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1. Introduction

Difference equations have attracted the interest of many researchers in the past twenty years since

they provided a natural description of several discrete models. Such discrete models are often investigated

in various fields of science and technology such as computer science, economics, neural network, ecology,

cybernetics, biological systems, optimal control, population dynamics, etc. These studies cover many of the

branches of difference equation, such as stability, attractiveness, periodicity, oscillation and boundary value

problem. Recently, there are some new results on periodic solutions and homoclinic solutions of nonlinear

difference equations by using the critical point theory in the literature, see [1-3, 7-15, 20, 21, 30-33].

Consider the nonlinear difference equation of the form

∆
[

p(n)(∆u(n − 1))δ
]

− q(n)(x(n))δ + f(n, u(n)) = 0, n ∈ Z, (1.1)

where ∆ is the forward difference operator defined by ∆u(n) = u(n+1)−u(n), ∆2u(n) = ∆(∆u(n)), δ > 0

is the ratio of odd positive integers, {p(n)} and {q(n)} are real sequences, {p(n)} 6= 0. f : Z × R → R. As

usual, we say that a solution u(n) of (1.1) is homoclinic (to 0) if u(n) → 0 as n → ±∞. In addition, if

u(n) 6≡ 0 then u(n) is called a nontrivial homoclinic solution.

In general, equation (1.1) may be regarded as a discrete analogue of the following second order differential

equation

(p(t)ϕ(x′))′ + q(t)x(t) + f(t, x) = 0, t ∈ R. (1.2)

Equation (1.2) can be regarded as the more general form of the Emden-Fowler equation, appearing in the

study of astrophysics, gas dynamics, fluid mechanics, relativistic mechanics, nuclear physics and chemically
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reacting system in terms of various special forms of f(t, x(t)), for example, see [33] and the reference therein.

In this survey paper, many well-known results concerning properties of solutions of (1.2) are collected. In

the case of ϕ(x) = |x|δ−2x, Eq.(1.2) has been discussed extensively in the literature, we refer the reader to

the monographs [4-6, 17-19, 22-29, 34].

It is well-known that the existence of homoclinic solutions for Hamiltonian systems and their importance

in the study of the behavior of dynamical systems have been already recognized from Poincaré, homoclinic

orbits play an important role in analyzing the chaos of dynamical system. In the past decade, this problem

has been intensively studied using critical point theory and variational methods.

In some recent papers [7, 8, 10, 13-15, 20-21, 30], the authors studied the existence of periodic solutions,

subharmonic solutions and homoclinic solutions of some special forms of (1.1) by using the critical point

theory. These papers show that the critical point method is an effective approach to the study of periodic

solutions for difference equations.

When δ = 1, (1.1) reduces to the following equation:

∆ [p(n)(∆u(n − 1))] − q(n)x(n) + f(n, u(n)) = 0, n ∈ Z, (1.3)

which has been studied in [21]. Ma and Guo applied the critical point theory to prove the existence of

homoclinic solutions of (1.3) and obtained the following theorems.

Theorem A[21]. Assume that p, q and f satisfy the following conditions:

(p) p(n) > 0 for all n ∈ Z;

(q) q(n) > 0 for all n ∈ Z and lim|n|→+∞ q(n) = +∞;

(f1) There is a constant µ > 2 such that

0 < µ

∫ x

0

f(n, s)ds ≤ xf(n, x), ∀ (n, x) ∈ Z × (R \ {0});

(f2) limx→0 f(n, x)/x = 0 uniformly with respect to n ∈ Z.

(f3) f(n,−x) = −f(n, x), ∀ (n, x) ∈ Z × R.

Then Eq. (1.3) possess an unbounded sequence of homoclinic solutions.

When δ 6= 1, it seems that no similar results were obtained in the literature on the existence of homoclinic

solutions. When F (n, x) is an even function on x, however, generalize or improve Theorem A by using the

Symmetric Mountain Pass Theorem, there has not been much work done up to now, because it is often very

difficult to verify the last condition of the Symmetric Mountain Pass Theorem, different from the Mountain

Pass Theorem.

Motivated by the above papers, we will obtain some new criteria for guaranteeing that (1.1) has infinitely

many homoclinic orbits without any periodicity and generalize Theorem A. Especially, F (n, x) satisfies a

kind of new superquadratic condition which is different from the corresponding condition in the known

literature.

In this paper, we always assume that F (n, x) =
∫ x

0
f(n, s)ds, F1(n, x) =

∫ x

0
f1(n, s)ds, F2(n, x) =

∫ x

0 f2(n, s)ds. Our main results are the following theorems.

Theorem 1.1. Assume that p, q and F satisfy (p), (q), (f3) and the following assumptions:

EJQTDE, 2012 No. 47, p. 2



(F1) F (n, x) is continuously differentiable in x, and

1

q(n)
|f(n, x)| = o(|x|δ) as x → 0

uniformly in n ∈ Z;

(F2) For any r > 0, there exist a = a(r), b = b(r) > 0 and ν < δ + 1 such that

0 ≤

(

δ + 1 +
1

a + b|x|ν

)

F (n, x) ≤ xf(n, x), ∀ (n, x) ∈ Z × R, |x| ≥ r;

(F3) For any n ∈ Z

lim
s→+∞

[

s−(δ+1) min
|x|=1

F (n, sx)

]

= +∞.

Then Eq.(1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 1.2. Assume that p, q and F satisfy (p), (q), (f3) and the following conditions:

(F1’) F (n, x) = F1(n, x) − F2(n, x), for every n ∈ Z, F1 and F2 are continuously differentiable in x and

1

q(n)
|f(n, x)| = o(|x|δ) as x → 0

uniformly in n ∈ Z;

(F4) There is a constant µ > δ + 1 such that

0 < µF1(n, x) ≤ xf1(n, x), ∀ (n, x) ∈ Z × (R \ {0});

(F5) F2(n, 0) ≡ 0 and there is a constant ̺ ∈ (δ + 1, µ) such that

xf2(n, x) ≤ ̺F2(n, x), ∀ (n, x) ∈ Z × R.

Then Eq.(1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 1.3. Assume that p, q and F satisfy (p), (q), (f3), (F4), (F5) and the following assumption:

(F1”) F (n, x) = F1(n, x) − F2(n, x), for every n ∈ Z, F1 and F2 are continuously differentiable in x and

there is a bounded set J ⊂ Z such that

F2(n, x) ≥ 0, ∀ (n, x) ∈ J × R, |x| ≤ 1,

and
1

q(n)
|f(n, x)| = o(|x|δ) as x → 0

uniformly in n ∈ Z \ J .

Then Eq.(1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.1. If Ambrosetti-Rabinwitz (AR) condition: there exist some µ > 2 such that

0 < µF (n, x) ≤ (∇F (n, x), x)
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holds, then (F2) with δ = 1 also holds by choosing a > 1/(µ − 2), b > 0 and ν ∈ (0, 2). In addition, by

(AR), we have

F (n, sx) ≥ sµF (n, x) for (n, x) ∈ Z × R, s ≥ 1.

It follows that for any n ∈ Z

s−2 min
|x|=1

F (n, sx) ≥ sµ−2 min
|x|=1

F (n, x) → +∞, s → +∞.

This shows that (AR) implies (F3). Therefore, Theorem 1.1 also generalize Theorem A by relaxing conditions

(f1) and (f2).

Remark 1.2. Obviously, conditions (F1), (F1’) and (F1”) are weaker than (f1). Therefore, both Theorem

1.2 and Theorem 1.3 generalize Theorem A by relaxing conditions (f1) and (f2).

2. Preliminaries

Let

S = {{u(n)}n∈Z : u(n) ∈ R, n ∈ Z} ,

E =

{

u ∈ S :
∑

n∈Z

[

p(n)(△u(n − 1))δ+1 + q(n)(u(n))δ+1)
]

< +∞

}

,

and for u ∈ E, let

‖u‖ =

{

∑

n∈Z

[

p(n)(△u(n − 1))δ+1 + q(n)(u(n))δ+1)
]

< +∞

}
1

δ+1

.

Then E is a uniform convex Banach space with this norm and is a reflexive Banach space, see details in

ref.[36] or Lemma 2.4.

As usual, for 1 ≤ p < +∞, let

lp(Z, R) =

{

u ∈ S :
∑

n∈Z

|u(n)|p < +∞

}

,

and

l∞(Z, R) =

{

u ∈ S : sup
n∈Z

|u(n)| < +∞

}

,

and their norms are defined by

‖u‖p =

(

∑

n∈Z

|u(n)|p

)1/p

, ∀ u ∈ lp(Z, R); ‖u‖∞ = sup
n∈Z

|u(n)|, ∀ u ∈ l∞(Z, R),

respectively.

Let I : E → R be defined by

I(u) =
1

δ + 1
‖u‖δ+1 −

∑

n∈Z

F (n, u(n)). (2.1)

If (p), (q) and (F1) or (F1’) or (F1”) hold, then I ∈ C1(E, R) and one can easily check that

〈I ′(u), v〉 =
∑

n∈Z

[

(p(n)(△u(n − 1))δ△v(n − 1)) + q(n)(u(n))δv(n)

−f(n, u(n))v(n))] , ∀ u, v ∈ E. (2.2)
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Furthermore, the critical points of I in E are classical solutions of (1.1) with u(±∞) = 0.

We will obtain the critical points of I by using the Symmetric Mountain Pass Theorem. We recall it

and a minimization theorem as:

Lemma 2.1[17, 25]. Let E be a real Banach space and I ∈ C1(E, R) satisfy (PS)-condition. Suppose that

I satisfies the following conditions:

(i) I(0) = 0;

(ii) There exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) For each finite dimensional subspace E′ ⊂ E, there is r = r(E′) > 0 such that I(u) ≤ 0 for u ∈

E′ \ Br(0), where Br(0) is an open ball in E of radius r centered at 0.

Then I possesses an unbounded sequence of critical values.

Remark 2.1. As shown in [6], a deformation lemma can be proved with condition (C) replacing the

usual (PS)-condition, and it turns out that Lemma 2.1 hold true under condition (C). We say I satisfies

condition (C), i.e., for every sequence {uk} ⊂ E, {uk} has a convergent subsequence if I(uk) is bounded

and (1 + ‖uk‖)‖I
′(uk)‖ → 0 as k → ∞.

Lemma 2.2. For u ∈ E

‖u‖∞ ≤ q−
1

δ+1 ‖u‖ = λ‖u‖, (2.3)

where q = infn∈Z q(n), λ = q−
1

δ+1 .

Proof. Since u ∈ E, it follows that lim|t|→∞ |u(t)| = 0. Hence, there exists n∗ ∈ Z such that

‖u‖∞ = |u(n∗)| = max
n∈Z

|u(n)|.

By (q) and (2.2), we have

‖u‖δ+1 ≥
∑

n∈Z

q(n)|u(n)|δ+1 ≥ q
∑

n∈Z

|u(n)|δ+1 ≥ q‖u‖δ+1
∞ = q|u(n∗)|δ+1. (2.4)

It follows from (2.4) that (2.3) holds.

Lemma 2.3. Assume that (F2) and (F3) hold. Then for every (n, x) ∈ Z × R,

(i) s−µF1(n, sx) is nondecreasing on (0, +∞);

(ii) s−̺F2(n, sx) is nonincreasing on (0, +∞).

The proof of Lemma 2.3 is routine and so we omit it.

Lemma 2.4[36] Every uniformly convex Banach space is reflexive.

Lemma 2.5[16] Let E be a uniformly convex Banach space, xn ∈ E, then xn → x if and only if xn ⇀ x

and ‖xn‖ → ‖x‖.

3. Proofs of theorems

Proof of Theorem 1.1. We first show that I satisfies condition (C). Assume that {uk}k∈N ⊂ E is a (C)
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sequence of I, that is, {I(uk)}k∈N is bounded and (1 + ‖uk‖)‖I
′(uk)‖ → 0 as k → +∞. Then it follows

from (2.1) and (2.2) that

C1 ≥ (δ + 1)I(uk) − 〈I ′(uk), uk〉

=
∑

n∈Z

[uk(n)f(n, uk(n)) − (δ + 1)F (n, uk(n))]. (3.1)

By (F1), there exists η ∈ (0, 1) such that

|f(n, x)| ≤
1

2
q(n)|x|δ for n ∈ Z, |x| ≤ η. (3.2)

Since F (n, 0) = 0, it follows that

|F (n, x)| ≤
1

2(δ + 1)
q(n)|x|δ+1 for n ∈ Z, |x| ≤ η. (3.3)

By (F2), we have

xf(n, x) ≥ (δ + 1)F (n, x) ≥ 0 for (n, x) ∈ Z × R, k ∈ N, (3.4)

and

F (n, x) ≤ (a + b|x|ν)[xf(n, x) − (δ + 1)F (n, x)] for (n, x) ∈ Z × R, |x| ≥ η. (3.5)

It follows from (F2), (2.1), (3.1), (3.2), (3.3), (3.4) and (3.5) that

1

δ + 1
‖uk‖

δ+1 = I(uk) +
∑

n∈Z

F (n, uk(n))

= I(uk) +
∑

n∈Z(|uk(n)|≤η)

F (n, uk(n)) +
∑

n∈Z(|uk(n)|>η)

F (n, uk(n))

≤ I(uk) +
1

2(δ + 1)

∑

n∈Z(|uk(n)|≤η)

q(n)|uk(n)|δ+1

+
∑

n∈Z(|uk(n)|>η)

(a + b|uk(n)|ν)[uk(n)f(n, uk(n)) − (δ + 1)F (n, uk(n))]

≤ C2 +
1

2(δ + 1)
‖uk‖

δ+1 +
∑

n∈Z

(a + b|uk(n)|ν)[uk(n)f(n, uk(n)) − (δ + 1)F (n, uk(n))]

≤ C2 +
1

2(δ + 1)
‖uk‖

δ+1 + (a + b‖uk‖
ν
∞)
∑

n∈Z

[uk(n)f(n, uk(n)) − (δ + 1)F (n, uk(n))]

≤ C2 +
1

2(δ + 1)
‖uk‖

δ+1 + C1(a + b‖uk‖
ν
∞)

≤ C2 +
1

2(δ + 1)
‖uk‖

δ+1 + C1{a + λνb‖uk‖
ν}, k ∈ N. (3.6)

Since ν < δ + 1, it follows that there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (3.7)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E (Since E is a reflexive Banach

space). For any given number ε > 0, by (F1), we can choose ξ > 0 such that

|f(n, x)| ≤ εq(n)|x|δ for n ∈ Z, and |x| ≤ ξ. (3.8)

Since q(n) → ∞, we can also choose an integer Π > 0 such that

q(n) ≥
Aδ+1

ξδ+1
, |n| ≥ Π. (3.9)
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By (2.1), (3.8) and (3.9), we have

|uk(n)|δ+1 =
1

q(n)
q(n)|uk(n)|δ+1

≤
ξδ+1

Aδ+1

∑

n∈Z

q(n)|uk(n)|δ+1

≤
ξδ+1

Aδ+1
‖uk‖

δ+1

≤ ξδ+1 for |n| ≥ Π, k ∈ N. (3.10)

Since uk ⇀ u0 in E, it is easy to verify that uk(n) converges to u0(n) pointwise for all n ∈ Z, that is

lim
k→∞

uk(n) = u0(n), ∀ n ∈ Z. (3.11)

Hence, we have by (3.10) and (3.11)

|u0(n)| ≤ ζ for |n| ≥ Π. (3.12)

It follows from (3.11) and the continuity of f(n, x) on x that there exists k0 ∈ N such that

Π
∑

n=−Π

|f(n, uk(n)) − f(n, u0(n))||uk(n) − u0(n)| < ε for k ≥ k0. (3.13)

On the other hand, it follows from (3.2), (3.9), (3.10), (3.11) and (3.12) that

∑

|n|>Π

|f(n, uk(n)) − f(n, u0(n))||uk(n) − u0(n)|

≤
∑

|n|>Π

(|f(n, uk(n))| + |f(n, u0(n))|)(|uk(n)| + |u0(n)|)

≤ ε
∑

|n|>Π

q(n)(|uk(n)|δ + |u0(n)|δ)(|uk(n)| + |u0(n)|)

≤ 2ε
∑

|n|>Π

q(n)(|uk(n)|δ+1 + |u0(n)|δ+1)

≤ 2ε(‖uk‖
δ+1 + ‖u0‖

δ+1)

≤ 2ε(Aδ+1 + ‖u0‖
δ+1), k ∈ N. (3.14)

Combining (3.13) with (3.14), we get

∑

n∈Z

|f(n, uk(n)) − f(n, u0(n))| |uk(n) − u0(n)| → 0 as k → ∞. (3.15)

Using Hölder’s inequality

ac + bd ≤ (ap + bp)1/p(cq + dq)1/q,
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where a, b, c, d are nonnegative numbers and 1/p + 1/q = 1, p > 1, it follows from (2.2) that

〈I ′(uk) − I ′(u0), uk − u0〉

=
∑

n∈Z

p(n)(∆uk(n − 1))δ(∆uk(n − 1) − ∆u0(n − 1))

+
∑

n∈Z

q(n)(uk(n))δ(uk(n) − u0(n))

−
∑

n∈Z

p(n)(∆u0(n − 1))δ(∆uk(n − 1) − ∆u0(n − 1))

−
∑

n∈Z

q(n)(u0(n))δ(uk(n) − u0(n))

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n))

= ‖uk‖
δ+1 + ‖u0‖

δ+1 −
∑

n∈Z

p(n)(∆uk(n − 1))δ∆u0(n − 1)

−
∑

n∈Z

q(n)(uk(n))δu0(n)

−
∑

n∈Z

p(n)(∆u0(n − 1))δ∆uk(n − 1) −
∑

n∈Z

q(n)(u0(n))δuk(n)

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n))

≥ ‖uk‖
δ+1 + ‖u0‖

δ+1 −

(

∑

n∈Z

p(n)(∆u0(n − 1))δ+1

)
1

δ+1
(

∑

n∈Z

p(n)(∆uk(n − 1))δ+1

)
δ

δ+1

−

(

∑

n∈Z

q(n)(u0(n))δ+1

)
1

δ+1
(

∑

n∈Z

q(n)(uk(n))δ+1

)
δ

δ+1

−

(

∑

n∈Z

p(n)(∆uk(n − 1))δ+1

)
1

δ+1
(

∑

n∈Z

p(n)(∆u0(n − 1))δ+1

)
δ

δ+1

−

(

∑

n∈Z

q(n)(uk(n))δ+1

)
1

δ+1
(

∑

n∈Z

q(n)(u0(n))δ+1

)
δ

δ+1

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n))
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≥ ‖uk‖
δ+1 + ‖u0‖

δ+1

−

(

∑

n∈Z

[

p(n)(∆u0(n − 1))δ+1 + q(n)(u0(n))δ+1
]

)
δ

δ+1

(

∑

n∈Z

[

p(n)(∆uk(n − 1))δ+1 + q(n)(uk(n))δ+1
]

)
δ

δ+1

−

(

∑

n∈Z

[

p(n)(∆uk(n − 1))δ+1 + q(n)(uk(n))δ+1
]

)
δ

δ+1

(

∑

n∈Z

[

p(n)(∆u0(n − 1))δ+1 + q(n)(u0(n))δ+1
]

)
δ

δ+1

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n))

= ‖uk‖
δ+1 + ‖u0‖

δ+1 − ‖u0‖‖uk‖
δ − ‖uk‖‖u0‖

δ

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n))

=
(

‖uk‖
δ − ‖u0‖

δ
)

(‖uk‖ − ‖u0‖)

−
∑

n∈Z

(f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)). (3.16)

Since I ′(uk) → 0 as k → +∞ and uk ⇀ u0 in E, it follows from (3.16) that

〈I ′(uk) − I ′(u0), uk − u0〉 → 0 as k → ∞,

which, together with (3.15) and (3.16), yields that ‖uk‖ → ‖u‖ as k → +∞. By the uniform convexity of E

and the fact that uk ⇀ u0 in E, it follows from the Kadec-Klee property [16] or Lemma 2.5 that uk → u0

in E. Hence, I satisfies (C)-condition.

We now show that there exist constants ρ, α > 0 such that I satisfies assumption (ii) of Lemma 2.1 with

these constants. Let ϑ ≤ η, if ‖u‖ = ϑ/λ := ρ, then by (2.3), |u(n)| ≤ ϑ ≤ η < 1 for n ∈ Z.

Set

α =
ϑδ+1

2(δ + 1)λδ+1
.

Hence, from (2.1) and (3.3), we have

I(u) =
1

δ + 1
‖u‖δ+1 −

∑

n∈Z

F (n, u(n))

≥
1

δ + 1
‖u‖δ+1 −

1

2(δ + 1)

∑

n∈Z

q(n)|u(n)|δ+1

≥
1

2(δ + 1)
‖u‖δ+1

= α. (3.17)

(3.17) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii) of Lemma 2.1.

Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Let E′ be a finite dimensional

subspace of E. Since all the norms of a finite dimensional normed space are equivalent, so there exists a

constant d > 0 such that

‖u‖ ≤ d‖u‖∞ for u ∈ E′. (3.18)
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Assume that dim E′ = m and u1, u2, . . . , um is a base of E′ such that

‖ui‖ = d, i = 1, 2, . . . , m. (3.19)

For any u ∈ E′, there exist λi ∈ R, i = 1, 2, . . . , m such that

u(n) =
m
∑

i=1

λiui(n) for n ∈ Z. (3.20)

Let

‖u‖∗ =

m
∑

i=1

|λi|‖ui‖. (3.21)

It is easy to verify that ‖ · ‖∗ defined by (3.21) is a norm of E′. Hence, there exists d′ > 0 such that

d′‖u‖∗ ≤ ‖u‖.

Since ui ∈ E, we can choose Π1 > Π such that

|ui(n)| <
d′η

1 + d′
, |n| > Π1, i = 1, 2, . . . , m, (3.22)

where η is given in (3.3). Set

Θ =

{

m
∑

i=1

λiui(n) : λi ∈ Z, i = 1, 2, . . . , m;

m
∑

i=1

|λi| = 1

}

= {u ∈ E′ : ‖u‖∗ = d} . (3.23)

Hence, for u ∈ Θ, let n0 = n0(u) ∈ Z such that

|u(n0)| = ‖u‖∞. (3.24)

Then by (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24), we have

d′d = d′d
m
∑

i=1

|λi| = d′
m
∑

i=1

|λi|‖ui‖ = d′‖u‖∗

≤ ‖u‖ ≤ d‖u‖∞ = d|u(n0)|

≤ d
m
∑

i=1

|λi||ui(n0)|, u ∈ Θ. (3.25)

This shows that

|u(n0)| ≥ d′ (3.26)

and there exists i0 ∈ {1, 2, . . . , m} such that |ui0(n0)| ≥ d′. By (F3), there exists σ0 = σ0(d, Π1) > 1 such

that

s−(δ+1) min
|x|=1

F (n, sx) ≥

(

2d

d′

)δ+1

for s ≥
d′σ0

2
, n ∈ Z(−Π1, Π1). (3.27)

It follows from (F3), (2.1) and (3.27) that

I(σu) =
σδ+1

δ + 1
‖u‖δ+1 −

∑

n∈Z

F (n, σu(n))

≤
σδ+1

δ + 1
‖u‖δ+1 − F (n0, σu(n0))

≤
σδ+1

δ + 1
‖u‖δ+1 − min

|x|=1
F (n0, σ|u(n0)|x)

≤
(dσ)δ+1

δ + 1
− (dσ)δ+1|u(n0)|

δ+1

≤
(dσ)δ+1

δ + 1
− (dσ)δ+1

= −
δ(dσ)δ+1

δ + 1
, u ∈ Θ, σ ≥ σ0. (3.28)
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We deduce that there is σ0 = σ0(d, Π1) = σ0(E
′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ ≥ σ0.

That is

I(u) < 0 for u ∈ E′ and ‖u‖ ≥ dσ0.

This shows that condition (iii) of Lemma 2.1 holds. By Lemma 2.1, I possesses an unbounded sequence

{dk}k∈N of critical values with dk = I(uk), where uk is such that I ′(uk) = 0 for k = 1, 2, . . .. If {‖uk‖} is

bounded, then there exists B > 0 such that

‖uk‖ ≤ B for k ∈ N. (3.29)

By a similar fashion for the proof of (3.3), for the given η in (3.3), there exists Π2 > 0 such that

|uk(n)| ≤ η for |n| ≥ Π2, k ∈ N. (3.30)

Thus, from (2.1), (2.3) and (3.3), we have

1

δ + 1
‖uk‖

δ+1 = dk +
∑

n∈Z

F (n, uk(n))

= dk +
∑

|n|>Π2

F (n, uk(n)) +
∑

|n|≤Π2

F (n, uk(n))

≥ dk −
1

2(δ + 1)

∑

|n|>Π2

q(n)|uk(n)|δ+1 −
∑

|n|≤Π2

|F (n, uk(n))|

≥ dk −
1

2(δ + 1)
‖uk‖

δ+1 −
∑

|n|≤Π2

max
|x|≤λB

|F (n, x)|. (3.31)

It follows that

dk ≤
3

2(δ + 1)
‖uk‖

δ+1 +
∑

|n|≤Π2

max
|x|≤λB

|F (n, x)| < +∞.

This contradicts to the fact that {dk}
∞
k=1 is unbounded, and so {‖uk‖} is unbounded. The proof is complete.

Proof of Theorem 1.2. It is clear that I(0) = 0. We first show that I satisfies the (PS)-condition.

Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N is bounded and I ′(uk) → 0 as k → +∞.

Then there exists a constant c > 0 such that

|I(uk)| ≤ c, ‖I ′(uk)‖E∗ ≤ µc for k ∈ N. (3.32)

From (2.1), (2.2), (3.32), (F4) and (F5), we obtain

(δ + 1)c + (δ + 1)c‖uk‖

≥ (δ + 1)I(uk) −
δ + 1

µ
〈I ′(uk), uk〉

=
µ − (δ + 1)

µ
‖uk‖

δ+1 + (δ + 1)
∑

n∈Z

[

F2(n, uk(n)) −
1

µ
uk(n)f2(n, uk(n))

]

−(δ + 1)
∑

n∈Z

[

F1(n, uk(n)) −
1

µ
uk(n)f1(n, uk(n))

]

≥
µ − (δ + 1)

µ
‖uk‖

δ+1, k ∈ N.

EJQTDE, 2012 No. 47, p. 11



It follows that there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (3.33)

Similar to the proof of Theorem 1.1, we can prove that {uk} has a convergent subsequence in E. Hence,

I satisfies condition (PS)-condition. By a similar fashion for the proof in Theorem, we can verify that I

satisfies assumption (ii) of Lemma 2.1.

Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. Let E′ be a finite dimensional

subspace of E. Since all norms of a finite dimensional normed space are equivalent, so there is a constant

d′ > 0 such that (3.22) holds. Let η, Π1 and Θ be the same as in the proof of Theorem 1.1, then (3.26)

holds.

Set

τ = min{F1(n, x) : |n| ≤ Π1, |x| ≤ d′}, (3.34)

where d′ is given in (3.22).

Since F1(n, x) > 0 for all n ∈ Z and x ∈ R \ {0}, and F1(n, x) is continuous in x, so τ > 0. It follows

from (3.26), (3.34) and Lemma 2.3 (i) that

Π1
∑

n=−Π1

F1(n, u(n)) ≥ F1(n0, u(n0))

≥ F1

(

n0,
u(n0)d

′

|u(n0)|

)(

|u(n0)|

d′

)µ

≥

[

min
|x|≤d′

F1(n0, x)

](

|u(n0)|

d′

)µ

≥ τ for u ∈ Θ. (3.35)

For any u ∈ E, it follows from (2.3) and Lemma 2.3 (ii) that

Π1
∑

n=−Π1

F2(n, u(n))

=
∑

n∈Z(−Π1,Π1), |u(n)|>1

F2(n, u(n)) +
∑

n∈Z(−Π1,Π1), |u(n)|≤1

F2(n, u(n))

≤
∑

n∈Z(−Π1,Π1), |u(n)|>1

F2

(

n,
u(n)

|u(n)|

)

|u(n)|̺

+

Π1
∑

n=−Π1

max
|x|≤1

|F2(n, x)|

≤ ‖u‖̺
∞

Π1
∑

n=−Π1

max
|x|=1

|F2(n, x)| +

Π1
∑

n=Π1

max
|x|≤1

|F2(n, x)|

≤ λ̺‖u‖̺
Π1
∑

n=−Π1

max
|x|=1

|F2(n, x)| +

Π1
∑

n=−Π1

max
|x|≤1

|F2(n, x)|

= M1‖u‖
̺ + M2, (3.36)

where

M1 = λ̺
Π1
∑

n=−Π1

max
|x|=1

|F2(n, x)|, M2 =

Π1
∑

n=−Π1

max
|x|≤1

|F2(n, x)|.
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From (3.3), (3.35), (3.36) and Lemma 2.3, we have for u ∈ Θ and σ > 1

I(σu) =
σδ+1

δ + 1
‖u‖δ+1 −

∑

n∈Z

F (n, σu(n))

=
σδ+1

δ + 1
‖u‖δ+1 +

∑

n∈Z

F2(n, σu(n)) −
∑

n∈Z

F1(n, σu(n))

≤
σδ+1

δ + 1
‖u‖δ+1 + σ̺

∑

n∈Z

F2(n, u(n)) − σµ
∑

n∈Z

F1(n, u(n))

=
σδ+1

δ + 1
‖u‖δ+1 + σ̺

∑

|n|>Π1

F2(n, u(n)) − σµ
∑

|n|>Π1

F1(n, u(n))

+σ̺
Π1
∑

n=−Π1

F2(n, u(n)) − σµ
Π1
∑

n=−Π1

F1(n, u(n))

≤
σδ+1

δ + 1
‖u‖δ+1 − σ̺

∑

|n|>Π1

F (n, u(n))

+σ̺
Π1
∑

n=−Π1

F2(n, u(n)) − σµ
Π1
∑

n=−Π1

F1(n, u(n))

≤
σδ+1

δ + 1
‖u‖δ+1 +

σ̺

2(δ + 1)

∑

|n|>Π1

q(n)|u(n)|δ+1 + σ̺(M1‖u‖
̺ + M2) − τσµ

≤
σδ+1

δ + 1
‖u‖δ+1 +

σ̺

2(δ + 1)
‖u‖δ+1 + σ̺(M1‖u‖

̺ + M2) − τσµ

=
(dσ)δ+1

δ + 1
+

dδ+1σ̺

2(δ + 1)
+ M1(dσ)̺ + M2σ

̺ − τσµ. (3.37)

Since µ > ̺ > δ + 1, we deduce that there is σ0 = σ0(d, M1, M2, τ) = σ0(E
′) > 1 such that

I(σu) < 0 for u ∈ Θ and σ ≥ σ0.

That is

I(u) < 0 for u ∈ E′ and ‖u‖ ≥ dσ0.

This shows that (iii) of Lemma 2.1 holds. By Lemma 2.1, I possesses an unbounded sequence {dk}k∈N of

critical values with dk = I(uk), where uk is such that I ′(uk) = 0 for k = 1, 2, . . .. If {‖uk‖}k∈N is bounded,

then there exists B > 0 such that

‖uk‖ ≤ B for k ∈ N. (3.38)

By a similar fashion for the proof of (3.2) and (3.3), for the given η in (3.2), there exists Π2 > 0 such that

|uk(n)| ≤ η for |n| ≥ Π2, k ∈ N. (3.39)
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Thus, from (2.1), (2.3), (3.3), (3.36) and (3.37), we have

1

δ + 1
‖uk‖

δ+1 = dk +
∑

n∈Z

F (n, uk(n))

= dk +
∑

|n|>Π2

F (n, uk(n)) +

Π2
∑

n=−Π2

F (n, uk(n))

≥ dk −
1

2(δ + 1)

∑

|n|>Π2

q(n)|uk(n)|δ+1 −

Π2
∑

n=−Π2

F2(n, uk(n))

≥ dk −
1

2(δ + 1)
‖uk‖

δ+1 −

Π2
∑

n=−Π2

max
|x|≤λB

|F2(n, x)|. (3.40)

It follows that

dk ≤
3

2(δ + 1)
‖uk‖

p +

Π2
∑

n=−Π2

max
|x|≤λB

|F2(n, x)| < +∞.

This contradicts to the fact that {dk}k∈N is unbounded, and so {‖uk‖}k∈N is unbounded.

Proof of Theorem 1.3. In the proof of Theorem 1.1, the condition that F2(n, x) ≥ 0 for (n, x) ∈

Z × R, |x| ≤ 1 in (F1’) is only used in the the proofs of assumption (ii) of Lemma 2.1. Therefore, we only

prove assumption (ii) of Lemma 2.1 still hold use (F1”) instead of (F1’). By (F1”), there exists η ∈ (0, 1)

such that

|f(n, x)| ≤
1

2
q(n)|x|δ for n ∈ Z \ J, |x| ≤ η. (3.41)

Since F (n, 0) = 0, it follows that

|F (n, x)| ≤
1

2(δ + 1)
q(n)|x|δ+1 for n ∈ Z \ J, |x| ≤ η. (3.42)

Set

M = sup

{

F1(n, x)

q(n)

∣

∣

∣

∣

n ∈ J, x ∈ R, |x| = 1

}

. (3.43)

Set δ = min{1/(2(δ + 1)M + 1)1/(µ−(δ+1)), η}. if ‖u‖ = ϑ/λ := ρ, then by (2.3), |u(n)| ≤ ϑ ≤ η < 1 for

n ∈ Z. By (3.43) and Lemma 2.3 (i), we have

∑

n∈J

F1(n, u(n)) ≤
∑

{n∈J, u(n) 6=0}

F1

(

n,
u(n)

|u(n)|

)

|u(n)|µ

≤ M
∑

n∈J

q(n)|u(n)|µ

≤ Mδµ−(δ+1)
∑

n∈J

q(n)|u(n)|δ+1

≤
1

2(δ + 1)

∑

n∈J

q(n)|u(n)|δ+1. (3.44)

Set

α =
ϑδ+1

2(δ + 1)λδ+1
.
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Hence, from (2.1), (3.42), (3.44) and (F1”), we have

I(u) =
1

δ + 1
‖u‖δ+1 −

∑

n∈Z

F (n, u(n))

=
1

δ + 1
‖u‖δ+1 −

∑

n∈Z\J

F (n, u(n)) −
∑

n∈J

F (n, u(n))

≥
1

δ + 1
‖u‖δ+1 −

1

2(δ + 1)

∑

n∈Z\J

q(n)|u(n)|δ+1 −
∑

n∈J

F1(n, u(n))

≥
1

δ + 1
‖u‖δ+1 −

1

2(δ + 1)

∑

n∈Z\J

q(n)|u(n)|δ+1 −
1

2(δ + 1)

∑

n∈J

q(n)|u(n)|δ+1

=
1

δ + 1

∑

n∈Z

|∆u(n − 1)|δ+1 −
1

2(δ + 1)

∑

n∈Z

q(n)|u(n)|δ+1

≥
1

2(δ + 1)

∑

n∈Z

[

|∆u(n − 1)|δ+1 + q(n)|u(n)|δ+1
]

=
1

2(δ + 1)
‖u‖δ+1

= α. (3.45)

(3.45) shows that ‖u‖ = ρ implies that I(u) ≥ α, i.e., I satisfies assumption (ii) of Lemma 2.1. It is obvious

that I is even and I(0) = 0 and so assumption (ii) of Lemma 2.1 holds. The proof of assumption (iii) of

Lemma 2.1 is the same as in the proof of Theorem 1.2, we omit its details.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. Consider the second-order difference equation

∆
[

p(n)(∆x(n − 1))
1
3

]

− q(n)(x(n))
1
3 + f(n, x(n)) = 0, (4.1)

where δ = 1
3 , q : Z → (0,∞) such that q(n) → +∞ as |n| → +∞, and

F (n, x) = q(n)(2 − cosn)|x|
4
3 ln(1 + |x|).

Since

xf(n, x) = q(n)(2 − cosn)

[

4

3
|x|

4
3 ln(1 + |x|) +

|x|
7
3

1 + |x|

]

≥

(

4

3
+

1

1 + |x|

)

F (n, x) ≥ 0, ∀ (n, x) ∈ Z × R.

This shows that (F1) holds with a = b = ν = 1. In addition, for any n ∈ Z

s−
4
3 min
|x|=1

F (n, sx) = s−
4
3 min
|x|=1

[

q(n)(2 − cosn)|sx|
4
3 ln(1 + |sx|)

]

= q(n)(2 − cosn) ln(1 + s)

→ +∞, s → +∞.

EJQTDE, 2012 No. 47, p. 15



This shows that (F3) also holds. It is easy to verify that assumptions (q) and (F1) of Theorem 1.1 are

satisfied. By Theorem 1.1, Eq. (1.1) has an unbounded sequence of homoclinic solutions.

Example 4.2. Consider the second-order difference equation

∆
[

p(n)(∆x(n − 1))3
]

− q(n)(x(n))3 + f(n, x(n)) = 0, (4.2)

where δ = 3, n ∈ Z, u ∈ R, q : Z → (0,∞) such that q(n) → +∞ as |n| → ∞. Let

F (n, x) = q(n)





m
∑

i=1

ai|x|
µi −

n
∑

j=1

bj |x|
̺j



 ,

where µ1 > µ2 > · · · > µm > ̺1 > ̺2 > · · · > ̺n > 4, ai, bj > 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n. Let

µ = µm, ̺ = ̺1, and

F1(n, x) = q(n)

m
∑

i=1

ai|x|
µi , F2(n, x) = q(n)

n
∑

j=1

bj |x|
̺j .

Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theorem 1.2, Eq. (1.1) has an

unbounded sequence of homoclinic solutions..

Example 4.3. Consider the second-order difference equation

∆
[

p(n)(∆x(n − 1))
11
5

]

− q(n)(x(n))
11
5 + f(n, x(n)) = 0, (4.3)

where δ = 11
5 , n ∈ Z, u ∈ R, q : Z → (0,∞) such that q(n) → +∞ as |n| → ∞. Let

F (n, x) = q(n) [a1|x|
µ1 + a2|x|

µ2 − (2 − |n|)|x|̺1 − (2 − |n|)|x|̺2 ] ,

where q : Z → (0,∞) such that q(n) → +∞ as |n| → +∞, µ1 > µ2 > ̺1 > ̺2 > 16
5 , a1, a2 > 0. Let

µ = µ2, ̺ = ̺1, J = {−2,−1, 0, 1, 2} and

F1(n, x) = q(n) (a1|x|
µ1 + a2|x|

µ2) , F2(n, x) = q(n) [(2 − |n|)|x|̺1 + (2 − |n|)|x|̺2 ] .

Then it is easy to verify that all conditions of Theorem 1.3 are satisfied. By Theorem 1.3, Eq.(1.1) has an

unbounded sequence of homoclinic solutions.
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