiction.

Lemma 2.3 If {zn} ⊂ E is a (PS)c-sequence for Jλ,µ with zn ⇀ z in E, then J
′

λ,µ(z) = 0

and Jλ,µ(z) ≥ −C0(λ
2

2−q + µ
2

2−q ) for some positive constant C0 only depending on
f, g, N, q, t.

Proof. If Jλ,µ(zn) = c + o(1), J
′

λ,µ(zn) = o(1) in E−1 as n → ∞ and zn ⇀ z in E, it is

standard that J
′

λ,µ(z) = 0. Let z = (u, v), we have

Jλ,µ(z) = (
1

2
− 1

2∗
)‖z‖2

t − (
1

q
− 1

2∗
)

∫

RN

λf(x)|u|q + µg(x)|v|q.

From the assumptions (H1)-(H2), there exist Cf , Cg > 0 such that
∣

∣

∣

∣

∫

RN

f(x)|u|q
∣

∣

∣

∣

≤ Cf‖u‖q,

∣

∣

∣

∣

∫

RN

g(x)|v|q
∣

∣

∣

∣

≤ Cg‖v‖q.
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By the Young inequality, Hardy inequality and 1 < q < 2, it follows that

Jλ,µ(z) =
1

N
‖z‖2

t − (
1

q
− 1

2∗
)

∫

RN

λf(x)|u|q + µg(x)|v|q

≥ 1

N
‖z‖2

t − (
1

q
− 1

2∗
)(λCf‖u‖q + µCg‖v‖q)

≥ 1

N
‖z‖2

t − (
1

q
− 1

2∗
)(λCf + µCg)(

t − t

t
)−

q
2‖z‖q

t

≥ −C0(λ
2

2−q + µ
2

2−q ).

3 Nehari manifold

For any λ, µ > 0, we consider the Nehari manifold

Nλ,µ = {z ∈ E \ {0}| < J
′

λ,µ(z), z >= 0}.

We recall that any nonzero solution of (1.1) belongs to Nλ,µ. Moreover, z = (u, v) ∈
Nλ,µ if and only if

‖z‖t 6= 0, ‖z‖2
t = Kλ,µ(z) + 2

∫

RN

|u|α|v|β,

where Kλ,µ(z) =
∫

RN (λf(x)|u|q + µg(x)|v|q).
Denote

θλ,µ = inf
z∈Nλ,µ

Jλ,µ(z).

We will see that θλ,µ > −∞. In fact, let z ∈ Nλ,µ, then from the proof the Lemma 2.3,
we have

Jλ,µ(z) ≥ 1

N
‖z‖2

t − (
1

q
− 1

2∗
)(λCf + µCg)(

t − t

t
)−

q
2‖z‖q

t .

It follows from 1 < q < 2 that Jλ,µ is coercive on Nλ,µ. So θλ,µ > −∞.
Define Φλ,µ : E → R, by Φλ,µ(z) =< J

′

λ,µ(z), z >, then

< Φ
′

λ,µ(z), z > = (2 − q)‖z‖2
t − 2(2∗ − q)

∫

RN

|u|α|v|β

= (2∗ − q)Kλ,µ(z) − (2∗ − 2)‖z‖2
t . (3.1)

As in Tarantello [12], we divide Nλ,µ in three parts

N+
λ,µ = {z ∈ Nλ,µ :< Φ

′

λ,µ(z), z >> 0},
N 0

λ,µ = {z ∈ Nλ,µ :< Φ
′

λ,µ(z), z >= 0},
N−

λ,µ = {z ∈ Nλ,µ :< Φ
′

λ,µ(z), z >< 0},

EJQTDE, 2012 No. 20, p. 6



and consider

θ+
λ,µ = inf

z∈N+
λ,µ

Jλ,µ(z), θ0
λ,µ = inf

z∈N 0
λ,µ

Jλ,µ(z), θ−λ,µ = inf
z∈N−

λ,µ

Jλ,µ(z).

Let

Λ1 =

(

2 − q

2(2∗ − q)

)
2

2∗−2
(

2∗ − 2

2∗ − q

)
2

2−q
(

t − t

t

)

q
2−q

(St
α,β)

N
2 (C

2
q

f + C
2
q
g )

q
q−2 ,

where Cf , Cg are from Lemma 2.3.

Lemma 3.1 N 0
λ,µ = ∅ if 0 < λ

2
2−q + µ

2
2−q < Λ1.

Proof. Suppose by absurd that N 0
λ,µ 6= ∅ for any small λ, µ > 0. Let z = (u, v) ∈ N 0

λ,µ,
by (3.1) we get

‖z‖2
t =

2(2∗ − q)

2 − q

∫

RN

|u|α|v|β, (3.2)

‖z‖2
t =

2∗ − q

2∗ − 2
Kλ,µ(z). (3.3)

By the definition of St
α,β and (3.2), we have

‖z‖t ≥
(

2 − q

2(2∗ − q)

)
1

2∗−2

(St
α,β)

N
4 .

By the assumptions (H1)-(H2), (3.3) and Hölder inequality, we have

‖z‖t ≤
(

2∗ − q

2∗ − 2

)
1

2−q

(λCf + µCg)
1

2−q

(

t − t

t

)

q
2(q−2)

≤
(

2∗ − q

2∗ − 2

)
1

2−q

(λ
2

2−q + µ
2

2−q )
1
2 (C

2
q

f + C
2
q
g )

q
2(2−q)

(

t − t

t

)

q
2(q−2)

.

So λ
2

2−q + µ
2

2−q ≥ Λ1, which is a contradiction with 0 < λ
2

2−q + µ
2

2−q < Λ1.

By Lemma 3.1, we have θλ,µ = min{θ+
λ,µ, θ

−
λ,µ}.

Lemma 3.2 If 0 < λ
2

2−q + µ
2

2−q < Λ2, then

θλ,µ = θ+
λ,µ < 0 < θ−λ,µ,

where Λ2 =
(

q

2

)
2

2−q Λ1.

Proof. The proof is similar to Theorem 3.1 in [10].

Lemma 3.3
lim

(λ,µ)→(0,0)
θλ,µ = 0.
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Proof. By Lemma 2.3, we have

θλ,µ ≥ −C0(λ
2

2−q + µ
2

2−q ).

Combining with Lemma 3.2, it is easy to verify that lim(λ,µ)→(0,0) θλ,µ = 0.

Similar to Lemma 2.6 in [15], we have the following result.

Lemma 3.4 If 0 < λ
2

2−q +µ
2

2−q < Λ1, then for every z = (u, v) ∈ E with
∫

RN |u|α|v|β >

0, there exist unique s+ = s+(z) and s− = s−(z) > 0 such that s+z ∈ N+
λ,µ, s

−z ∈ N−
λ,µ.

Moveover, we have

s− >

[

(2 − q)‖z‖2
t

2(2∗ − q)
∫

RN |u|α|v|β
]

1
2∗−2

= smax > s+,

Jλ,µ(s
+z) = min

0≤s≤smax

Jλ,µ(sz)

and
Jλ,µ(s−z) = max

s≥0
Jλ,µ(sz).

Lemma 3.5 Assume that z is a local minimizer for Jλ,µ on Nλ,µ and z 6∈ N 0
λ,µ, then

J
′

λ,µ(z) = 0 in E−1.

Proof. The proof is almost the same as that of Theorem 2.3 in [14] and is omitted
here.

The following lemma provides a precise description of the (PS)c-sequence for Jλ,µ.

Lemma 3.6 If 0 < λ
2

2−q + µ
2

2−q < Λ2, then each sequence {zn} ⊂ E satisfying

Jλ,µ(zn) = c + o(1), J
′

λ,µ(zn) = o(1) in E−1

with c 6= 0 and

c < θλ,µ +
2

N
(
St

α,β

2
)

N
2 ,

has a convergent subsequence.

Proof. By Lemma 2.2, we have {zn} ⊂ E is bounded and there exists z = (u, v) ∈ E.
We can assume, by passing to a subsequence if necessary, that zn ⇀ z in E and
zn → z a.e. in R

N . Now we will show that z ∈ Nλ,µ.
First, we prove that z 6= 0. On the contrary, suppose that z = 0.
Then by Lemma 2.1, we have

∫

RN

f(x)|un|q = o(1),

∫

RN

g(x)|vn|q = o(1), as n → ∞.

By < J
′

λ,µ(zn), zn >= 0, we get that

‖zn‖2
t = 2

∫

RN

|un|α|vn|β + o(1). (3.4)
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Moreover, because {zn} is a (PS)c-sequence, we have

c = o(1) + Jλ,µ(zn) =
1

N
‖zn‖2

t + o(1).

It is obvious that c > 0. Thus ‖zn‖2
t ≥ c for large n. Then by (3.4) and the definition

of St
α,β, we obtain that

‖zn‖2
t ≥ 2(

St
α,β

2
)

N
2 + o(1)

for large n. So c ≥ 2
N

(
St

α,β

2
)

N
2 , which contradicts θλ,µ < 0. Therefore z 6= 0.

It is easy to verify that z = (u, v) is a weak solution of problem (1.1) and z ∈ Nλ,µ.
Let z̃n = zn − z, ũn = un − u and ṽn = vn − v.

Then
∫

RN

(|∇ũ|2 + |∇ṽ|2 − t
ũ2

|x|2 − t
ṽ2

|x|2 )

=

∫

RN

(|∇un|2 + |∇vn|2 − t
u2

n

|x|2 − t
v2

n

|x|2 )

−
∫

RN

(|∇u|2 + |∇v|2 − t
u2

|x|2 − t
v2

|x|2 ) + o(1).

By Lemma 2.1 in [13]

∫

RN

|ũn|α|ṽn|β =

∫

RN

|un|α|vn|β −
∫

RN

|u|α|v|β + o(1),

and by Lemma 2.1

∫

RN

f(x)|ũn|q =

∫

RN

f(x)|un|q −
∫

RN

f(x)|u|q + o(1) = o(1),

∫

RN

g(x)|ṽn|q =

∫

RN

g(x)|vn|q −
∫

RN

g(x)|v|q + o(1) = o(1),

we have

< J
′

λ,µ(z̃n), z̃n >=< J
′

λ,µ(zn), zn > − < J
′

λ,µ(z), z > +o(1) = o(1).

So we can get that

lim
n→∞

∫

RN

(|∇ũn|2 + |∇ṽn|2 − t
ũn

2

|x|2 − t
ṽn

2

|x|2 ) = lim
n→∞

2

∫

RN

|ũn|α|ṽn|β = a, (3.5)

where a is a nonnegative constant.
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If a = 0, the proof is completed. Assume that a > 0, it follows from (3.5), that

St
α,β(

a

2
)

2
2∗ = St

α,β lim
n→∞

(
∫

RN

|ũn|α|ṽn|β
)

2
2∗

≤ lim
n→∞

∫

RN

(|∇ũn|2 + |∇ṽn|2 − t
ũn

2

|x|2 − t
ṽn

2

|x|2 )

= a,

which implies that a ≥ 2(
St

α,β

2
)

N
2 .

Thus

c = Jλ,µ(zn) + o(1)

= Jλ,µ(z̃n) + Jλ,µ(z) + o(1)

≥ Jλ,µ(z̃n) + θλ,µ + o(1)

=
1

2

∫

RN

(|∇ũn|2 + |∇ṽn|2 − t
ũn

2

|x|2 − t
ṽn

2

|x|2 ) − 2

2∗

∫

RN

|ũn|α|ṽn|β + θλ,µ + o(1)

= θλ,µ +
1

N
a

≥ θλ,µ +
2

N
(
St

α,β

2
)

N
2 ,

which is a contradiction. So the proof is completed.

4 Proof of Theorem 1

First, we shall use the idea of Tarantello [12] to get the following results.
Similar to Proposition 9 in [16], we can prove the following result.

Proposition 4.1 (i) If 0 < λ
2

2−q + µ
2

2−q < Λ1, then there exists a (PS)θλ,µ
-sequence

{zn} ⊂ Nλ,µ in E for Jλ,µ;

(ii) If 0 < λ
2

2−q + µ
2

2−q < Λ2, then there exists a (PS)θ−
λ,µ

-sequence {zn} ⊂ Nλ,µ in

E for Jλ,µ.
Now, we establish the existence of a positive solution in N+

λ,µ.

Theorem 4.1 If 0 < λ
2

2−q + µ
2

2−q < Λ1, then Jλ,µ has a minimizer z1 in N+
λ,µ which

satisfies
(i) Jλ,µ(z1) = θλ,µ = θ+

λ,µ < 0;
(ii) z1 is a positive solution of problem (1.1).

Proof. By Proposition 4.1(i), there exists a (PS)θλ,µ
-sequence {zn} ⊂ Nλ,µ in E for

Jλ,µ. It follows from θλ,µ < 0 and Lemma 3.5, that there exists z1 = (u1, v1) ∈ Nλ,µ

such that zn → z1 strongly in E. So z1 is a nontrivial solution of problem (1.1).
Similar to the proof of Theorem 4.1 in [10], we can prove that |z1| = (|u1|, |v|1) ∈

N+
λ,µ is a positive solution of problem (1.1).
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Next, we establish the existence of a positive solution of the system (1.1) on N−
λ,µ.

First, we consider

uε(x) = ε−
N−2

2 U(
x

ε
), ε > 0, x ∈ R

N ,

which is an extremal function for St, where U is defined in (2.1).
Since f+, g+ are continuous functions in R

N and Σ = Σf ∩ Σg 6= φ. Following the
method of [17], without loss of generality, we may assume the Σ is a domain of positive
measure.

We consider the test function

ωε,y(x) = ηy(x)uε,y(x), x ∈ R
N ,

where y ∈ Σ, uε,y(x) = uε(x − y) and ηy ∈ C∞
0 (Σ) with ηy ≥ 0 and ηy = 1 near y.

Let Λ2 as in Theorem 4.1, then for 0 < λ
2

2−q + µ
2

2−q < Λ2, we have the following
result.
Lemma 4.1 Let z1 = (u1, v1) be the local minimizer in Theorem 4.1. Then for every
l > 0 and a.e. y ∈ Σ, there exists ε0 = ε0(l, y) > 0 such that

Jλ,µ(u1 + l
√

αωε,y, v
1 + l

√

βωε,y) < θλ,µ +
2

N
(
St

α,β

2
)

N
2

for all ε ∈ (0, ε0).
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Proof. One has

Jλ,µ(u
1 + l

√
αωε,y, v

1 + l
√

βωε,y)

=
1

2
‖(u1 + l

√
αωε,y, v

1 + l
√

βωε,y)‖2
t −

λ

q

∫

RN

f(x)|u1 + l
√

αωε,y|q

−µ

q

∫

RN

g(x)|v1 + l
√

βωε,y|q −
2

2∗

∫

RN

|u1 + l
√

αωε,y|α|v1 + l
√

βωε,y|β

=
1

2
‖(u1, v1)‖2

t +
l2

2
(α + β)‖ωε,y‖2

t + l
[

< u1,
√

αωε,y >t + < v1,
√

βωε,y >t

]

−1

q

∫

RN

λf(x)|u1 + l
√

αωε,y|q + µg(x)|v1 + l
√

βωε,y|q

− 2

2∗

∫

RN

|u1 + l
√

αωε,y|α|v1 + l
√

βωε,y|β

= Jλ,µ(u
1, v1) +

l2

2
(α + β)‖ωε,y‖2

t +
2

2∗

∫

RN

|u1|α|v1|β +
1

q

∫

RN

λf(x)|u1|q + µg(x)|v1|q

−1

q

∫

RN

λf(x)|u1 + l
√

αωε,y|q + µg(x)|v1 + l
√

βωε,y|q

+l

∫

RN

λf(x)|u1|q−1
√

αωε,y + µg(x)|v1|q−1
√

βωε,y

− 2

2∗

∫

RN

|u1 + l
√

αωε,y|α|v1 + l
√

βωε,y|β

+
2l

2∗

∫

RN

|u1|α−1|v1|βα 3
2 ωε,y + |u1|α|v1|β−1β

3
2 ωε,y.

Since

1

q

∫

RN

f(x)|u1 + l
√

αωε,y|q −
1

q

∫

RN

f(x)|u1|q − l

∫

RN

f(x)|u1|q−1
√

αωε,y

=

∫

RN

f(x)

{

∫ l
√

αωε,y

0

[

(u1 + s)q−1 − (u1)q−1
]

ds

}

and

1

q

∫

RN

g(x)|v1 + l
√

βωε,y|q −
1

q

∫

RN

g(x)|v1|q − l

∫

RN

g(x)|v1|q−1
√

βωε,y

=

∫

RN

g(x)

{

∫ l
√

βωε,y

0

[

(v1 + s)q−1 − (v1)q−1
]

ds

}

,
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it follows from f > 0, g > 0 in Σ and ωε,y ≡ 0 in Σc, that

Jλ,µ(u1 + l
√

αωε,y, v
1 + l

√

βωε,y)

≤ Jλ,µ(u1, v1) +
l2

2
(α + β)‖ωε,y‖2

t +
2

2∗

∫

RN

|u1|α|v1|β

+
2l

2∗

∫

RN

|u1|α−1|v1|βα 3
2 ωε,y + |u1|α|v1|β−1β

3
2 ωε,y

− 2

2∗

∫

RN

|u1 + l
√

αωε,y|α|v1 + l
√

βωε,y|β. (4.1)

Similar to the estimate in [16] and [17], we can get

∫

RN

|u1 + l
√

αωε,y|α|v1 + l
√

βωε,y|β

=

∫

RN

|u1|α|v1|β + l

∫

RN

|u1|α−1|v1|βα 3
2 ωε,y + |u1|α|v1|β−1β

3
2 ωε,y

+l2
∗
α

α
2 β

β
2

∫

RN

|ωε,y|2
∗
+ l2

∗−1

∫

RN

(α
α+1

2 β
β
2 u1 + α

α
2 β

β+1
2 v1)|ωε,y|2

∗−1 + o(ε
N−1

2 )

and
∫

RN

|ωε,y|2
∗

= A + O(εN), ‖ωε,y‖2
t = B + O(εN−1),

where A = ‖U‖2∗

2∗ , B = ‖U‖2
t and St = B

A
2
2∗

.

Substituting in (4.1), we obtain

Jλ,µ(u
1 + l

√
αωε,y, v

1 + l
√

βωε,y)

≤ θλ,µ +
l2

2
(α + β)B − 2l2

∗

2∗
α

α
2 β

β
2 A

−l2
∗−1

∫

RN

(α
α+1

2 β
β
2 u1 + α

α
2 β

β+1
2 v1)|ωε,y|2

∗−1 + o(ε
N−1

2 ).

Similar to the argument of Lemma 3.1 in [12], we can conclude that for every l > 0 and
a.e. y ∈ Σ, there exists ε0 = ε0(l, y) > 0 such that

Jλ,µ(u1 + l
√

αωε,y, v
1 + l

√

βωε,y) < θλ,µ +
2

N
(
St

α,β

2
)

N
2

for all ε ∈ (0, ε0).

Theorem 4.2 There exists Λ > 0 with Λ ≤ Λ2, for all 0 < λ
2

2−q + µ
2

2−q < Λ, then Jλ,µ

has a minimizer z2 in N−
λ,µ which satisfies

(i) Jλ,µ(z2) = θ−λ,µ < θλ,µ + 2
N

(
St

α,β

2
)

N
2 ;

(ii) z2 is a positive solution of problem (1.1).
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Proof. First, we will show that

θ−λ,µ < θλ,µ +
2

N
(
St

α,β

2
)

N
2 .

Let

U1 =

{

z = (u, v) ∈ E :
1

‖z‖t

s−(
z

‖z‖t

) > 1,

∫

RN

|u|α|v|β > 0

}

∪
{

z = (u, v) ∈ E :

∫

RN

|u|α|v|β = 0

}

and

U2 =

{

z = (u, v) ∈ E :
1

‖z‖t

s−(
z

‖z‖t

) < 1,

∫

RN

|u|α|v|β > 0

}

.

Then N−
λ,µ disconnects E in two connected components U1 and U2. For each z ∈ N+

λ,µ,

one has 1 < smax < s−(z). Since s−(z) = 1
‖z‖t

s−( z
‖z‖t

), we have N+
λ,µ ⊂ U1. So z1 ∈ U1.

In the following, we will prove that there exits l0 > 0 such that z1+l0(
√

αωε,y,
√

βωε,y) ∈
U2. First, we show that there exists c > 0 such that

0 < s−
(

z1 + l(
√

αωε,y,
√

βωε,y)

‖z1 + l(
√

αωε,y,
√

βωε,y)‖t

)

< c

for any l > 0.
On the contrary, assume that there is a sequence {ln} with ln → ∞ such that

s−
(

z1 + ln(
√

αωε,y,
√

βωε,y)

‖z1 + ln(
√

αωε,y,
√

βωε,y)‖t

)

→ ∞

as n → ∞.
Let

wn = (w1
n, w

2
n) =

z1 + ln(
√

αωε,y,
√

βωε,y)

‖z1 + ln(
√

αωε,y,
√

βωε,y)‖t

.

In connection with s−(wn)wn ∈ N−
λ,µ and the Lebesgue dominated convergence theorem,

∫

RN

|w1
n|α|w2

n|β =

∫

RN |u1 + ln
√

αωε,y|α|v1 + ln
√

βωε,y|β
‖z1 + ln(

√
αωε,y,

√
βωε,y)‖2∗

t

=

∫

RN |u1

ln
+
√

αωε,y|α| v
1

ln
+
√

βωε,y|β

‖ z1

ln
+ (

√
αωε,y,

√
βωε,y)‖2∗

t

=

∫

RN |√αωε,y|α|
√

βωε,y|β
‖(√αωε,y,

√
βωε,y)‖2∗

t

+ o(1), as n → ∞.
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Thus

Jλ,µ(s−(wn)wn) =
|s−(wn)|2

2
− |s−(wn)|2∗

2∗

∫

RN

|w1
n|α|w2

n|β

−|s−(wn)|q
q

∫

RN

λf(x)(w1
n)q + µg(x)(w2

n)
q

−→ −∞, as n → ∞,

which contradicts that Jλ,µ is coercive on Nλ,µ.
Set

l0 =
|c2 − ‖z1‖2

t |
1
2

‖(√αωε,y,
√

βωε,y)‖t

+ 1,

then

‖z1 + l0(
√

αωε,y,
√

βωε,y)‖2
t

= ‖z1‖2
t + l20(α + β)‖ωε,y‖2

t + 2l0 < u1,
√

αωε,y >t +2l0 < v1,
√

βωε,y >t

= ‖z1‖2
t + l20(α + β)‖ωε,y‖2

t + 2l0

(
∫

RN

λf(x)|u1|q−1
√

αωε,y + µg(x)|v1|q−1
√

βωε,y

)

+
4l0α

α + β

∫

RN

√
α|u1|α−1|v1|βωε,y +

4l0β

α + β

∫

RN

√

β|u1|α|v1|β−1ωε,y.

Since f > 0, g > 0 in Σ, ωε,y ≡ 0 in Σc and the choice of l0, we have

‖z1 + l0(
√

αωε,y,
√

βωε,y)‖2
t

≥ ‖z1‖2
t + l20(α + β)‖ωε,y‖2

t

> ‖z1‖2
t +

∣

∣c2 − ‖z1‖2
t

∣

∣ ≥ c2

>

[

s−
(

z1 + l(
√

αωε,y,
√

βωε,y)

‖z1 + l(
√

αωε,y,
√

βωε,y)‖t

)]2

.

So z1 + l0(
√

αωε,y,
√

βωε,y) ∈ U2.
Denote

θ = inf
γ∈Γ

max
s∈[0,1]

Jλ,µ(γ(s)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = z1, γ(1) = z1 + l0(
√

αωε,y,
√

βωε,y)}.
Obviously, the path γ0(s) = z1 + sl0(

√
αωε,y,

√
βωε,y) belongs to Γ. Thus, it follows

from γ(0) ∈ U1 and γ(1) ∈ U2, that there exists s0 ∈ (0, 1) such that γ(s0) ∈ N−
λ,µ.

By Lemma 4.1, we get

θ−λ,µ ≤ θ < θλ,µ +
2

N
(
St

α,β

2
)

N
2 .

By Proposition 4.1(ii), there exists a (PS)θ−
λ,µ

-sequence {zn} ⊂ Nλ,µ in E for Jλ,µ. By

Lemma 3.5, there exists z2 = (u2, v2) ∈ Nλ,µ such that zn → z2 strongly in E. So z2 is
a nontrivial solution of problem (1.1).
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Similar to the proof of Theorem 4.1 in [10], we can prove that |z2| = (|u2|, |v|2) ∈
N−

λ,µ is a positive solution of problem (1.1).

Finally, we will give the proof of Theorem 1.

Proof. Let Λ be defined as in Theorem 4.2. For all 0 < λ
2

2−q + µ
2

2−q < Λ1, by Theorem
4.1, the system (1.1) has a positive solution |z1| ∈ N+

λ,µ. By Λ ≤ Λ2 < Λ1 and Theorem

4.2, the system (1.1) has a positive solution |z2| ∈ N−
λ,µ. It follows from N−

λ,µ∩N+
λ,µ = ∅,

that the system (1.1) has two positive solutions |z1| and |z2|.
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