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CRITICALITY OF ONE TERM 2n-ORDER SELF-ADJOINT

DIFFERENTIAL EQUATIONS

MICHAL VESELÝ* AND PETR HASIL

Abstract. We analyse the criticality (the existence of linearly dependent prin-
cipal solutions at ∞ and −∞) of the one term 2n-order differential equation
(ry(n))(n) = 0. Using the structure of the principal and the non-principal sys-
tem of solutions, we find the equivalent conditions of subcriticality and at least
p-criticality of this equation.

1. Introduction

In this paper, we deal with the differential equation

(1.1)
[

r(x)y(n)(x)
](n)

= 0,

where r(x) > 0, x ∈ R, and r−1 ∈ Lloc(R). Eq. (1.1) appears as a base for
perturbations in the oscillation theory, i.e., the studied equations are regarded as
perturbations of Eq. (1.1). It is shown that certain properties of Eq. (1.1) are
preserved or lost by perturbations. Therefore, it is useful to know as much as
possible about Eq. (1.1) (to analyse its properties), see, e.g., [1, 3, 4, 5, 6, 7, 9,
10, 16]. Typical example of this approach is the investigation of the self-adjoint
differential equation

(1.2)

n
∑

k=0

(−1)k
[

rk(x)y(k)(x)
](k)

= 0,

where it is assumed that one term is dominant (in a certain sense) and Eq. (1.2) is
viewed as a perturbation of this term, which is in fact Eq. (1.1), see, e.g., [11, 15].

Our paper is motivated by results presented in [10], where the principal and
non-principal systems of solutions of Eq. (1.1) are studied and then used for the
conjugacy criterion of the two term equation

(1.3) (−1)n
[

r(x)y(n)(x)
](n)

+ s(x)y(x) = 0,
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which is viewed as a perturbation of Eq. (1.1). Similar use of Eq. (1.1) for the
investigation of Eq. (1.3) can be found, e.g., in [3, 4]. Note that the method based
on the concept of the principal system was introduced in [3]. We are also motivated
by [13, 14], where the difference equation ∆n(rk∆

nyk) = 0 is investigated.
The paper is organized as follows. For the reader’s convenience, we recall neces-

sary preliminaries and state the background for our work including the concept of
p-criticality in Section 2. Then, in Section 3, we prove the equivalent conditions
of subcriticality and at least p-criticality of Eq. (1.1).

2. Preliminaries

Let us consider Eq. (1.2) with rn(x) > 0, x ∈ R, and r0, . . . , rn−1, r
−1
n ∈ Lloc(R).

We say that points x1, x2 ∈ R are conjugate relative to Eq. (1.2) if there exists a
non-trivial solution y of this equation for which

y(i) (x1) = 0 = y(i) (x2) , i ∈ {0, . . . , n − 1}.

Eq. (1.2) is conjugate on an interval I ⊆ R if I contains a pair of points, which
are conjugate relative to Eq. (1.2); in the opposite case, Eq. (1.2) is disconjugate
on I.

Since the most comfortable and the most widely used definition of (non-)princi-
pal solutions of Eq. (1.2) is via linear Hamiltonian systems, we recall this notion.
See, e.g., [2, 18]. The substitution

u[y] =









y
y′

...
y(n−1)









, v[y] =











∑n

k=1(−1)k−1
(

rky
(k)

)(k−1)

...
−(rny(n))′ + rn−1y

(n−1)

rny(n)











transforms Eq. (1.2) to the linear Hamiltonian system

(2.1) u′(x) = Au(x) + B(x)v(x), v′(x) = C(x)u(x) − AT v(x),

where the n × n matrices A, B(x), and C(x) are given by the formulas

(2.2)

A = (aij)
n
i,j=1, aij =

{

1, j = i + 1, i = 1, . . . , n − 1,

0, elsewhere,

B(x) = diag

{

0, . . . , 0,
1

rn(x)

}

, C(x) = diag {r0(x), . . . , rn−1(x)} .

We will say that the solution
(

u[y], v[y]
)

of system (2.1) is generated by the solution
y of Eq. (1.2).

Along with system (2.1), we consider the matrix system

(2.3) U ′(x) = AU(x) + B(x)V (x), V ′(x) = C(x)U(x) − AT V (x),
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where A, B(x), C(x) are as in (2.2). We will also say that the matrix solution
(U, V ) of system (2.3) is generated by the solutions y1, . . . , yn of Eq. (1.2) if its
columns are generated by y1, . . . , yn. A solution (U, V ) of system (2.3) is called
isotropic if UT V − V T U ≡ 0. (In the literature, there is, instead of ‘isotropic’
from [2], also used ‘prepared’, ‘self-conjugate’, or ‘self-conjoined’ – see [9] and the
references cited therein.)

An isotropic solution (U, V ) of system (2.3) is said to be principal at ∞ if U is
non-singular on [a,∞) for some a ∈ R and there exists a solution (Ũ , Ṽ ), linearly

independent of (U, V ), such that Ũ is non-singular on [a,∞) and it is valid

lim
x→∞

Ũ−1(x)U(x) = 0.

A solution (Ũ , Ṽ ), linearly independent of the principal solution, is called non-

principal at ∞. Note that isotropic solutions (U, V ), (Ũ , Ṽ ) are linearly indepen-
dent if and only if the constant matrix UT (x)Ṽ (x) − V T (x)Ũ(x) is non-singular.
Another characterization of the principal solution is that it is an isotropic solution
(U, V ) for which U is non-singular on an interval [a,∞) and

lim
x→∞





x
∫

a

U−1(s)B(s)UT−1(s) ds





−1

= 0.

We remark that the principal solution is determined uniquely up to the right
multiple by a constant non-singular matrix. Concerning Eq. (1.2), a system of
solutions y1, . . . , yn form a principal (non-principal) system of solutions at ∞ if
the corresponding solution

(U, V ) =
(

u[y1], . . . , u[yn], v[y1], . . . , v[yn]
)

of system (2.3) is principal (non-principal) at ∞. The definition of the principal
and non-principal solutions at −∞ is analogous.

Now we can introduce the concept of p-criticality for Eq. (1.2), hence for
Eq. (1.1). For the discrete counterpart, we refer to [8]; for the concept of a
critical operator, see [12]. Suppose that Eq. (1.2) is disconjugate on R. Let yi and
ỹi be the principal systems of solutions of Eq. (1.2) at ∞ and −∞, respectively.
We consider the linear space

H = Lin {y1, . . . , yn} ∩ Lin {ỹ1, . . . , ỹn} .

Eq. (1.2) is called p-critical (on R) if dimH = p ∈ {1, . . . , n}, and Eq. (1.2) is
called subcritical (on R) if dimH = 0. Note that Eq. (1.2) is called supercritical
(on R) in the case, when it is conjugate on R.

To formulate an important tool for our results, we have to mention the notion
of the Markov system of solutions and another approach to disconjugacy, which
deal with the linear differential equation

(2.4) y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q0(x)y(x) = 0.
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A system of solutions y1, . . . , yn of Eq. (2.4) forms the Markov system of solutions
on an interval I ⊆ R if the Wronskians

W (y1, . . . , yk) =

∣

∣

∣

∣

∣

∣

∣

y1 · · · yk

...
...

y
(k−1)
1 · · · y

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

, k ∈ {1, . . . , n},

are positive on I. The following definition of disconjugacy of Eq. (2.4) has been
introduced by Z. Nehari (see [17]), so this concept is denoted as N-disconjugacy.
We say that Eq. (2.4) is N-disconjugate on an interval I ⊆ R if no non-trivial
solution y of Eq. (2.4) has more than n − 1 zeros on I (multiplicity counted).

3. Results

This section is devoted to the study of criticality of Eq. (1.1). First, we recall
the types of solutions of Eq. (1.1). A solution y is called polynomial if y(n) ≡ 0,
and a solution y is non-polynomial if y(n)(x) 6= 0 for some x ∈ R. Eq. (1.1)
possesses n linearly independent polynomial solutions

(3.1) y
[p]
i (x) = xi−1, i ∈ {1, . . . , n},

and n linearly independent non-polynomial solutions

(3.2) y
[n]
i (x) =

x
∫

0

(x − t)n−1ti−1r−1(t) dt, i ∈ {1, . . . , n},

where x ∈ R. It is seen that Eq. (1.1) is disconjugate and N-disconjugate on R.
Now we recall two known results. Their proofs may be found in [2, Chapter 3]

(and their formulations are taken from [10]).

Lemma 1. Eq. (2.4) is N-disconjugate on an interval I = (a,∞) ⊆ R if and only
if there exists the Markov system of solutions of Eq. (2.4) on I. This system can
be found in such a way that it satisfies the additional conditions

yi(x) > 0, x ∈ (a,∞), i ∈ {1, . . . , n},

lim
x→∞

yk(x)

yk+1(x)
= 0, k ∈ {1, . . . , n − 1}.

Lemma 2. Let y1, . . . , y2n be the linearly independent solutions of Eq. (1.2) with
the property that

lim
x→∞

yk(x)

yk+1(x)
= 0, k ∈ {1, . . . , 2n − 1}.

Then y1, . . . , yn form the principal system of solutions at ∞ and yn+1, . . . , y2n form
the non-principal system of solutions at ∞ of Eq. (1.2).
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For simplicity, we will use the following notation. For arbitrary non-zero func-
tions f, g defined on an interval [a,∞), we write

f ≺ g as x → ∞ ⇐⇒ lim
x→∞

f(x)

g(x)
= 0.

If f1 ≺ · · · ≺ fl as x → ∞ for some functions fi : [a,∞) → R, i ∈ {1, . . . , l},
a ∈ R, we say that the system of fi is ordered at ∞. Now we can formulate the
next auxiliary result.

Lemma 3. Eq. (1.1) possesses a system of solutions yj, ỹj, j ∈ {1, . . . , n}, such
that

(3.3) y1 ≺ · · · ≺ yn ≺ ỹ1 ≺ · · · ≺ ỹn as x → ∞.

If (3.3) holds, the solutions yj form the principal system of solutions at ∞, while
ỹj form the non-principal system of solutions at ∞.

Proof. Since Eq. (1.1) is N-disconjugate on R, applying Lemma 1, we obtain a
system of solutions y1, . . . , yn, ỹ1, . . . , ỹn of Eq. (1.1) satisfying (3.3). In this case,
Lemma 2 says that yj form the principal system and ỹj form the non-principal
system of solutions at ∞. �

Remark 1. All previous arguments can be used in the case when x → −∞. Es-
pecially, the analogous statement of Lemma 3 holds for the ordered system of
solutions at −∞. We add that the discrete version of Lemma 3 is mentioned, e.g.,
in [14].

Let V+ and V− denote the subspaces of the solution space of Eq. (1.1) generated
by the principal system of solutions at ∞ and −∞, respectively. We summarize
results about the polynomial principal solutions of Eq. (1.1) in Theorem 1.

Theorem 1. Let m ∈ {0, 1, . . . , n−1} be arbitrarily given; and let q := n−m−1.

(i)

If

∞
∫

0

x2qr−1(x) dx = ∞, then {1, . . . , xm} ⊆ V+.

(ii)

If

0
∫

−∞

x2qr−1(x) dx = ∞, then {1, . . . , xm} ⊆ V−.

(iii)

If

∞
∫

0

x2q−1r−1(x) dx < ∞, then
{

xm+1, . . . , xn−1
}

∩ V+ = ∅.
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(iv)

If

0
∫

−∞

x2q−1r−1(x) dx < ∞, then
{

xm+1, . . . , xn−1
}

∩ V− = ∅.

Proof. The statements of the theorem follow from [10, Theorems 3.1–3.4]. �

Moreover, the analysis done in [10] shows that only polynomial solutions can
be simultaneously contained in the principal systems of solutions of Eq. (1.1) at
∞ and −∞; i.e., only polynomial solutions contribute to criticality of Eq. (1.1).
Thus, the following property of V+ ∩ V− is known.

Corollary 1. Let m ∈ {0, 1, . . . , n − 1}, q := n − m − 1. Suppose that

∞
∫

0

x2qr−1(x) dx = ∞ =

0
∫

−∞

x2qr−1(x) dx.

Then {1, . . . , xm} ⊂ V+ ∩ V−, i.e., Eq. (1.1) is at least (m + 1)-critical.
If, in addition, it is valid that

∞
∫

0

x2q−1r−1(x) dx < ∞ or

0
∫

−∞

x2q−1r−1(x) dx < ∞,

then Lin {1, . . . , xm} = V+ ∩ V−, i.e., Eq. (1.1) is (m + 1)-critical.

Now we prove the criterion of subcriticality of Eq. (1.1).

Theorem 2. If

(3.4)

∞
∫

0

x2n−2r−1(x) dx < ∞

or

(3.5)

0
∫

−∞

x2n−2r−1(x) dx < ∞,

then Eq. (1.1) is subcritical, i.e., V+ ∩ V− = {0}.

Proof. Assume that (3.4) holds. In the second case (when (3.5) is true), one can
proceed analogously. Henceforth in this proof, let x > 0. Considering (3.1) and
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(3.2), we obtain

ŷi(x) =

∞
∫

0

(x − t)n−1ti−1r−1(t) dt − y
[n]
i (x)

=

∞
∫

x

(x − t)n−1ti−1r−1(t) dt, i ∈ {1, . . . , n},

as non-polynomial solutions of Eq. (1.1). We add that

∞
∫

0

(x − t)n−1ti−1r−1(t) dt, i ∈ {1, . . . , n},

are well defined linear combinations of polynomials y
[p]
l , because (see (3.4))

∞
∫

0

∣

∣

∣

∣

(

n − 1

l − 1

)

xl−1 (−t)n−1−l+1 ti−1r−1(t)

∣

∣

∣

∣

dt

≤

(

n − 1

l − 1

)

xl−1

∞
∫

0

tn−l+i−1r−1(t) dt < ∞, i, l ∈ {1, . . . , n}.

It is seen that

ŷi ≺ ŷi+1 as x → ∞, i ∈ {1, . . . , n − 1}.

We have

| ŷn(x) | =

∞
∫

x

| x − t |n−1 tn−1r−1(t) dt ≤

∞
∫

x

t2(n−1)r−1(t) dt,

which implies (see (3.4)) that lim
x→∞

ŷn(x) = 0, i.e., ŷn ≺ 1 as x → ∞. Thus, we

get the ordered system of the solutions

ŷ1 ≺ · · · ≺ ŷn ≺ 1 ≺ · · · ≺ xn−1 as x → ∞.

From Lemma 3 it follows that no polynomial solution is in the principal system
of solutions of Eq. (1.1) at ∞. Since the set V+ ∩V− can contain only polynomial
solutions, Eq. (1.1) is subcritical. �

Theorem 3. Eq. (1.1) is subcritical if and only if

(3.6)

∞
∫

0

x2n−2r−1(x) dx < ∞ or

0
∫

−∞

x2n−2r−1(x) dx < ∞.
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Proof. If
∞

∫

0

x2n−2r−1(x) dx = ∞ =

0
∫

−∞

x2n−2r−1(x) dx,

then 1 ∈ V+∩V−, i.e., Eq. (1.1) is not subcritical. See the first part of Corollary 1
for m = 0. The opposite case (given by (3.6)) is embodied in Theorem 2. �

The next theorem gives the sufficient and necessary condition for at least p-cri-
ticality of Eq. (1.1).

Theorem 4. Let n ≥ 2, m ∈ {1, . . . , n − 1}, q := n − m − 1. If Eq. (1.1) is at
least (m + 1)-critical, then

(3.7)

∞
∫

0

x2qr−1(x) dx = ∞ =

0
∫

−∞

x2qr−1(x) dx.

Proof. From Lemma 3 and Remark 1 (see (3.1)), we know that

xm /∈ V+ ∩ V− =⇒
{

xm, . . . , xn−1
}

∩ V+ ∩ V− = ∅.

Hence, it suffices to show that xm /∈ V+∩V− provided at least one of the integrals
in (3.7) is convergent. (We recall that the space V+∩V− contains only polynomial
solutions.) We will prove the implication (cf. Theorem 1, part (iii))

(3.8)

∞
∫

0

x2qr−1(x) dx < ∞ =⇒ xm /∈ V+.

Analogously, it is possible to prove

0
∫

−∞

x2qr−1(x) dx < ∞ =⇒ xm /∈ V−.

Let us consider the following linearly independent non-polynomial solutions (see
again (3.1), (3.2) and consider (3.8))

ȳl(x) =

x
∫

0

(x − t)n−1tl−1r−1(t) dt

−

q
∑

i=0



(−1)i

(

n − 1

i

)

xn−1−i

∞
∫

0

ti+l−1r−1(t) dt



 , l ∈ {1, . . . , q + 1}.
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Since it is valid

ȳ
(n)
l (x) =





x
∫

0

(x − t)n−1tl−1r−1(t) dt





(n)

−

q
∑

i=0



(−1)i

(

n − 1

i

)

(

xn−1−i
)(n)

∞
∫

0

ti+l−1r−1(t) dt





=





x
∫

0

[

(x − t)n−1
](n−1)

tl−1r−1(t) dt





′

=





x
∫

0

(n − 1)! tl−1r−1(t) dt





′

= (n − 1)! xl−1r−1(x), l ∈ {1, . . . , q + 1},

l’Hospital’s rule gives that

(3.9) ȳl ≺ ȳl+1 as x → ∞, l ∈ {1, . . . , q}.

We have

ȳ
(m)
q+1(x) =

(n − 1)!

(n − m − 1)!

x
∫

0

(x − t)n−m−1tqr−1(t) dt

−

q
∑

i=0



(−1)i

(

n − 1

i

)

(n − 1 − i)!

(n − m − 1 − i)!
xn−m−1−i

∞
∫

0

tq+ir−1(t) dt





=
(n − 1)!

q!

x
∫

0

(x − t)qtqr−1(t) dt

−

q
∑

i=0



(−1)i (n − 1)!(n − 1 − i)!

(n − 1 − i)!i!(q − i)!
xq−i

∞
∫

0

tq+ir−1(t) dt





=
(n − 1)!

q!

x
∫

0

(x − t)qtqr−1(t) dt

−
(n − 1)!

q!

q
∑

i=0



(−1)i

(

q

i

)

xq−i

∞
∫

0

tq+ir−1(t) dt
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=
(n − 1)!

q!

x
∫

0

(x − t)qtqr−1(t) dt

−
(n − 1)!

q!

∞
∫

0

q
∑

i=0

[

(−1)i

(

q

i

)

xq−iti
]

tqr−1(t) dt

=
(n − 1)!

q!





x
∫

0

(x − t)qtqr−1(t) dt −

∞
∫

0

(x − t)qtqr−1(t) dt





= −
(n − 1)!

q!

∞
∫

x

(x − t)qtqr−1(t) dt = (−1)q+1 (n − 1)!

q!

∞
∫

x

(t − x)qtqr−1(t) dt

and
∞

∫

x

(t − x)qtqr−1(t) dt ≤

∞
∫

x

t2qr−1(t) dt, x ≥ 0.

It means that
∞

∫

0

x2qr−1(x) dx < ∞ =⇒ lim
x→∞

ȳ
(m)
q+1(x) = 0.

Let the above integral be convergent (consider (3.8)). Further, by l’Hospital’s
rule, we get

lim
x→∞

ȳq+1(x)

xm
= lim

x→∞

ȳ
(m)
q+1(x)

m!
= 0,

i.e., ȳq+1 ≺ xm as x → ∞. Finally (see also (3.9)), we have

1 ≺ · · · ≺ xm−1 ≺ xm, ȳ1 ≺ · · · ≺ ȳq+1 ≺ xm as x → ∞.

From Lemma 3 it follows that xm /∈ V+, because there exist at least m+q+1 = n
linearly independent solutions y of Eq. (1.1) for which y ≺ xm as x → ∞. The
implication (3.8) is proved. �

Combining the first part of Corollary 1, Theorem 2, and Theorem 4, we obtain:

Corollary 2. Let m ∈ {0, 1, . . . , n − 1}, q := n − m − 1. Eq. (1.1) is at least
(m + 1)-critical if and only if (3.7) holds.

Corollary 3. Let m ∈ {−1, 0, . . . , n − 2}, q := n − m − 1. Eq. (1.1) is at most
(m + 1)-critical (where 0-critical stands for subcritical) if and only if it is valid

∞
∫

0

x2q−2r−1(x) dx < ∞ or

0
∫

−∞

x2q−2r−1(x) dx < ∞.
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At the end, note that the question of an equivalent criterion based on the second
part of Corollary 1 remains open.
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