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Abstract

The method of quasilinearization for nonlinear impulsive differential equations
with linear boundary conditions is studied. The boundary conditions include periodic
boundary conditions. It is proved that the convergence is quadratic.
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1 Introduction

In this paper a boundary value problem (BVP) for impulsive differential equations
with a family of linear two point boundary conditions is studied. An existence theo-
rem is proved. An algorithm, based on methods of quasilinearization, for constructing
successive approximations of the solution of the considered problem is given. The
quadratic convergence of the iterates is proved. The obtained results are general-
izations of the known results for initial value problems as well as boundary value
problems for ordinary differential equations and impulsive differential equations.

The method of quasilinearization has recently been studied and extended exten-
sively. It is generating a rich history beginning with the works by Bellman and Kalaba
[1]. Lakshmikantham and Vatsala, and many co-authors have extensively developed
the method and have applied the method to a wide range of problems. We refer
the reader to the recent work by Lakshmikantham and Vatsala [9] and the extensive
bibliography found there. The method has been applied to two-point boundary value
problems for ordinary differential equations and we refer the reader to the papers,
[2, 3, 4, 8, 10, 11, 12], for example.

Likewise impulsive equations have been generating a rich history. We refer the
reader to the monograph by Lakshmikantham, Bainov, and Simeonov [6] for a thor-
ough introduction to the material and an introduction to the literature. Methods of
quasilinearization have been applied to impulsive differential equations with various
initial or boundary conditions. We refer the reader to [9] for references and we refer
the reader to [2, 3, 13] in our bibliography. In this paper, we consider a family of
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boundary value conditions that contain periodic boundary conditions. A quasilin-
earization method has been applied to problems with periodic boundary conditions,
[8]; to our knowledge, this is the first application to impulsive problems with periodic
boundary conditions.

2 Preliminary notes and definitions

Let the points τk ∈ (0, T ), k = 1, 2, ..., p be such that

τk+1 > τk, k = 1, 2, . . . , p − 1.

Consider the nonlinear impulsive differential equation (BVP)

x′ = f(t, x(t)) for t ∈ [0, T ], t 6= τk, (1)

x(τk + 0) = Ik(x(τk)), k = 1, 2, . . . , p (2)

with the linear boundary value condition

Mx(0) − Nx(T ) = c, (3)

where x ∈ R, f : [0, T ]×R → R, Ik : R → R, (k = 1, 2, . . . , p), c, M, N are constants.

We consider the set PC(X, Y ) of all functions u : X → Y, (X ⊂ R, Y ⊂ R)
which are piecewise continuous in X with points of discontinuity of first kind at
the points τk ∈ X, i.e. there exist the limits limt↓τk

u(t) = u(τk + 0) < ∞ and
limt↑τk

u(t) = u(τk − 0) = u(τk).

We consider the set PC1(X, Y ) of all functions u ∈ PC(X, Y ) that are continu-
ously differentiable for t ∈ X, t 6= τk.

Definition 1 . The function α(t) ∈ PC1([0, T ],R) is called a lower solution of the
BVP (1)-(3), if the following inequalities are satisfied:

α′(t) ≤ f(t, α(t)) for t ∈ [0, T ], t 6= τk, (4)

α(τk + 0) ≤ Ik(α(τk)), k = 1, 2, . . . , p (5)

Mα(0) − Nα(T ) ≤ c. (6)

Definition 2 . The function β(t) ∈ PC1([0, T ],R) is called an upper solution of the
BVP (1)-(3), if the inequalities (4), (5), (6) are satisfied in the opposite direction.

Let the functions α, β ∈ PC([0, T ],R) be such that α(t) ≤ β(t).

Consider the sets:

S(α, β) = {u ∈ PC([0, T ],R) : α(t) ≤ u(t) ≤ β(t) for t ∈ [0, T ]},

Ω(α, β) = {(t, x) ∈ [0, T ] × R : α(t) ≤ x ≤ β(t)},

Dk(α, β) = {x ∈ R : α(τk) ≤ x ≤ β(τk)}, k = 1, 2, . . . , p.
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Consider the linear boundary value problem for the linear impulsive differential
equation (LBVP)

u′(t) = g(t)u(t) + σ(t), t ∈ [0, T ], t 6= τk (7)

u(τk + 0) = bku(τk) + γk, k = 1, 2, . . . , p (8)

Mu(0) − Nu(T ) = 0. (9)

Using the results for the initial value problem for the linear impulsive differential
equation (7),(8) (Corollary 1.6.1 [6] ) we can easily prove the following existence result
for the LBVP (7), (8), (9) and obtain the formula for the solution.

Lemma 2.1 . Let the functions g, σ ∈ PC([0, T ],R) and M, N, bk, γk, (k = 1, 2, . . . p)

be constants such that N(
∏p

k=1 bk)exp
(

∫ T
0 g(s)ds

)

6= M .

Then the LBVP (7), (8), (9) has a unique solution u(t) on the interval [0, T ],
where

u(t) = u(0)
(

∏

0<τk<t

bj

)

exp(
∫ t

0
g(τ)dτ)

+
∑

0<τk<t

γk

(

∏

τk<τj<t

bj

)

exp(
∫ t

τk

g(τ)dτ)ds

+
∫ t

0
σ(s)

(

∏

s<τk<t

bk

)

exp(
∫ t

s
g(τ)dτ)ds,

τ0 = 0, b0 = 1,
n

∏

j=k

f(j) = 1 for k > n,

u(0) =
[

1 −
N

M

(

p
∏

k=1

bk

)

exp
(

∫ T

0
g(s)ds

)]−1

×
{

p
∑

i=1

γi

(

p
∏

j=i+1

bj

)

exp(
∫ T

τi

g(τ)dτ)ds

+
∫ T

0
σ(s)

(

∏

s<τj<T

bj

)

exp(
∫ T

s
g(τ)dτ)

}

.

We will need the following results for differential inequalities.

Lemma 2.2 (Theorem 1.4.1 [6]). Let the following conditions be satisfied:

1. u, g, σ ∈ PC([0, T ],R).

2.The function m ∈ PC1[R+,R] and

m′(t) ≤ p(t)m(t) + q(t), t ∈ [0, T ], t 6= τk

m(τk + 0) ≤ dku(τk) + bk, k = 1, 2, . . . , p,
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where dk, bk (k = 1, 2, . . . , p) are constants, dk ≥ 0, p, q ∈ C[R+,R].

Then for t ≥ 0 the inequality

m(t) ≤ m(0)
(

∏

0<τk<t

dj

)

exp(
∫ t

0
p(τ)dτ)

+
∑

0<τk<t

bk

(

∏

τk<τj<t

dj

)

exp(
∫ t

τk

p(τ)dτ)ds

+
∫ t

0

(

∏

s<τk<t

dk

)

exp(
∫ t

s
p(τ)dτ)q(s)ds

is valid.

In the proof of the main results we will use the following comparison result.

Lemma 2.3 . Assume that the function m ∈ PC1([0, T ],R) satisfies the inequalities

m′(t) ≤ φ(t)m(t), t ∈ [0, T ], t 6= tk, (10)

m(tk + 0) ≤ αkm(tk), k = 1, 2, . . . , p (11)

Mm(0) − Nm(T ) ≤ 0, (12)

where αk ≥ 0, M > 0, N ≥ 0 are constants such that

M − N(
p

∏

k=1

αk)exp
(

∫ T

0
φ(s)ds

)

> 0. (13)

Then m(t) ≤ 0 for t ∈ [0, T ].

Proof:According to Lemma 2.2 the function m(t) satisfies the inequality

m(t) ≤ m(0)
(

∏

k:0<tk<t

αk

)

exp
(

∫ t

0
φ(s)ds

)

for t ∈ [0, T ]. (14)

From inequality (12) we have

m(0) ≤
N

M
m(T )

and therefore

m(0) ≤
N

M
m(0)

(

p
∏

k=1

αk

)

exp(
∫ T

0
φ(s)ds). (15)

From the inequalities (13) and (15) it follows that m(0) ≤ 0. Therefore according to
(14) the inequality m(t) ≤ 0 holds for t ∈ [0, T ].

As a partial case of Lemma 2.3 we obtain the following result:
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Corollary 1 . Let the function m ∈ PC1([0, T ],R) satisfies the inequalities (10) -
(12), where

∫ T
0 φ(s)ds ≤ 0, 0 ≤ αk < 1 and M > 0, N ≥ 0, M ≥ N.

Then the function m(t) is nonpositive on the interval [0, T ].

3 Main Results

We will obtain sufficient conditions for existence of a solution of the BVP (1)-(3). The
obtained result will be useful not only for the proof of the method of quasilinearization
but for different qualitative investigation of nonlinear boundary value problem for
impulsive differential equations.

Theorem 3.1 . Let the following conditions be fulfilled:

1. The functions α, β ∈ PC1([0, T ],R) are lower and upper solutions of the BVP
(1)-(3) and α(t) ≤ β(t) for t ∈ [0, T ].

2. The function f ∈ C(Ω(α, β),R).

3. The functions Ik : Dk(α, β) → R, (k = 1, 2, . . .) are nondecreasing in Dk(α, β).

4. The constants M > 0, N ≥ 0.

Then the BVP (1)-(3) has a solution u ∈ S(α, β).

Proof:Without loss of generality we will consider the case when p = 1, i.e. 0 <

t1 < T . Let x0 be an arbitrary point such that α(0) ≤ x0 ≤ β(0). Define a function
F : [0, T ] × R → R by the equality

F (t, x) =















f(t, β(t)) + β(t)−x

1+|x|
for x > β(t)

f(t, x) for α(t) ≤ x ≤ β(t)

f(t, α(t)) + α(t)−x

1+|x|
for x < α(t).

From the condition 2 of the Theorem 3.1 it follows that the function f(t, x) is
bounded on S(α, β) and therefore there exists a function µ ∈ C([0, T ], [0,∞)) such
that sup{|F (t, x)| : x ∈ R} ≤ µ(t) for t ∈ [0, T ].

Therefore, the initial value problem for the ordinary differential equation x′ =
F (t, x), x(0) = x0 has a solution X(t; x0) for t ∈ [0, t1].

Consider the function m(t) = X(t; x0) − β(t). We will prove that the function
m(t) is non-positive on [0, t1]. Assume the opposite, i.e. sup{m(t) : t ∈ [0, t1]} > 0.
Therefore, there exists a point t∗ ∈ (0, t1) such that m(t∗) > 0 and m′(t∗) ≥ 0. From
the definition of the function X(t; x0) it also follows that

m′(t∗) ≤ f(t∗, β(t∗)) +
β(t∗) − X(t∗; x0)

1 + |X(t∗; x0)|
− f(t∗, β(t∗)) =

−m(t∗)

1 + |X(t∗; x0)|
< 0.
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According to the obtained contradiction, the assumption is not true. Therefore,

X(t; x0) ≤ β(t), t ∈ [0, t1].

Analogously, we can prove that X(t; x0) ≥ α(t), t ∈ [0, t1].

Let y0 = I1(X(t1; x0)). We note that y0 depends on x0. From the monotonicity
of the function I1(x) we obtain

α(t1 + 0) ≤ I1(α(t1)) ≤ I1(X(t1; x0)) ≤ I1(β(t1)) ≤ β(t1 + 0),

i.e.

α(t1 + 0) ≤ y0 ≤ β(t1 + 0).

Consider the initial value problem for the ordinary differential equation x′ =
F (t, x), x(t1) = y0 for t ∈ [t1, T ]. This initial value problem has a solution Y (t; y0)
for t ∈ [t1, T ]. Using the same ideas as above we can prove that the inequalities
α(t) ≤ Y (t; y0) ≤ β(t) for t ∈ [t1, T ] hold. At the same time Y (t1; y0) = I1(X(t1; x0)).

Define the function

x(t; x0) =

{

X(t; x0) for t ∈ [0, t1]
Y (t; y0) for t ∈ (t1, T ].

The function x(t; x0) ∈ S(α, β) is a solution of the impulsive differential equation
(1), (2) with the initial condition x(0) = x0.

From the inequality α(t) ≤ β(t) for t ∈ [0, T ] it follows that the following two
cases are possible:

Case 1. Let α(0) = β(0). Then x0 = α(0) = β(0). Therefore

Mx(0; x0) − Nx(T ; x0) = Mx0 − Nx(T ; x0) ≤ Mα(0) − Nα(T ) ≤ c

and

Mx(0; x0) − Nx(T ; x0) ≥ Mx0 − Nβ(T ) ≥ c.

Therefore Mx(0; x0) − Nx(T ; x0)) = c, i.e. the function x(t; x0) is a solution of the
BVP (1)-(3).

Case 2. Let α(0) < β(0). We will prove that there exists a point x0 ∈ [α(0), β(0)]
such that the solution x(t; x0) of the impulsive differential equation (1), (2) with
initial condition x(0) = x0 satisfies the boundary condition (3). Assume the opposite,
i.e. for every point x0 ∈ [α(0), β(0)] the inequality Mx(0; x0)−Nx(T ; x0)) 6= c holds,
where x(t; x0) is the solution of the impulsive equation (1),(2).

If x0 = β(0) then from the relation x(t; x0) ∈ S(α, β) we obtain that

Mx(0; x0) − Nx(T ; x0)) = Mβ(0) − Nx(T ; x0) ≥ Mβ(0) − Nβ(T ) ≥ c.
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According to the assumption and the above inequality we obtain

Mx(0; x0) − Nx(T ; x0) > c. (16)

Then there exists a number δ : 0 < δ < β(0) − α(0), such that for x0 : 0 ≤
β(0)−x0 < δ the corresponding solution x(t; x0) of the impulsive differential equation
(1), (2) satisfies the inequality

Mx(0; x0) − Nx(T ; x0) > c. (17)

Indeed, assume that for every natural number n there exists a point zn : 0 ≤
β(0)−zn < 1

n
such that the corresponding solution x(n)(t; zn) of the impulsive equation

(1),(2) with the initial condition x(0) = zn satisfies the inequality

Mx(n)(0; zn) − Nx(n)(T ; zn) < c.

Let {znj
} is a subsequence such that limj→∞znj

= β(0) and limj→∞x(nj)(t; znj
) =

x(t) uniformly on the intervals [0, t1] and (t1, T ]. The function x(t) is a solution of
the impulsive differential equation (1), (2) such that x(0) = β(0), x(t) ∈ S(α, β) and

Mx(0) − Nx(T ) ≤ c. (18)

The inequality (18) contradicts the inequality (16) and therefore the assumption
is not true.

Let

δ∗ = sup{δ ∈ (0, β(0) − α(0)] : for which there exists a point x0 ∈ (β(0) − δ, β(0)]

such that the solution x(t; x0) satisfies the inequality (17)}.

Choose a sequence of points xn ∈ (α(0), β(0)− δ∗) such that limn→∞ xn = β(0)−
δ∗. From the choice of δ∗ and the assumption it follows that the corresponding
solutions x(n)(t; xn) satisfy the inequality

Mx(n)(0; xn) − Nx(n)(T ; xn) < c.

There exists a subsequence {xnj
}∞0 of the sequence {xn}

∞
0 such that

limj→∞ x(nj )(t; xnj
) = x∗(t) uniformly on the intervals [0, t1] and (t1, T ]. The

function x∗(t) ∈ S(α, β) is a solution of the impulsive equation (1), (2) with the
initial condition x(0) = β(0) − δ∗ and satisfies the inequality Mx∗(0) − Nx∗(T ) ≤ c.
The last inequality contradicts the choice of δ∗.

Therefore, there exists a point x0 ∈ [α(0), β(0)] such that the solution x(t; x0) of
the impulsive differential equation (1), (2) satisfies the condition (3), i.e. the function
x(t; x0) is a solution of the BVP (1), (2), (3). This completes the proof of Theorem
3.1.
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We will construct the method of quasilinearization to approximate the solution
of the BVP (1), (2), (3). We will prove that the convergence of the successive ap-
proximations is quadratic.

Theorem 3.2 Let the following conditions hold:

1. The functions α0(t), β0(t) are lower and upper solutions of the BVP (1), (2), (3)
and α0(t) ≤ β0(t) for t ∈ [0, T ].

2. The function f ∈ C0,2(Ω(α0, β0),R) and there exist two functions

F, g ∈ C0,2(Ω(α0, β0),R) such that F (t, x) = f(t, x) + g(t, x), F ′′
xx(t, x) ≥ 0,

g′′
xx(t, x) ≥ 0,

∫ T

0
[F ′

x(s, β0(s)) − g′
x(s, α0(s))]ds < 0.

3. The functions Ik ∈ C2(Dk(α0, β0),R), k = 1, 2, . . . , p, and there exist functions
Gk, Jk ∈ C2(Dk(α0, β0),R) such that Gk(x) = Ik(x) + Jk(x), G′′

k(x) ≥ 0, J ′′
k (x) ≥ 0,

G′
k(β0(τk)) − J ′

k(α0(τk)) < 1,

G′
k(α0(τk)) − J ′

k(β0(τk)) ≥ 0.

4. The constants M > 0, N ≥ 0, M ≥ N .

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 such that:

a. The sequences are increasing and decreasing respectively.

b. The functions αn(t) are lower solutions and the functions βn(t) are upper
solutions of the BVP (1), (2), (3).

c. Both sequences are uniformly convergent on the intervals (τk, τk+1], for k =
0, 1, 2, . . . , p, to the unique solution of the BVP (1), (2), (3) in S(α0, β0).

d. The convergence is quadratic.

Proof:From the condition 2 of Theorem 3.2 it follows that if (t, x1), (t, x2) ∈ Ω(α0, β0)
and x1 ≥ x2 then

f(t, x1) ≥ f(t, x2) + F ′
x(t, x2)(x1 − x2) + g(t, x2) − g(t, x1), (19)

g(t, x1) ≥ g(t, x2) + g′
x(t, x2)(x1 − x2). (20)

From the condition 3 of Theorem 3.2 it follows that if x1 ≥ x2, x1, x2 ∈ Dk(α0, β0),
then

Ik(x1) ≥ Ik(x2) + G′
k(x2)(x1 − x2) + Jk(x2) − Jk(x1), (21)

and
Gk(x1) ≥ Gk(x2) + G′

k(x2)(x1 − x2). (22)

From the condition 3 it follows that the functions G′
k(x) and J ′

k(x) are nondecreas-
ing in Dk(αo, β0). Therefore for x ∈ Dk(α0, β0) the inequality I ′

k(x) = G′
k(x)−J ′

k(x) ≥

EJQTDE, 2002 No. 10, p. 8



G′
k(α0(τk)) − J ′

k(β0(τk)) ≥ 0 holds, which proves that the functions Ik(x) are nonde-
creasing, k = 1, 2, . . . , p.

According to Theorem 3.1 the BVP (1), (2), (3) has a solution in S(α0, β0).

We consider the linear boundary value problem for the impulsive linear differential
equation (LBVP)

x′(t) = f(t, α0(t)) + Q0(t)(x − α0(t)) for t ∈ [0, T ], t 6= τk, (23)

x(τk + 0) = Ik(α0(τk)) + B0
k[x(τk) − α0(τ0)], (24)

Mx(0) − Nx(T ) = c, (25)

where

Q0(t) = F ′
x(t, α0(t)) − g′

x(t, β0(t)),

B0
k = G′

k(α0(τk)) − J ′
k(β0(τk)), k = 1, 2, . . . , p.

It is easy to verify that the function α0(t) is a lower solution of the LBVP (23),
(24), (25).

According to the condition 1 of Theorem 3.2, inequalities (19) and (21) we obtain
the inequalities

β ′
0(t) ≥ f(t, α0(t)) + Q0(t)(β0(t) − α0(t))

−[F (t, α0(t)) − F (t, β0(t)) + F ′
x(t, α0(t))(β0(t) − α0(t))]

+g(t, α0(t)) − g(t, β0(t)) + g
′

x(t, β0(t))(α0(t) − β0(t))

≥ f(t, α0(t)) + Q0(t)(β0(t) − α0(t)) for t ∈ [0, T ], t 6= τk, (26)

β0(τk + 0) ≥ Ik(α0(τk)) + [Ik(β0(τk)) − Ik(α0(τk))]

≥ Ik(α0(τk)) + [G′
k(α0(τk)) − J ′

k(β0(τk))](β0(τk) − α0(τk))

≥ Ik(α0(τk)) + B0
k(β0(τk) − α0(τk)). (27)

From the inequalities (26), (27) it follows that the function β0(t) is an upper
solution of the LBVP (23), (24), (25).

According to the Lemma 2.1 the LBVP (23), (24), (25) has a unique solution
α1(t) ∈ S(α0, β0).

We consider the linear boundary value problem for the impulsive linear differential
equation (LBVP)

x′(t) = f(t, β0(t)) + Q0(t)(x(t) − β0(t)) for t ∈ [0, T ], t 6= τk, (28)

x(τk + 0) = Ik(β0(τk)) + B0
k(x(τk) − β0(τk)), (29)

Mx(0) − Mx(T ) = c. (30)

The functions α0(t) and β0(t) are lower and upper solutions of the LBVP (28), (29),
(30) and according to Lemma 2.1 there exists a unique solution β1(t) ∈ S(α0, β0).
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We will prove that α1(t) ≤ β1(t) for t ∈ [0, T ].

Define the function u(t) = α1(t) − β1(t) for t ∈ [0, T ]. From the choice of the
functions α1(t) and β1(t) and the inequality (20) we obtain that the function u(t)
satisfies the inequalities

u′ = f(t, α0(t)) − f(t, β0(t)) + Q0(t)u(t) + Q0(t)(β0(t) − α0(t))

≤ Q0(t)u(t) for t ∈ [0, T ], t 6= τk. (31)

According to the inequality (21) for x2 = β0(tk) and x1 = α0(tk) and the definition
of the functions α1, β1 we obtain

u(τk + 0) ≤ Ik(α0(τk)) − Ik(β0(τk)) + B0
ku(τk) + B0

k[β0(τk) − α0(τk)]

≤ B0
ku(τk). (32)

From the boundary value condition for the functions α1, β1 and the condition 4 we
obtain the inequality

Mu(0) − Nu(T ) = Mα1(0) − Nα1(T ) − (Mβ1(0) − Nβ1(T )) = c − c = 0. (33)

From the inequalities (31), (32) and boundary condition (33), according to Lemma
2.3, the function u(t) is non-positive, i.e. α1(t) ≤ β1(t).

The function α1(t) is a lower solution of the BVP (1), (2), (3). Indeed, for
t ∈ [0, T ], t 6= τk,

α′
1 ≤ f(t, α1(t)) + F ′

x(t, α0(t))(α0(t) − α1(t))

−g(t, α0(t)) + g(t, α1(t)) + Q0(t)(α1(t) − α0(t)) (34)

≤ f(t, α1(t)).

From the inequality (21) and the choice of the function α1(t) we obtain the
inequalities

α1(τk + 0) ≤ Ik(α1(τk)) + [G′
k(α0(τk)) − J ′

k(α1(τk))

−B0
k](α0(τk) − α1(τk))

≤ Ik(α1(τk)) − [J ′
k(α0(τk)) − J ′

k(β0(τk))](α0(τk) − α1(τk))

≤ Ik(α1(τk)), k = 1, 2, . . . , p. (35)

From the inequalities (34), (35) and the boundary condition for the function α1(t)
it follows that the function α1(t) is a lower solution of the BVP (1), (2), (3).

Analogously, it can be proved that the function β1(t) is an upper solution of the
BVP (1), (2), (3).

By this way we can construct two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 ,
αn, βn ∈ S(αn−1, βn−1). The function αn+1(t) is the unique solution of the linear
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boundary value problem for the impulsive linear differential equation (LBVP)

x′(t) = f(t, αn(t)) + Qn(t)(x − αn(t)) for t ∈ [0, T ], t 6= τk, (36)

x(τk + 0) = Ik(αn(τk)) + Bn
k (x(τk) − αn(τk)), (37)

Mx(0) − Nx(T ) = c (38)

and the function βn+1(t) is the unique solution of the linear boundary value problem
for the impulsive linear differential equation (LBVP)

x′(t) = f(t, βn(t)) + Qn(t)(x − βn(t)) for t ∈ [0, T ], t 6= τk, (39)

x(τk + 0) = Ik(βn(τk)) + Bn
k (x(τk) − βn(τk)), (40)

Mx(0) − Nx(T ) = c, (41)

where
Qn(t) = F ′

x(t, αn(t)) − g′
x(t, βn(t)),

Bn
k = G′

k(αn(τk)) − J ′
k(βn(τk)).

As in the case n = 0 it can be proved that the functions αn+1(t) and βn+1(t) are
lower and upper solutions of the BVP (1), (2), (3) and the inequalities

α0(t) ≤ α1(t) ≤ . . . ≤ αn(t) ≤ βn(t) ≤ . . . ≤ β0(t) (42)

hold.

Therefore, the sequences {αn(t)}∞0 and {βn(t)}∞0 are uniformly bounded and
equi-continuous on the intervals (τk, τk+1], k = 0, 1, 2, . . . , p and they are uniformly
convergent.

Denote
lim

n→∞
αn(t) = u(t), lim

n→∞
βn(t) = v(t).

From the uniform convergence and the definition of the functions αn(t) and βn(t) it
follows that

α0(t) ≤ u(t) ≤ v(t) ≤ β0(t). (43)

From the LBPVPs (36)-(38) and (39)-(41) we obtain that the functions u(t) and v(t)
are solutions of the BVP (1), (2), (3) in S(α0, β0) and therefore u(t) = v(t).

We will prove the convergence is quadratic.

Define the functions an+1(t) = u(t) − αn+1(t) and bn+1(t) = βn+1(t) − u(t), t ∈
[0, T ]. For t ∈ [0, T ], t 6= τk we obtain the inequalities

a′
n+1 ≤ Qn(t)an+1(t) + [F ′

x(t, u(t)) − g′
x(t, αn(t)) − Qn(t)]an(t)

= Qn(t)an+1(t) + F ′′
xx(t, ξ1)a

2
n(t)

+g′′
xx(t, η1)an(t)(βn(t) − αn(t)) (44)

where u(t) ≤ ξ1 ≤ αn(t), αn(t) ≤ η1 ≤ βn(t).
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It is easy to verify that the inequality

an(t)(βn(t) − αn(t)) = an(t)(bn(t) + an(t)) ≤
1

2
b2
n(t) +

3

2
a2

n(t). (45)

From the inequalities (44) and (45) it follows that for t ∈ [0, T ], t 6= τk the
inequality

a′
n+1(t) ≤ Qn(t)an+1(t) + σn(t), (46)

holds, where

σn(t) = [F ′′
xx(t, ξ1) +

3

2
g′′

xx(t, η1)]a
2
n +

1

2
g′′

xx(t, η1)b
2
n.

Analogously, it can be proved that

an+1(τk + 0) ≤ Bn
k an+1(τk) + γk, (47)

where

γk = [G′′
k(ωk) +

3

2
J ′′

k (νk)]a
2
n(τk) +

1

2
J ′′

k (νk)b
2
n(τk),

αn(τk) ≤ ωk ≤ u(τk), αn(τk) ≤ κk ≤ βn(τk), k = 1, 2, . . . , p.

From the boundary conditions for the functions u(t) and αn(t) we obtain the equality

Man+1(0) − Nan+1(T ) = 0. (48)

From the inequalities (46), (47) according to Lemma 2.2 it follows that the function
an+1(t) satisfies the estimate

an+1(t) ≤ an+1(0)
(

∏

0<τk<t

Bn
k

)

exp(
∫ t

0
Qn(τ)dτ)

+
∑

0<τk<t

γk

(

∏

τk<τj<t

Bn
j

)

exp(
∫ t

τk

Qn(τ)dτ)ds

+
∫ t

0
σn(s)

(

∏

s<τk<t

Bn
k

)

exp(
∫ t

s
Qn(τ)dτ)ds. (49)

From the boundary condition (48) we have an+1(0) = N
M

an+1(T ) and therefore

an+1(0) ≤
[

1 −
N

M

(

p
∏

k=1

Bn
k

)

exp
(

∫ T

0
Qn(s)ds

)]−1

×
{

p
∑

i=0

γi

(

p
∏

j=i+1

Bn
j exp(

∫ T

τi

Qn(τ)dτ)ds

+
∫ T

0
σn(s)

(

∏

s<τj<T

Bn
j

)

exp(
∫ T

s
Qn(τ)dτ). (50)
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From the properties of the functions F (t, x) and g(t, x), the definition of σn(t)
and the inequalities (49), (50) it follows that there exist constants λ1 > 0 and λ2 > 0
such that

||an+1|| ≤ λ1||an||
2 + λ2||bn||

2. (51)

Analogously, it can be proved that there exists constants µ1 > 0 and µ2 > 0 such
that

||bn+1|| ≤ µ1||bn||
2 + µ2||an||

2. (52)

The inequalities (51) and (52) prove that the convergence is quadratic.

Remark 1 In the case when N = 0 the BVP (1), (2), (3) is reduced to an initial
value problem for impulsive differential equations for which the quasilinearization is
applied in [9].

In the case when M = 1, N = 1, c = 0 the BVP (1), (2), (3) is reduced to the
periodic boundary value problem for an impulsive differential equations.

We also note that some of the results for ordinary differential equations, obtained
in [5, 7, 8, 9] are partial cases of the obtained results when Ik(x) = x.
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