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Abstract. In this paper, we consider the radially symmetric spacelike solutions of a
nonlinear Dirichlet problem for the prescribed mean curvature spacelike equation in
a Friedmann–Lemaître–Robertson–Walker spacetime. By using a conformal change of
variable, this problem can be translated an equivalent problem in the Minkowski space-
time. By using the lower and upper solution method, fixed point, a priori bounds and
topological degree method, we obtain the existence, nonexistence and multiplicity of
radially symmetric spacelike solutions.
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1 Introduction

Let I ⊆ R be an open interval in R with the metric −dt2. Denote by M the (N + 1)-
dimensional product manifold I × RN with N ≥ 1 endowed with the Lorentzian metric

g = −dt2 + f 2(t)dx2,

where f ∈ C∞(I), f > 0, is called the scale factor or warping function in the related literature.
Clearly, M is a Lorentzian warped product with base (I,−dt2), fiber (RN , dx2) and warping
function f , we refer it as a Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. In
the fiber space (RN , dx2), the metric dx2 is an arbitrary Riemannian metric in a Generalized
FLRW spacetime. In cosmology, the FLRW spacetime is the accepted model for a spatially
homogeneous and isotropic Universe. In this context, the warping function f (t) is interpreted
as the radius of the Universe at time t, and the sign of its derivative indicates if the Universe
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is expanding or contracting at given time, for more details of FLRW spacetime, we refer the
reader to [11, 21, 22, 27, 34–37] and the references therein. Observe that for the particular case
f (t) ≡ 1 we recover the Minkowski spacetime.

Given f ∈ C∞(I), f > 0, for each u ∈ C∞(Ω), where Ω is a domain of RN , such that
u(Ω) ⊆ I, we can consider its graph M = {(x, u(x)) : x ∈ Ω} in the FLRW spacetime M. The
graph is spacelike whenever

| grad u| < f (u) in Ω, (1.1)

where grad u is the gradient of u in RN and | · | denotes the Euclidean norm in RN , in this
case, the unit timelike normal vector field in the same time orientation of ∂t is given by

A =
f (u)√

f (u)− | grad u|2

(
1

f 2(u)
grad u + ∂t

)
,

and the corresponding mean curvature associated to A, is defined by

1
N

{
div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)}
,

where div denotes the divergence operator of RN , f ′(u) := f ′ ◦u, it can be seen as a quasilinear
elliptic operator Q, because of (1.1). We are interested in the existence of spacelike graphs
with a prescribed mean curvature function in the FLRW spacetime M. The general problem
of the curvature prescription is, given a function H : I × RN → R, to obtain solutions of the
quasilinear elliptic equation

Q(u) = H(u, x), | grad u| < f (u) in Ω, (1.2)

and (1.2) is called the prescribed mean curvature spacelike equation in FLRW spacetime.
Specially relevant is the case when H is constant, then it is called the prescribed constant
mean curvature spacelike equation (if H = 0 it is also called the maximal spacelike graph
equation).

In the recent years, most of the efforts have been directed to the prescribed mean curvature
spacelike equation in Minkowski spacetime ( f (t) ≡ 1), in this context, we mention the seminal
work of R. Bartnik and L. Simon [1], E. Calabi [8], S.-Y. Cheng and S.-T. Yau [10] and A. E.
Treibergs [39], in these papers, the spacelike graphs having the property that their mean
curvature is zero or constant are considered. More recently, Dirichlet problems for prescribed
mean curvature spacelike equation in Minkowski spacetime have been widely concerned by
many scholars, and their attention is mainly focused on their positive solutions, we refer the
reader to [3–6,12–16,23,24,28–32,41,42] and the references therein. In particular, based on the
detailed analysis of time map, some exact multiplicity of positive solutions have been obtained
in [24, 42], for the radially symmetric solutions on a ball, some existence, nonexistence and
multiplicity results have been established in [4, 5], and some bifurcation results have been
obtained in [14, 28] via bifurcation technique, and when Ω is a general domain in RN , some
existence and bifurcation results have been obtained in the papers [13, 15, 16, 31]. In addition
to, these concern discrete problems associated with the prescribed mean curvature spacelike
equation in Minkowski spacetime, we refer the reader to [7,9,25,26] and the references therein.

In comparison with the study in Minkowski spacetime, the number of references devoted
to the prescribed mean curvature spacelike equation in FLRW spacetime is appreciably lower.
Only in the recent years, C. Bereanu, D. de la Fuente, A. Romero and P. J. Torres [2, 20] have
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considered the existence and multiplicity of radially symmetric spacelike solutions of the
Dirichlet problem by using the Schauder fixed point Theorem with approximation process,
J. Mawhin and P. J. Torres [33, 38] have provided some sufficient conditions for the existence
of radially symmetric spacelike solutions of the Neumann problem by the Leray–Schauder
degree theory, G. Dai, A. Romero and P. J. Torres [17–19] have obtained the existence and
multiplicity of radially symmetric spacelike positive solutions of the equation with 0-Dirichlet
boundary condition on a ball and studied the global structure of the solution set via the
Rabinowitz’s global bifurcation method. Xu and Ma [40] have considered the differential
and difference problems associated with the discrete approximation of radially symmetric
spacelike solutions of the Dirichlet problem, by using lower and upper solutions, they proved
the existence of solutions of the corresponding differential and difference problems, and based
on the ideas of a prior bound showed the solutions of the discrete problem converge to the
solutions of the continuous problem.

In this paper we are concerned with the mixed boundary value problem
− (rN−1ϕ(v′))′ = λNrN−1

[
f ′(φ−1(v))√

1 − v′2
− f (φ−1(v))H(φ−1(v), r)

]
, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

(1.3)

where ϕ(s) = s√
1−s2 , and ϕ : (−1, 1) → R is an increasing homeomorphism with ϕ(0) = 0,

such an ϕ is called singular, λ is a positive parameter, R is a positive constant, f ∈ C∞(I)
and f > 0, I is an open interval in R, φ(s) =

∫ s
0

dt
f (t) , φ−1 is the inverse function of φ,

H : I × [0, R] → R is a continuous function. The aim of this paper is to investigate the
intervals of the λ in which the (1.3) has zero, one or two positive radial solutions.

This study mainly motivated by the numerical approximation of radially symmetric space-
like solutions of the nonlinear Dirichlet problem for the prescribed mean curvature spacelike
equation in FLRW spacetime:

div
(

grad u
f (u)

√
f 2(u)−| grad u|2

)
+ f ′(u)√

f 2(u)−| grad u|2

(
N + | grad u|2

f 2(u)

)
= NH(u, |x|) in B,

| grad u| < f (u) in B,

u = 0 on ∂B,

(1.4)

where B = {x ∈ RN : |x| < R}, f ∈ C∞(I), f > 0 and H : I × [0,+∞) → R is the prescribed
mean curvature function. We follow the method developed in [20], let us define the function
φ : I → R by φ(s) =

∫ s
0

dt
f (t) , and φ is an increasing diffeomorphism from I onto J := φ(I)

such that φ(0) = 0. Doing the change v = φ(u) and taking radial coordinates, we can reduce
the Dirichlet problem (1.4) to the mixed boundary value problem (1.3) with λ = 1, and the
solutions of (1.3) with λ = 1 are just the radially symmetric spacelike solutions of (1.4).

We say that a function v ∈ C1[0, R] is a solution of (1.3) if ∥v′∥∞ < 1, rN−1ϕ(v′) ∈ C1[0, R],
and (1.3) is satisfied. For (1.3), since the graph associate to v is spacelike, i.e. ∥v′∥∞ < 1, we
deduce that ∥v∥∞ < R, this implies the image of nonnegative v is in [0, R], therefore, when
discussing the nonnegative solutions of (1.3), we always assume φ−1([0, R]) ⊂ I, which is
equivalent to

I f R :=
[

0,
∫ R

0
f (φ−1(s))ds

]
⊂ I.
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In Section 2, we present a lower and upper solution result for continuous problem (1.3)
with λ = 1. In Section 3, we give some notations and fixed point reformulation of (1.3) with
λ = 1 and prove all possible solutions and their first differences have a prior bounds, based
on this, we calculate some topological degrees. Using the results of these two parts and the
estimate of the first derivative of a concave function, in Section 4, we show that there is a
Λ > 0 such that problem (1.3) has zero, at least one or at least two positive solutions when
λ ∈ (0, Λ), λ = Λ, λ > Λ. Finally in Section 5, for the convenience of readers and integrity
of the paper, we give the detailed derivation process of problem (1.3) with λ = 1.

The main result is as follows.

Theorem 1.1. Assume that I f R ⊂ I and f ′(t) ≥ 0, H(t, r) < f ′
f (t) for all r ∈ [0, R], t ∈ I f R and

assume also that 
lim

t→0+
N f ′(t)

φ(t) = f0,

lim
t→0+

N f (t)H(t,r)
φ(t) = H0,

f0 − H0 = 0.

(A f H)

Then there is a Λ > 2NM0
R3 such that problem (1.3) has zero, at least one or at least two positive solutions

when λ ∈ (0, Λ), λ = Λ, λ > Λ.

Notations: The space C := C[0, R] will be endowed with the usual sup-norm ∥ · ∥∞ and
C1 := C1[0, R] will considered with the norm ∥u∥ = ∥u∥∞ + ∥u′∥∞. C1

M := {u ∈ C1 : u′(0) =
u(R) = 0} is the closed subspace of C1. For u0 ∈ C1

M, we set B(u0, ρ) := {u ∈ C1
M : ∥u∥ <

ρ} (ρ > 0) and Bρ is used to represent B(0, ρ).

2 Lower and upper solutions

In this section, we develop the lower and upper solution method for the mixed boundary
value problem

− (rN−1ϕ(v′))′ = NrN−1
[

f ′(φ−1(v))√
1 − v′2

− f (φ−1(v))H(φ−1(v), r)
]

, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(2.1)

Definition 2.1. A lower solution α of (2.1) is a function α ∈ C1 such that ∥α′∥∞ < 1, rN−1ϕ(α′) ∈
C1, I f R ⊂ I and

−(rN−1ϕ(α′))′ ≤ NrN−1
[

f ′(φ−1(α))√
1 − α′2

− f (φ−1(α))H(φ−1(α), r)
]

, r ∈ (0, R), α(R) ≤ 0.

An upper solution β of (2.1) is a function β ∈ C1 such that ∥β′∥∞ < 1, rN−1ϕ(β′) ∈ C1, I f R ⊂ I
and

−(rN−1ϕ(β′))′ ≥ NrN−1

[
f ′(φ−1(β))√

1 − β′2
− f (φ−1(β))H(φ−1(β), r)

]
, r ∈ (0, R), β(R) ≥ 0.

Such a lower or an upper solution is called strict if the above inequalities are strict.
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Theorem 2.2. Assume that I f R ⊂ I and f ′(t) ≥ 0, H(t, r) < f ′
f (t) for all r ∈ [0, R], t ∈ I f R. If

(2.1) has a lower solution α and an upper solution β such that α(r) ≤ β(r) for all r ∈ [0, R], then (2.1)
has at least one solution v such that α(r) ≤ v(r) ≤ β(r) for all r ∈ [0, R].

Proof. Let γ : [0, R]× R → R be the continuous function defined by

γ(r, v) =


α(r), if v < α(r),

v, if α(r) ≤ v ≤ β(r),

β(r), if v > β(r).

We consider the modified problem

(rN−1ϕ(v′))′ + NrN−1
[

f ′(φ−1(γ(r, v)))√
1 − v′2

−H(φ−1(γ(r, v)), r) f (φ−1(γ(r, v)))− v + γ(r, v)
]
= 0, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = 0 = v(R).

(2.2)

It follows from [2] that the problem (2.2) has at least one solution.
We show that if v is a solution (2.2), then α(r) ≤ v(r) ≤ β(r) for all r ∈ [0, R]. This will

conclude the proof.
Suppose by contradiction that there is some r0 ∈ [0, R] such that

max
[0,R]

[α − v] = α(r0)− v(r0) > 0.

If r0 ∈ (0, R), then α′(r0) = v′(r0) and there are sequences {rk} in (0, r0) converging to r0 such
that α′(rk)− v′(rk) ≥ 0. Since ϕ is an increasing homeomorphism then we can have

rN−1
k ϕ(v′(rk))− rN−1

0 ϕ(v′(r0)) ≤ rN−1
k ϕ(α′(rk))− rN−1

0 ϕ(α′(r0)),

which means
(rN−1

0 ϕ(α′(r0)))
′ ≤ (rN−1

0 ϕ(v′(r0))
′.

Therefore, since α is a lower solution of (2.1) we have

(rN−1
0 ϕ(α′(r0)))

′

≤ (rN−1
0 ϕ(v′(r0)))

′

= NrN−1
0

[
− f ′(φ−1(α(r0)))√

1 − (α′(r0))2
+ H(φ−1(α(r0)), r0) f (φ−1(α(r0))) + v(r0)− α(r0)

]

< NrN−1
0

[
− f ′(φ−1(α(r0)))√

1 − (α′(r0))2
+ H(φ−1(α(r0)), r0) f (φ−1(α(r0)))

]
≤ (rN−1

0 ϕ(α′(r0)))
′,

but this a contradiction.
If max[0,R][α − v] = α(R) − v(R) > 0, then by definition of lower solutions, we obtain a

contradiction again. If max[0,R][α − v] = α(0)− v(0) > 0, then there exists r1 ∈ (0, R] such that
α(r)− v(r) > 0 for all r ∈ [0, r1] and α′(r1)− v′(r1) ≤ 0. It follows that

(rN−1
1 ϕ(α′(r1)))

′ ≤ (rN−1
1 ϕ(v′(r1)))

′.
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Note that I f R ⊂ I and f ′(t) ≥ 0 for all t ∈ I f R. By using the fact and integrating (2.2) from 0
to r1, we have that

rN−1
1 ϕ(α′(r1)) ≤ rN−1

1 ϕ(v′(r1))

< N
∫ r1

0
rN−1

[
− f ′(φ−1(α(r)))√

1 − (v′(r))2
+ H(φ−1(α(r)), r) f (φ−1(α(r)))

]
dr

≤ N
∫ r1

0
rN−1

[
− f ′(φ−1(α(r)))√

1 − (α′(r))2
+ H(φ−1(α(r)), r) f (φ−1(α(r)))

]
dr

≤ rN−1
1 ϕ(α′(r1)).

But this is a contradiction. Hence, α(r) ≤ v(r) for all r ∈ [0, R]. Analogously, we can show
that v(r) ≤ β(r) for all r ∈ [0, R].

Remark 2.3. The Theorem 2.2 still holds for f (t) ≡ 1.

3 Fixed point, a priori bounds and degree

In this section, we consider problems of type
(rN−1ϕ(v′))′ + rN−1g(r, v, v′) = 0, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0,

(3.1)

where N ≥ 1 is an integer, R > 0 is a constant, and we also assume that

(Aϕ) ϕ : (−1, 1) → R is an odd, increasing homeomorphism;

(Ag) g : [0, R]× [0, α)× (−1, 1) → [0,+∞) is a continuous function with 0 < α ≤ +∞.

Recall, by a solution of (3.1) we mean a function v ∈ C1 with ∥v′∥∞ < 1, such that rN−1ϕ(v′) ∈
C1 and (3.1) is satisfied.

Setting
σ(r) := 1/rN−1,

we introduce the linear operators

S : C → C, Sv(r) = σ(r)
∫ r

0
tN−1v(t) dt (r ∈ [0, R]), Sv(0) = 0;

K : C → C1, Kv(r) =
∫ R

r
v(t) dt (r ∈ [0, R]).

It is easy to see the standard argument that K is bounded and that S is compact by the Arzelà–
Ascoli theorem. This means that the nonlinear operator K ◦ ϕ−1 ◦ S : C → C1 is compact.
Moreover, for a given function h ∈ C, the problem

(rN−1ϕ(v′))′ + rN−1h(r) = 0, r ∈ (0, R), |v′| < 1, v′(0) = v(R) = 0

has a unique solution
v = K ◦ ϕ−1 ◦ S ◦ h.
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Next, let Ng be the Nemytskii operator associated with g, i.e.,

Ng : C → C, Ng = g(·, v(·), v′(·)).

Noticing that Ng is continuous and maps a bounded set to a bounded set. So problem (3.1)
has the following reformulation about fixed points.

Lemma 3.1. A function v ∈ C1
M is a solution of problem (3.1) if and only if the compact nonlinear

operator
Ng : C1

M → C1
M, Ng = K ◦ ϕ−1 ◦ S ◦ Ng

has a fixed point, and furthermore the fixed point of Ng satisfies

∥v′∥∞ < 1, ∥v∥∞ < R (3.2)

and
dLS[I −Ng, Bρ, 0] = 1 for all ρ ≥ (R + 1).

Proof. Since the range of ϕ−1 is (−1, 1), the inequality (3.2) holds. Next, consider the compact
homotopy

H : [0, 1]× C1
M, H(τ, ·) = τNg

and
H([0, 1]× C1

M) ⊂ B(R+1).

Then, from the invariance under homotopy of the Leray–Schauder degree it follows that

dLS[I −H(0, ·), Bρ, 0] = dLS[I −H(1, ·), Bρ, 0] = dLS[I −Ng, Bρ, 0] = 1,

for all ρ ≥ (R + 1).

In view of Theorem 2.2 and Remark 2.3, we have the following result.

Lemma 3.2. Assume that (3.1) has a lower solution α and an upper solution β such that α(r) ≤ β(r)
for all r ∈ [0, R], and let Ωα,β := {v ∈ C1

M : α ≤ v ≤ β}. Assume also that (3.1) has an unique
solution v0 in Ωα,β and there exists ρ0 > 0 such that B(v0, ρ0) ⊂ Ωα,β. Then

dLS = [I −Ng, B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to (3.1).

Proof. Let Ng be the fixed point operator associated with (3.1). The proof of Theorem 2.2
shows that any fixed point v of Ng is contained in Ωα,β, and this means that v0 is the unique
fixed of Ng and there exists ρ0 > 0 such that B(v0, ρ0) ⊂ Ωα,β. From Lemma 3.1 and the
excision property of the Leray–Schauder degree there is

dLS[I −Ng, B(v0, ρ0), 0] = 1,

which is
dLS[I −Ng, B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ρ0.

Lemma 3.3. Assume that (Aϕ), (Ag) and

(A′
g) g(r, v, v′) > 0 for all (r, v, v′) ∈ (0, R]× (0, α)× (−1, 1).
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Let v be a nontrivial solution of (3.1). Then v > 0 on [0, R) and v is strictly decreasing.

Proof. Let’s first integrate both sides of (3.1) from 0 to r, which is

v′(r) = −ϕ−1
(

1
rN−1

∫ r

0
sN−1g(s, v, v′)ds

)
. (3.3)

Then integrate both sides of (3.3) from r to R to get

v(r) =
∫ R

r
ϕ−1

(
1

tN−1

∫ t

0
sN−1g(s, v, v′)ds

)
dt. (3.4)

So if g(r, v, v′) > 0, we have v > 0 on [0, R) and v is strictly decreasing.

In the next lemma we assume that g is sublinear with respect to ϕ at zero.

Lemma 3.4. Assume that conditions (Aϕ), (Ag) and (A′
g) hold. Assume also that

lim
s→0+

g(r, s, s′)
ϕ(s)

= 0 uniformly for r × s′ ∈ [0, R]× (−1, 1) (3.5)

and

lim inf
s→0+

ϕ(σs)
ϕ(s)

> 0 for all σ > 0. (3.6)

Then there exists ρ0 > 0 such that

dLS[I −Ng, Bρ, 0] = 1 for all 0 < ρ ≤ ρ0.

Proof. Using (3.6) we can find ε > 0 such that

Rε/N < lim inf
s→0

ϕ(s/R)
ϕ(s)

. (3.7)

Using (3.5) we can find sε > 0 such that

g(r, s, s′) ≤ εϕ(s) for all (r, s, s′) ∈ [0, R]× [0, sε]× (−1, 1). (3.8)

Next, we consider the compact homotopy

H : [0, 1]× C1
M → C1

M, H(τ, v) = τNg(v).

Let’s we say have ρ0 > 0 such that

v ̸= H(τ, v) for all (τ, v) ∈ [0, 1]× (Bρ0 \ {0}). (3.9)

In fact, suppose there exists
vk = τkNg(vk), τk ∈ [0, 1],

where vk ∈ C1
M \ {0}, k ∈ N, ∥vk∥ → 0. From the previous lemma, v is strictly monotonically

decreasing and strictly positive on [0, R).
Asuming ∥vk∥ ≤ sε, k ∈ N, we can see from (3.8)

g(r, vk(r), v′k(r)) ≤ εϕ(∥vk∥∞) for all r ∈ [0, R], k ∈ N.
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Then for any k ∈ N, there is

∥vk∥∞ ≤
∫ R

0
ϕ−1

(
σ(t)

∫ t

0
rN−1g(r, vk, v′k)dr

)
dt

≤ Rϕ−1
(

εR
N

ϕ(∥vk∥∞)

)
.

That is, there is
ϕ
(
∥vk∥∞

R

)
ϕ(∥vk∥∞)

≤ εR
N

.

This contradicts (3.7) and so (3.9) is true. That is, for any ρ ∈ (0, ρ0], there is

dLS[I −H(1, ·), Bρ, 0] = dLS[I −Ng, Bρ, 0] = dLS[I −H(0, ·), Bρ, 0] = dLS[I, Bρ, 0] = 1.

4 Proof of main result

First of all there is an important lemma before the main result of this paper.

Lemma 4.1. Let k ∈ (0, 1), β0 ∈ (0, 1−k
8 R) be given. Let Ik,β0 :=

[ 4β0
1−k , R − 4β0

1−k

]
. Then

R
2
∈ Ik,β0

and
|v′(s)| ≤ 1 − k, ∀v ∈ A, ∀s ∈ Ik,β0 ,

where A := { v | v is concave in [0, R], v′(0) < 1, v′(R) > −1, ∥v∥∞ ≤ 4β0}.

Proof. Let a = 1 − k, b = 4β0
1−k , then

0 < a < 1, b ∈
(

0,
R
2

)
, I := Ik,β0 = [b, R − b].

Since v ∈ C1[0, R], v is concave in [0, R] and v′ is decreasing. If there exists s ∈ I such
that |v′(s)| > 1 − k = a, then v′(s) > a or v′(s) < −a. If v′(s) < −a, then v(s)−v(R)

s−R =

v′(t), for some t ∈ (s, R). So we have v(s)
s−R ≤ v′(s) < −a. Therefore v(s) > a(R − s) ≥

ab = 4β0 ≥ ∥v∥∞. This is a contradiction. Analogously, we can get a contradiction for other
case.

Proof of Theorem 1.1. Let us say

Sj := {λ > 0 : (1.3) at least j positive solutions}, (j = 1, 2).

1. The existence of Λ.

Let λ > 0 and v be a positive solution of (1.3). Firstly, using hypothesis (A f H), we have:

∀ε0 > 0, ∃ δ1, for |φ−1(v)− 0| < δ1, there can be
∣∣N f ′(φ−1(v))

v − f0
∣∣ < ε0. For the above ε0, ∃ δ2,

when |φ−1(v)− 0| < δ2, there is
∣∣N f (φ−1(v))H(φ−1(v),r)

v − H0
∣∣ < ε0.
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Secondly, integrating (1.3) from 0 to r ∈ (0, R] and using that v is a positive solution of
(1.3) such that we obtain

−rN−1ϕ(v′) =
∫ r

0
λtN−1

(
N f ′(φ−1(v))√

1 − v′2
− N f (φ−1(v))H(φ−1(v), t)

)
dt

< λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− H0v

)
dt

= λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− f0v

)
dt.

Using Lemma 4.1, let k = a0, β0 = (1−a0)η
8 R ∈ (0, 1−a0

8 R), a0 is the constant that satisfies
the definition and η ∈ (0, 1) is the given constant, then there is I = [ η

2 R, R − η
2 R]. Hence,

∥v∥∞ ≤ (1−a0)η
2 R, |v′(s)| ≤ 1 − a0, for all s ∈ I.

Therefore,

−rN−1ϕ(v′) < λ
∫ r

0
tN−1

(
f0v√

1 − v′2
− f0v

)
dt

≤ λ
∫ r

0
tN−1 f0

(1 − a0)η

2
R

(
1√

1 − (1 − a0)2
− 1

)
dt

≤ λMR
∫ r

0
tN−1dt

=
λMRrN

N
,

where M = f0
(1−a0)η

2

( 1√
1−(1−a0)2

− 1
)
.

Therefore, there is

−v′(r) ≤ − v′(r)√
1 − v′2

<
λMRr

N
. (4.1)

Integrating (4.1) from 0 to R we obtain

v(0) <
λMR3

2N
. (4.2)

Next, using v(0) > 0, we obtain

λ >
2NM0

R3 ,

where M0 := v(0)/M.
We know from [18] that the problem (1.3) has at least one positive solution for λ > 0.

Specially, S1 ̸= ∅ and we can define

Λ = Λ(R) := inf S1.

Clearly, we have Λ ≥ 2NM0
R3 . We claim that Λ ∈ S1. Indeed, let λk ⊂ S1, λk → Λ (k → ∞).

Since vk ∈ C1
M, vk is positive on [0, R), then

vk = K ◦ ϕ−1 ◦ S ◦

λk

N f ′(φ−1(vk))√
1 − v′2

k

− N f (φ−1(vk))H(φ−1(vk), r)

 .
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Using (3.2) and the Arzelà–Ascoli theorem can have v ∈ C and has a subsequence such that
{vk} → v. So, it follows that v ≥ 0 and

v = K ◦ ϕ−1 ◦ S ◦
(

Λ
(

N f ′(φ−1(v))√
1 − v′2

− N f (φ−1(v))H(φ−1(v), r)
))

.

With (4.2), we can see that there is a constant c1 > 0 such that vk(0) > c1, ∀k ∈ N. This ensures
that v(0) ≥ c1, according to Lemma 3.3, has v > 0 on [0, R). Hence, Λ ∈ S1. Obviously,
Λ > 2NM0

R3 .
Next, let λ0 > Λ, where λ0 is arbitrary. Here λ0 ∈ S1 is proved by Theorem 2.2. Let v1 be

a positive solution for (1.3) corresponding to λ = Λ. It is now easy to know that v1 is a lower
solution to problem (1.3) when λ = λ0. Construct the upper solution, let H > 0, R̃ > R, while
considering the problem(

rN−1 v′√
1 − v′2

)′
+ rN−1H = 0, v′(0) = v(R̃) = 0. (4.3)

By integrating the above formula, we get

v(r) =
N
H

[√
1 +

H2

N2 R̃2 −
√

1 +
H2

N2 r2

]
.

For fixed λ2 > λ0, let v2 is the solution of problem (4.3) corresponding to H = λ2MR̃. By
v2(R) > 0 and

λ0

N f ′(φ−1(v2))√
1 − v′2

2

− N f (φ−1(v2))H(φ−1(v2), r)

 ≤ λ2MR̃, r ∈ [0, R].

Then we can see that v2 is an upper solution of problem (1.3) when λ = λ0, then

v2(R) = N

[ √
1

(λ2MR̃)2
+

R̃2

N2 −
√

1
(λ2MR̃)2

+
R2

N2

]
.

Then there is v1(0) < v2(R) when R̃ is sufficiently large. Consider that v1, v2 is strictly
decreasing, then there is v1 < v2 on [0, R]. Thus, from Theorem 2.2 we know that λ0 ∈ S1,
therefore S1 ∈ [Λ, ∞].

2. Multiplicity.

Let λ0 > Λ. Let us prove λ0 ∈ S2 by Lemma 3.1, 3.2, 3.4. Let v1, v2 be constructed
as above. When λ = λ0, let v0 be a solution to problem (1.3) such that v1 ≤ v0 ≤ v2, i.e.,
v0 ∈ Ωv1,v2 := {v0 ∈ C1

M : v1 ≤ v0 ≤ v2}.
First, we claim that exists ε > 0 with B(v0, ε) ⊂ Ωv1,v2 . For all r ∈ [0, R], there is

v2(r) =
∫ R̃

r
ϕ−1

(
σ(t)

∫ t

0
sN−1λ2MR̃ds

)
dt

>
∫ R

r
ϕ−1

(
σ(t)

∫ t

0
sN−1λ2

(
N f ′(φ−1(v2))√

1 − v2′2
− N f (φ−1(v2))H(φ−1(v2), s)

)
ds
)

dt

≥
∫ R

r
ϕ−1

(
σ(t)

∫ t

0
sN−1λ0

(
N f ′(φ−1(v0))√

1 − v0′2
− N f (φ−1(v0))H(φ−1(v0), s)

)
ds

)
dt

= v0(r).
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Therefore, there exists ε2 > 0 such that v ≤ v2 for all v ∈ B(v0, ε2). Similarly on [0, R/2] there
is v1 < v0. Therefore ε′1 > 0 can be found such that

v ∈ C1
M and ∥v − v0∥∞ ≤ ε′1 ⇒ v ≥ v1 on [0, R/2]. (4.4)

On the other hand, we have

−v′0 = ϕ−1 ◦ S ◦ λ0

(
N f ′(φ−1(v0))√

1 − v0′2
− N f (φ−1(v0))H(φ−1(v0), r)

)
and

−v′1 = ϕ−1 ◦ S ◦ Λ

(
N f ′(φ−1(v1))√

1 − v1
′2

− N f (φ−1(v1))H(φ−1(v1), r)

)
,

yielding v′0 < v′1 on [R/2, R]. So we can find a sufficiently small ε1 ∈ (0, ε′1) such that v′ < v′1
on [R/2, R], where v ∈ B(v0, ε1). It follows from v0(R) = 0 = v(R) that for all v ∈ B(v0, ε1)

has v > v1 on [0,R]. Considering (4.4), we claim ε ∈ (0, min{ε1, ε2}). Next, if the problem (1.3)
has a second solution in Ωv1,v2 , then the proof of the multiplicity is completed.

If not, using Lemma 3.2 we get

dLS[I −Nλ0 , B(v0, ρ), 0] = 1 for all 0 < ρ ≤ ε,

where Nλ0 is the fixed point operator associated to (1.3) with λ = λ0.
In addition, using Lemma 3.1 we have

dLS[I −Nλ0 , Bρ, 0] = 1 for all ρ ≥ (R + 1).

From Lemma 3.4 one has

dLS[I −Nλ0 , Bρ, 0] = 1 for all sufficiently small ρ.

When ρ1, ρ2 is sufficiently small and ρ3 ≥ R + 1 such that B(v0, ρ1) ∩ Bρ2 = ∅ and
B(v0, ρ1) ∪ Bρ2 ⊂ Bρ3 . Then, from the additivity-excision property of the Leray–Schauder
degree it follows that

dLS[I −Nλ0 , Bρ3 \ [B(v0, ρ1) ∪ Bρ2 ], 0] = −1,

which, together with the existence property of the Leray–Schauder degree, imply that Nλ0 has
a fixed point ṽ0 ∈ Bρ3\[B(v0, ρ1)

⋃
Bρ2 ]. We infer that (1.3) has a second positive solution, and

the proof is complete.

Appendix: derivation process of problem (1.3)

To the best of our knowledge, problem (1.3) was first given in [20], but they did not given
derivation process. For the convenience of readers and integrity of the paper, here we give the
detailed derivation.

Without loss of generality, let us consider the radially symmetric spacelike solutions of the
Dirichlet problem with the mean curvature operator in FLRW spacetime

div
(

grad u
f (u)

√
f 2(u)−| grad u|2

)
+ f ′(u)√

f 2(u)−| grad u|2

(
N + | grad u|2

f 2(u)

)
= NH(u, |x|) in B(R),

| grad u| < f (u) in B(R),

u = 0 on ∂B(R),

(A.1)
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where B(R) = {x ∈ RN : |x| < R} and N ≥ 1.

Step 1. If N = 1.

Then (A.1) reduces to

(
u′

f (u)
√

f 2(u)− u′2

)′

+
f ′(u)√

f 2(u)− u′2

(
1 +

u′2

f 2(u)

)
= H(u, |x|), x ∈ (0, R),

|u′| < f (u), x ∈ (0, R),

u′(0) = u(R) = 0.

(A.2)

In fact (A.2) can be converted to the following

 1
f (u)

· u′

f (u)

√
1 −

(
u′

f (u)

)2


′

+
f ′(u)( f 2(u) + u′2)

f 3(u)

√
1 −

(
u′

f (u)

)2
= H(u, |x|), x ∈ (0, R),

|u′| < f (u), x ∈ (0, R),

u′(0) = u(R) = 0.

(A.3)

Let v(r) = φ(u(x)) and r = |x|. Then

v′(r) = φ′(u)u′(x) =
u′(x)

f (u(x))
,
(

φ(s) =
∫ s

0

dt
f (t)

)
,

and accordingly,
u(x) = φ−1(v(r)), u′(x) = f (u(x))v′(r). (A.4)

Since  1
f (u)

· u′

f (u)

√
1 −

(
u′

f (u)

)2


′

+
f ′(u)( f 2(u) + u′2)

f 3(u)

√
1 −

(
u′

f (u)

)2

=
− f ′(u)u′

f 2(u)
· u′

f (u)

√
1 −

(
u′

f (u)

)2
+

1
f (u)

·

 u′

f (u)

√
1 −

(
u′

f (u)

)2


′

+
f ′(u)

f (u)

√
1 −

(
u′

f (u)

)2
+

f ′(u)u′2

f 3(u)

√
1 −

(
u′

f (u)

)2

=
1

f (u)
·

 u′

f (u)

√
1 −

(
u′

f (u)

)2


′

+
f ′(u)

f (u)

√
1 −

(
u′

f (u)

)2
.

(A.5)

Then, this fact together with (A.4), problem (A.3) can be converted to the following
−
(

v′√
1 − v′2

)′
=

f ′(φ−1(v))√
1 − v′2

− f (φ−1(v))H(φ−1(v), r), r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(A.6)
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Step 2. If N ≥ 2.

Given u(x), x = (x1, . . . , xN).

Let v(r) = φ(u(x)) and r = |x| =
(

N
∑

i=1
x2

i

) 1
2

. Then

∂r
∂xi

=
1
2

(
N

∑
i=1

x2
i

)− 1
2

2xi =
xi

r
. (A.7)

∂v
∂xi

= v′(r)
∂r
∂xi

= v′(r) · xi

r
= φ′(u) · ∂u

∂xi
=

1
f (u)

· ∂u
∂xi

.

Hence
∂u
∂xi

= f (u) · v′(r) · xi

r
. (A.8)

Since

grad u =

(
∂u
∂x1

, . . . ,
∂u

∂xN

)
,

then

| grad u|2=
N

∑
i=1

(
∂u
∂xi

)2

=
N

∑
i=1

(
f (u) · v′(r) · xi

r

)2
=( f (u)v′(r))2

N

∑
i=1

( xi

r

)2
= ( f (u)v′(r))2, (A.9)

that is (
| grad u|

f (u)

)2

= (v′(r))2,

and accordingly, from this and (A.8), we have that

div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)

= div

 1
f (u)

· grad u

f (u)

√
1 −

(
| grad u|

f (u)

)2

+
f ′(u)

(
N f 2(u) + | grad u|2

)
f 3(u)

√
1 −

(
| grad u|

f (u)

)2

= div
( 1

f (u)
· grad u

f (u)
√

1 − (v′(r))2

)
+

f ′(u)
(

N f 2(u) + ( f (u)v′(r))2)
f 3(u)

√
1 − (v′(r))2

=
N

∑
i=1

∂

∂xi

(
1

f (u)
· 1

f (u)
√

1 − (v′(r))2
· f (u) · v′(r) · xi

r

)

+
f ′(u)

(
N f 2(u) + ( f (u)v′(r))2)

f 3(u)
√

1 − (v′(r))2

=
N

∑
i=1

∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)
+

f ′(u)(N f 2(u) + ( f (u)v′(r))2)

f 3(u)
√

1 − (v′(r))2
.

(A.10)

From now on, let us fixed the notation ϕ(s) = s√
1−s2 .

From (A.7), (A.8), it follows that
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∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)

=
− f ′(u) · f (u) · v′(r) · xi

r
f 2(u)

· ϕ(v′(r)) · xi

r

+
1

f (u)

[
ϕ′(v′(r)) · xi

r
· xi

r
+ ϕ(v′(r)) ·

r − xi · xi
r

r2

]
=

− f ′(u) · v′(r) ·
( xi

r

)2

f (u)
· ϕ(v′(r))

+
1

f (u)
ϕ′(v′(r)) ·

( xi

r

)2
+

1
f (u)

· ϕ(v′(r)) ·
r2 − x2

i
r3 .

(A.11)

Hence

N

∑
i=1

∂

∂xi

(
1

f (u)
· v′(r)√

1 − (v′(r))2
· xi

r

)

=
− f ′(u) · v′(r)

f (u)
· ϕ(v′(r)) +

1
f (u)

ϕ′(v′(r)) +
1

f (u)
· ϕ(v′(r)) · N − 1

r
. (A.12)

From this and (A.10), we have that

div

(
grad u

f (u)
√

f 2(u)− | grad u|2

)
+

f ′(u)√
f 2(u)− | grad u|2

(
N +

| grad u|2
f 2(u)

)
=

− f ′(u) · v′(r)
f (u)

· ϕ(v′(r)) +
1

f (u)
ϕ′(v′(r)) +

1
f (u)

· ϕ(v′(r)) · N − 1
r

+
N f ′(u)

f (u)
√

1 − (v′(r))2
+

f ′(u)v′(r)
f (u)

· ϕ(v′(r))

=
1

f (u)
ϕ′(v′(r)) +

1
f (u)

· ϕ(v′(r)) · N − 1
r

+
N f ′(u)

f (u)
√

1 − (v′(r))2

= NH(u, r).

(A.13)

Hence, we have

ϕ′(v′(r)) +
N − 1

r
ϕ(v′(r)) = − N f ′(u)√

1 − (v′(r))2
+ N f (u)H(u, r),

multiplying both sides of the equation by rN−1, we get that

rN−1ϕ′(v′(r)) + (N − 1)rN−2ϕ(v′(r)) = NrN−1

[
− f ′(u)√

1 − (v′(r))2
+ f (u)H(u, r)

]
,

that is

−(rN−1ϕ(v′(r)))′ = NrN−1

[
f ′(u)√

1 − (v′(r))2
− f (u)H(u, r)

]
. (A.14)

From this and the fact
u(x) = φ−1(v(r)),
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problem (A.1) can be converted to
− (rN−1ϕ(v′))′ = NrN−1

[
f ′(φ−1(v))√

1 − v′2
− f (φ−1(v))H(φ−1(v), r)

]
, r ∈ (0, R),

|v′| < 1, r ∈ (0, R),

v′(0) = v(R) = 0.

(A.15)
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