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Abstract

We consider second order quasilinear parabolic equations where also

the main part contains functional dependence and state-dependent delay

on the unknown function. Existence and some qualitative properties of

the solutions are shown.

1 Introduction

It is well known that the theory of monotone type operators can be applied to
first order evolution equations and as particular cases to nonlinear functional
parabolic equations of the form

Dtu−

n
∑

i=1

Di[ai(t, x, u,Du;u)] + a0(t, x, u,Du;u) = f

where the last terms in the brackets mean ”functional” (non-local) dependence
on u, e.g. some integral operators applied to u or some state-dependent delays
(see, e.g., [7] -[10]). It is less known that monotone type operators can be
applied also to certain second order nonlinear evolution equations, including
”functional” equations.

The aim is to consider some second order evolution equations with functional
dependence and state dependent delays. Differential equations and systems
with state-dependent delay in one variable were considered thoroughly e.g. by
I. Györi, F. Hartung, T. Krisztin, J. Turi, H.-O. Walther, J. Wu in [3] - [5].

2 Existence of solutions

Denote by Ω ⊂ R
n a bounded domain having the uniform C1 regularity property

(see [1]), QT = (0, T ) × Ω and p ≥ 2 be a real number. Let V ⊂ W 1,p(Ω) be
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a closed linear subspace of the usual Sobolev space W 1,p(Ω) (of real valued
functions) containing W 1,p

0 (Ω) (the closure of C∞
0 (Ω)). Denote by Lp(0, T ;V )

the Banach space of the set of measurable functions u : (0, T ) → V with the
norm

‖ u ‖p
Lp(0,T ;V )=

∫ T

0

‖ u(t) ‖p
V dt.

The dual space of Lp(0, T ;V ) is Lq(0, T ;V ⋆) where 1/p+1/q = 1 and V ⋆ is the
dual space of V (see, e.g., [11]).

By using the notations u′ = Dtu, u” = D2
tu, we shall consider the equation

u” +N(u′(t), u′([γ0(u)](t))) +Qu+ (2.1)

M(u(t), u([γ1(u)](t)), Du(t), Du([γ2(u)](t))) = f

with the initial condition

u(0) = u0, u′(0) = u1 (2.2)

whereN : Lp(0, T ;V )×L2(QT ) → Lq(0, T ;V ⋆) is a nonlinear operator, (Qu)(t) =
Q̃(u(t)) and Q̃ : V → V ⋆ is a linear and continuous operator,

M : Lp(0, T ;V ) × L2(QT ) × Lp
n(QT ) × L2

n(QT ) → ×Lq(QT )

is a nonlinear operator
Further, for j = 0, 1, 2
(G) γj : L2(QT ) → Ca[0, T ] are continuous (nonlinear) operators such that

0 ≤ [γj(u)](t) ≤ t, [γj(u)]
′(t) ≥ c0

with some constant c0 > 0. (Ca[0, T ] denotes the set of absolutely continuous
functions in [0, T ].)

Condition (G) is fulfilled e.g. by the operators of the form

[γj(u)(t) = tβ

(
∫

Qt

Γ(t, τ, ξ)u2(τ, ξ)dτdξ

)

where Γ, ∂Γ
∂t are continuous and nonnegative, β ∈ C1(R) satisfies δ1 ≤ β ≤ 1

with some constant δ1 > 0 and β′ ≥ 0.
(i) Assumptions on N :

N : Lp(0, T ;V ) × L2(QT ) → Lq(0, T ;V ⋆)

is bounded, demicontinuous and belongs to (S)+ with respect to D(L) = {u ∈
Lp(0, T ;V ) : u′ ∈ Lq(0, T ;V ⋆), u(0) = 0}, i.e.

(vj) → v weakly in Lp(0, T ;V ), vj ∈ D(L),

(v′j) → v′ weakly in Lq(0, T ;V ⋆), (wj) → w (strongly) in L2(QT ),
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lim sup[N(vj , wj), vj − v] ≤ 0

imply
(vj) → v (strongly) in Lp(0, T ;V ).

Further, there are constants c2 > 0, c3 such that

[N(v, w), v] ≥ c2 ‖ v ‖p
Lp(0,T ;V ) −c3.

(ii) Assumptions on Q: (Qu)(t) = Q̃(u(t)) and Q̃ : V → V ⋆ is a linear and
continuous operator,

〈Q̃ũ, ṽ〉 = 〈Q̃ṽ, ũ〉, 〈Q̃ũ, ũ〉 ≥ 0, ũ, ṽ ∈ V.

(iii) Assumptions on M :

M : Lp(0, T ;V ) × L2(QT ) × Lp
n(QT ) × L2

n(QT ) → ×Lq(QT )

is (nonlinear) bounded, demicontinuous and

lim
‖(u,ũ,w,w̃‖)→∞

‖M(u, ũ, w, w̃) ‖q
Lq(0,T ;V ⋆)

‖ (u, ũ, w, w̃) ‖p
= 0.

Theorem 2.1 Assume (i) - (iii) and (G). Then for any f ∈ Lq(0, T ;V ⋆),
u0 ∈ V and u1 ∈ L2(Ω) there exists u ∈ Lp(0, T ;V ) such that u′ ∈ Lp(0, T ;V ),
u” ∈ Lq(0, T ;V ⋆) and u satisfies (2.1), (2.2).

For the definition of the generalized derivatives u′, u” see, e.g., [11], page 417.
In the proof of the theorem we shall use

Lemma 2.2 Assume that γ : L2(QT ) → Ca[0, T ] satisfies (G). If (uk) → u in
L2(QT ) and (wk) → w in L2(QT ) then

wk([γ(uk)](t), x) → w([γ(u)](t), x) in L2(QT ).

Further, w([γ(u)](t) is bounded in L2(QT ) if u,w are bounded in L2(QT ).

Proof of the lemma Clearly,

wk([γ(uk)](t), x) − w([γ(u)](t), x) = (2.3)

{wk([γ(uk)](t), x) − w([γ(uk)](t), x)}+

{w([γ(uk)](t), x) − w([γ(u)](t), x)}.

For the first term in the right hand side of (2.3) we have (by using the
notation ψk(t) = [γ(uk)](t), (G))

∫

Ω

{

∫ T

0

wk([γ(uk)](t), x) − w([γ(uk)](t), x)|2dt

}

dx ≤ (2.4)
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1

c0

∫

Ω

{

∫ T

0

|wk(ψk(t), x) − w(ψk(t), x)|2
∂ψk

∂t
dt

}

dx ≤

1

c0

∫

QT

|wk(τ, x) − w(τ, x)|2dτdx → 0.

Further, approximating the function w ∈ L2(QT ) by a function w̃ ∈ C(QT ),
we have for the second term on the right hand side of (2.3)

w([γ(uk)](t), x) − w([γ(u)](t), x) = (2.5)

{w([γ(uk)](t), x) − w̃([γ(uk)](t), x)}+

{w̃([γ(uk)](t), x) − w̃([γ(u)](t), x)}+

{w̃([γ(u)](t), x) − w([γ(u)](t), x)}.

The first and third terms on the right hand side of (2.5) can be estimated
similarly to (2.4). The L2(QT ) norm of the second term on the right hand side
of (2.5) is small for sufficiently large k because w̃ is uniformly continuous on QT

and (γ(uk)) → γ(u) in C[0, T ]. By using the substitution as in (2.4), we obtain
the second part of the lemma. So we have proved the lemma.

The proof of Theorem 2.1 For simplicity, consider the case u0 = 0, u1 = 0.
Define operator S : Lp(0, T ;V ) → Lp(0, T ;V ) by

(Sv)(t) =

∫ t

0

v(s)ds.

Then S is a linear and continuous operator and u is a solution of (2.1), (2.2)
with u0 = 0, u1 = 0 iff v = u′ ∈ Lp(0, T ;V ) satisfies

v′ +N(v, v([γ0(Sv)](t))) +QSv+

M(Sv, (Sv)([γ1(Sv)]), DSv, (DSv)([γ2(Sv)])) = f, v(0) = 0.

Consider the operator A : Lp(0, T ;V ) → Lq(0, T ;V ⋆) defined by

A(v) = N(v, v([γ0(Sv)](t))) +QSv+

M(Sv, (Sv)([γ1(Sv)](t)), DSv, (DSv)([γ2(Sv)](t))).

By using the lemma and (i) - (iii), it is not difficult to show that A is bounded
and demicontinuous. Now we show that A belongs to (S)+ with respect to

D(L) = {v ∈ Lp(0, T ;V ) : v′ ∈ Lq(0, T ;V ⋆), v(0) = 0}

The last property means:

vj ∈ D(L), (vj) → v weakly in Lp(0, T ;V ), (2.6)

(v′j) → v′ weakly in Lq(0, T ;V ⋆), (2.7)
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lim sup[A(vj), vj − v] ≤ 0 (2.8)

imply
(vj) → v strongly in Lp(0, T ;V ), (2.9)

To prove that (2.6) - (2.8) imply (2.9), observe

[QS(vj), vj − v] = [QS(vj − v), vj − v] + [QS(v), vj − v],

the first term on the right is nonnegative (see, e.g. [11]) and the second term
tends to 0, thus

lim inf[QS(vj), vj − v] ≥ 0. (2.10)

Further, by compact imbedding theorem, (2.6), (2.7) imply that (vj) → v in
Lp(QT ), for a subsequence, hence

[M(Svj , (Svj)([γ1(Svj)]), DSvj , D(Svj)([γ2(Svj)])), vj − v] → 0 (2.11)

because the first term in [·, ·] is bounded in Lq(QT ) since M is bounded.
(2.8), (2.10), (2.11) imply that

lim sup[N(vj), vj([γ0(Svj)](t)), vj − v] ≤ 0

By the lemma

vj([γ0(Svj)](t)) → v([γ0(Sv)](t)) in L2(QT ).

Thus (i) implies
(vj) → v in Lp(0, T ;V ).

So A : Lp(0, T ;V ) → Lq(0, T ;V ⋆) is bounded, demicontinuous, belongs to
(S)+.

Finally, assumptions (i), (ii), (iii) imply that A is coercive. Because by (iii)







[M(Sv, (Sv)([γ1(Sv)](t)), DSv, (DSv)([γ2(Sv)](t))), v]

‖ v ‖p
Lp(0,T ;V )






≤

{

‖M(Sv, (Sv)([γ1(Sv)](t)), DSv, (DSv)([γ2(Sv)](t))) ‖
q
Lq(0,T ;V ⋆)

‖ v ‖p

}1/q

and the term on the right hand side in brackets can be written in the form

‖M(Sv, (Sv)([γ1(Sv)](t)), DSv, (DSv)([γ2(Sv)](t))) ‖
q
Lq(0,T ;V ⋆)

‖ v ‖p + ‖ Sv ‖p + ‖ (Sv)([γ1(Sv)](t)) ‖p + ‖ DSv ‖p + ‖ (DSv)([γ2(Sv)](t)) ‖p
×

‖ v ‖p + ‖ Sv ‖p + ‖ (Sv)([γ1(Sv)](t)) ‖
p + ‖ DSv ‖p + ‖ (DSv)([γ2(Sv)](t)) ‖

p

‖ v ‖p
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where the second fraction is bounded by the lemma and for any ε > 0 there
exists a > 0 such that the first fraction is less than ε if its denominator is grater
than a. Thus, choosing sufficiently small ε > 0 , by (i), (ii) we obtain

[A(v), v]

‖ v ‖p
≥
c2
2

−
c4

‖ v ‖p

with some constant c4 which implies

lim
‖v‖→∞

[A(v), v]

‖ v ‖
= +∞,

i.e. A is coercive. Consequently, there is a solution of (2.1), (2.2).

3 Examples

The following examples satisfy the assumptions of Theorem 2.1.

[N(v, w), z] =

n
∑

i=1

∫

QT

b(t, x, [H(w)](t, x))(Div)|Dv|
p−2Dizdtdx+

∫

QT

b0(t, x, [H0(w)](t, x))v|v|p−2zdtdx

where b, b0 are Carathéodory functions, 0 < c2 ≤ b, b0 ≤ c3;

H,H0 : L2(QT ) → C(QT ) are continuous linear operators

〈Q̃ũ, ṽ〉 =

∫

Ω





n
∑

k,l=1

aklDkũDlṽ + d0ũṽ



 dx

where akl, d0 ∈ L∞(Ω), akl = alk,
∑n

k,l=1 akl(x)ξkξl ≥ 0, d0 ≥ 0.

M(u, ũ, w, w̃) =

b̂(t, x, [F1(ũ)](t, x), [F2(w̃)](t, x)) · α(t, x, u, w)

where α, b̂ are Carathéodory functions,

|α(t, x, u, w)| ≤ const[1 + |u|ρ + |w|ρ],

|b̂(t, x, θ1, θ2)|
q1 ≤ const[1 + θ21 + θ22 ]

where 0 ≤ ρ < p − 1, q1 = p/(p − 1 − ρ) and Fj : L2(QT ) → L2(QT ) are
continuous operators satisfying with some σ < p

∫

QT

|F1(ũ)|
2 ≤ const

[
∫

QT

|ũ|2
]σ/2

,

∫

QT

|F2(w̃)|2 ≤ const

[
∫

QT

|w̃|2
]σ/2

.

(For p > 2, σ may be 2, Fj linear continuous operator.)
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4 Boundedness and stabilization

Now we formulate an existence theorem in (0,∞) which can be obtained from
Theorem 2.1, by using a diagonal process and the Volterra property (see, e.g.
[6], [9]). Denote by Lp

loc(0,∞;V ) the set of functions u : (0,∞) → V such that
for each fixed finite T > 0, u|(0,T ) ∈ Lp(0, T ;V ) and let Q∞ = (0,∞) × Ω,
Lα

loc(Q∞) be the set of functions u : Q∞ → R such that u|QT
∈ Lα(QT ) for any

finite T . On operators γj assume
(G∞) Operators γj : L2

loc(Q∞) → Ca[0,∞) are of Volterra type, i.e. [γj(u)](T )
depends only on u|QT

, for any finite T and γj : L2(QT )) → Ca[0, T ] is continuous
for every T . Further,

∂

∂t
[γj(u)](t, x) ≥ c0, 0 ≤ [γj(u)](t, x) ≤ t

with some constant c0 > 0.

Theorem 4.1 Assume that Q̃ : V → V ⋆ satisfies (ii). Let

N : Lp
loc(0,∞;V ) × L2

loc(Q∞) → Lq
loc(0,∞;V ⋆),

M : Lp
loc(0,∞;V ) × L2

loc(Q∞) × Lp
n,loc(Q∞) × L2

n,loc(Q∞) → Lq
loc(0,∞;V ⋆)

be operators of Volterra type and assume that for each finite T > 0 their restric-
tions to (0, T ) satisfy (i) and (iii).

Then for arbitrary f ∈ Lq
loc(0,∞;V ⋆), u0 ∈ V , u1 ∈ H there exists u such

that u ∈ C([0,∞);V ), u′ ∈ Lp
loc(0,∞;V ), u” ∈ Lq

loc(0,∞;V ⋆) and

u”(t) +N(u′(t), u′([γ0(u)](t))) +Qu+ (4.12)

M(u(t), u([γ1(u)](t)), Du(t), Du([γ2(u)](t))) = f for a.a. t ∈ (0,∞),

u(0) = u0, u′(0) = u1 (4.13)

Now we formulate a theorem on the boundedness of the solutions of (4.12),
(4.13).

Theorem 4.2 Let the assumptions of Theorem 4.1 be satisfied such that for all
v ∈ Lp

loc(0,∞;V ), w ∈ L2
loc(Q∞)

〈N(v, w), v〉 ≥ c2 ‖ v(t) ‖p
V , t ∈ (0,∞) (4.14)

with some constant c2 > 0 and for all u ∈ Lp
loc(0,∞;V ), ũ ∈ L2

loc(Q∞), w ∈
Lp

n,loc(Q∞), w̃ ∈ L2
n,loc(Q∞)

‖M(u, ũ, w, w̃) ‖q
V ⋆≤ Φ1(t), t ∈ (0,∞) (4.15)

with some Φ1 ∈ L1(0,∞). Finally, let f ∈ Lq(0,∞;V ⋆).
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Then for a solution u of (4.12), (4.13), y(t) =‖ u′(t) ‖2
H is bounded for

t ∈ (0,∞), u′ ∈ Lp(0,∞;V ) and

〈Q̃[u(t)], u(t)〉 is bounded for t ∈ (0,∞).

If
〈Q̃ũ, ũ〉 ≥ c3 ‖ ũ ‖2

W 1,2(Ω) for ũ ∈ V

with some constant c3 > 0 then

‖ u(t) ‖W 1,2(Ω) is bounded for t ∈ (0,∞).

Proof Applying both sides of (4.12) to u′ and integrating over [0, T ], we
obtain

[u”, u′] + [N(u′, u′([γ0(u)](t))), u
′] + [Qu, u′]+ (4.16)

[M(u(t), u([γ1(u)](t)), Du(t), Du([γ2(u)](t))), u
′] = [f, u′].

According to [11], [9] we have

[u”, u′] =
1

2
‖ u′(t) ‖2

H −
1

2
‖ u′(0) ‖2

H=
1

2
y(t) −

1

2
y(0), (4.17)

[Qu, u′] =
1

2
〈Q̃u(T ), u(T )〉 −

1

2
〈Q̃u(0), u(0)〉. (4.18)

Further, by Young’s inequality and (4.15)

|[M(u(t), u([γ1(u)](t)), Du(t), Du([γ2(u)](t))), u
′]| ≤ (4.19)

εp

p

∫ T

0

‖ u′(t) ‖p
V dt+

1

εqq

∫ T

0

Φ1(t)dt,

|[f, u′]| ≤
εp

p

∫ T

0

‖ u′(t) ‖p
V dt+

1

εqq

∫ T

0

‖ f(t) ‖q
V ⋆ dt. (4.20)

Choosing sufficiently small ε > 0, we obtain from (4.14), (4.16) - (4.20) the
inequality

1

2
y(T ) +

c2
2

∫ T

0

‖ u′(t) ‖p
V dt+

1

2
〈Q̃u(T ), u(T )〉 ≤

const

[

1 +

∫ T

0

Φ1(t)dt +

∫ T

0

‖ f(t) ‖q
V ⋆ dt

]

which implies the statements of Theorem 4.2.
Now we prove a theorem on the stabilization of the solution as t→ ∞.

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 14, p. 8



Theorem 4.3 Assume that the assumptions of Theorem 4.2 are satisfied such
that for all v ∈ Lp

loc(0,∞;V ), w ∈ L2
loc(Q∞)

〈[N(v, w)](t), v(t)〉 ≥ c2(1 + t)µ ‖ v(t) ‖p
V , t ∈ (0,∞) (4.21)

with some constants µ > p− 1 (p ≥ 2), c2 > 0. Further, there exists f∞ ∈ V ⋆,
a continuous function Φ ∈ L1(0,∞) with lim∞ Φ = 0 such that

‖ f(t) − f∞ ‖q
V ⋆≤ Φ(t), t ∈ (0,∞) (4.22)

and there exists a solution u∞ ∈ V of

Q̃u∞ = f∞. (4.23)

Then for a solution u of (4.12), (4.13) we have

lim
t→∞

‖ u′(t) ‖H= 0, (4.24)

∫ ∞

0

(1 + t)β ‖ u′(t) ‖2
H dt <∞,

∫ ∞

0

(1 + t)µ ‖ u′(t) ‖p
V dt <∞ (4.25)

where 0 ≤ β < [2µ− (p− 2)]/p and there exists w ∈ V such that

‖ u(t) − w ‖q
V ≤

const

λ− 1

1

(1 + t)λ−1
where λ = µ/(p− 1) > 1. (4.26)

Proof Applying (4.12) to u′ = (u − u∞)′, we obtain by (4.23)

∫ T

0

〈u”(t), u′(t)〉dt +

∫ T

0

〈N(u′, u′([γ0(u)](t))), u
′(t)〉dt+ (4.27)

∫ T

0

〈Q̃[u(t) − u∞], [u(t) − u∞]′〉dt+

∫ T

0

〈M(u(t), u([γ1(u)](t)), Du(t), Du([γ2(u)](t))), u
′(t)〉dt =

∫ T

0

〈f(t) − f∞, u
′(t)〉dt.

Similarly to the proof of Theorem 4.2, equality (4.27) implies, by using Young’s
inequality with sufficiently small ε > 0, that for y(t) =‖ u′(t) ‖2

H the following
inequality holds:

1

2
y(T ) +

c2
2

∫ T

0

(1 + t)µ ‖ u′(t) ‖p
V dt+

1

2
〈Q̃[u(T )− u∞], u(T )− u∞〉 ≤ (4.28)

const

[

1 +

∫ T

0

Φ1(t)dt+

∫ T

0

Φ(t)dt

]

+
1

2
〈Q̃[u(0) − u∞], u(0) − u∞〉.
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Since the right hand side of (4.28) is bounded for all T > 0, we obtain the second
part of (4.25). Consequently, for any T1 < T2 we have

‖ u(T2) − u(T1) ‖V =‖ (Su′)(T2) − (Su′)(T1) ‖V =‖

∫ T2

T1

u′(t)dt ‖V ≤ (4.29)

∫ T2

T1

‖ u′(t) ‖V dt =

∫ T2

T1

1

(1 + t)λ/q
(1 + t)λ/q ‖ u′(t) ‖V dt ≤

{

∫ T2

T1

1

(1 + t)λ
dt

}1/q {

∫ T2

T1

(1 + t)µ ‖ u′(t) ‖p
V dt

}1/p

where λ > µ/(p− 1) > 1 and thus pλ/q = λ(p− 1) = µ.
Thus for any ε > 0 there exists T0 > 0 such that for T0 < T1 < T2

‖ u(T2) − u(T1) ‖V< ε.

Hence, there exists w ∈ V such that

lim
T→∞

‖ u(T ) − w ‖V = 0. (4.30)

In order to prove (4.26), letting T2 → ∞ in (4.29), we find

‖ w − u(T1) ‖V ≤

∫ ∞

T1

‖ u′(t) ‖V dt ≤

{
∫ ∞

T1

1

(1 + t)λ
dt

}1/q {
∫ ∞

T1

(1 + t)µ ‖ u′(t) ‖p
V dt

}1/p

≤

{

1

λ− 1

1

(1 + T1)λ−1
dt

}1/q {
∫ ∞

T1

(1 + t)µ ‖ u′(t) ‖p
V dt

}1/p

,

i.e. we have (4.26).
The first estimation in (4.25) can be proved as follows.
If 0 ≤ β < [2µ− (p− 2)]/p then by Hölder’s inequality

∫ ∞

0

(1 + β)β ‖ u′(t) ‖2
H dt ≤ const

∫ ∞

0

(1 + β)β ‖ u′(t) ‖2
V dt =

const

∫ ∞

0

(1 + β)β−2µ/p[(1 + t)2µ/p ‖ u′(t) ‖2
V ]dt ≤

const

{
∫ ∞

0

(1 + β)
βp−2µ

p−2 dt

}(p−2)/p {
∫ ∞

0

(1 + t)µ ‖ u′(t) ‖p
V dt

}2/p

<∞

because of the second part of (4.25) and βp−2µ
p−2 < −1. In the case p = 2

the first multiplier in the last term is the L∞(0,∞) norm of the function t 7→
(1 + t)β−2µ/p.
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Now we apply again (4.12) to u′ = (u−u∞)′ and integrate over [T1, T2] then
we obtain by (4.23) the inequality (similarly to (4.27))

1

2
[y(T2) − y(T1)] +

c2
2

∫ T2

T1

(1 + t)µ ‖ u′(t) ‖p
V dt+

1

2
〈Q̃[u(T2) − u∞], u(T2) − u∞〉 −

1

2
〈Q̃[u(T1) − u∞], u(T1) − u∞〉 ≤

const

[

∫ T2

T1

Φ1(t)dt+

∫ T2

T1

Φ(t)dt

]

.

Since Q̃ : V → V ⋆is a continuous and linear operator, by (4.30)

lim
T1,T2→∞

{〈Q̃[u(T2) − u∞], u(T2) − u∞〉 − 〈Q̃[u(T1) − u∞], u(T1) − u∞〉} = 0,

thus (4.25) and Φ1,Φ ∈ L1(0,∞) imply

lim
T1,T2→∞

[y(T2) − y(T1)] = 0.

Consequently, limT→∞ y(T ) exists and is finite, further, by the first estimation
in (4.25) it must be 0, i.e. we have (4.24), which completes the proof of Theorem
4.3.

Remark The example in Section 2 satisfies the assumptions of Theorem 4.2
if

0 < c2 ≤ b(t, x, θ) ≤ B(T ) <∞, 0 < c2 ≤ b0(t, x, θ) ≤ B(T ) <∞, t ∈ [0, T ]

for all T > 0 and

|b̂(t, x, θ1, θ2)| ≤ const, |α(t, x, u, w)| ≤ Φ1(t), t ∈ (0,∞).

Further, N satisfies the assumptions of Theorem 4.3 if

const(1 + t)µ ≤ b(t, x, θ), const(1 + t)µ ≤ b0(t, x, θ), t ∈ (0,∞)

is satisfied, too (with some positive constant).
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