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Abstract. In this manuscript previous results [Nonlinearity 25(2012), 905–930] are ex-
tended to a non-autonomous 3D Navier–Stokes–Voigt model in which a forcing term
contains memory effects. Under suitable assumptions on the function driving the delay
time, the existence and uniqueness of weak solution are proved. Existence and relation-
ships among pullback attractors in several phase-spaces are analyzed for two possible
choices of the attracted universes, namely, the standard one of fixed bounded sets, and
another one given by a tempered condition. Some regularity results for these attrac-
tors are also established. Compactness and attraction norms are strengthened. Since
the model does not have a regularizing effect, obtaining asymptotic compactness for the
associated process is a more involved task. Our proofs rely on a sharp use of the energy
equality, an energy method, bootstrapping arguments and by using bi-space attractors
results.
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1 Introduction and setting of the problem

Let Ω ⊂ R3 be a bounded domain with smooth enough (e.g. C2) boundary ∂Ω. We consider
an arbitrary initial time τ ∈ R, and the following non-autonomous functional Navier–Stokes–
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Voigt problem:

∂

∂t
(
u − α2∆u

)
− ν∆u + (u · ∇)u +∇p = f (t) + g(t, ut) in Ω × (τ, ∞),

div u = 0 in Ω × (τ, ∞),

u = 0 on ∂Ω × (τ, ∞),

u(x, τ) = uτ(x), x ∈ Ω,

u(x, τ + s) = ϕ(x, s), x ∈ Ω, s ∈ (−h, 0),

(1.1)

where ν > 0 is the kinematic viscosity, α > 0 is a characterizing parameter of the elasticity of
the fluid, u = (u1, u2, u3) is the velocity field of the fluid, p is the pressure, f is a non-delayed
external force field, g is another external force containing some hereditary characteristics, and
uτ and ϕ(x, s − τ) are the initial data in τ and (τ − h, τ) respectively, where h > 0 is the time
of memory effect. For each t ≥ τ, we denote by ut the function defined a.e. on (−h, 0) by the
relation ut(s) = u(t + s), a.e. s ∈ (−h, 0).

The Navier–Stokes–Voigt (NSV for short in the sequel) model of viscoelastic incompresible
fluid, introduced by Oskolkov in [29], gives an approximate description of the Kelvin-Voigt
fluid (see [22, 30]), and was proposed as a regularization of the 3D-Navier–Stokes equations
for the purpose of direct numerical simulations in [2]. The extra regularizing term −α2∆ut

changes the parabolic character of the equation, making it a well-posed (forward and back-
ward) problem in 3D, but one does not observe any immediate smoothing of the solution, as
expected in parabolic PDEs. Moreover, the generated semigroup is only asymptotically com-
pact, similarly to damped hyperbolic systems. One of the studied topics about the problem
is the inviscid question in some different senses. It is also worth observing that, when ν = 0,
the inviscid equation that one recovers is the simplified Bardina subgrid scale model of tur-
bulence. The relationship between the original and inviscid models was also addressed in [2].
On other hand, some questions on the inviscid regularization were used for the study of a 2D
surface quasi-geostrophic model in [21].

With respect to the non-delayed NSV model, the long-time behaviour of the solutions
has been studied by different authors. Namely, in the autonomous case, the existence of a
global compact attractor was proved by Kalantarov and Titi in [20]. Other related results have
been also analyzed, as the Gévrey regularity of the global attractor (again for the autonomous
model) when the force term is analytic of Gévrey type (see [19]), and the establishment of
similar statistical properties (and invariant measures) as for the 3D-Navier–Stokes equations
(cf. [23, 31]). Moreover, in the non-autonomous case, the existence of minimal pullback at-
tractors in both V and D(A) norms, and some regularity properties of these attractors, were
obtained in [14]. We may also cite in this non-autonomous framework the paper [40], where
the existence of uniform attractor for a NSV model is studied.

On the other hand, in many physical experiments, the inclusion of measurement devices
to control properties of fluids (such as temperature, velocity, etc.) may incorporate additional
external forces to the model including also delay effects (e.g. for a wind-tunnel model). In this
sense, the study of 2D-Navier–Stokes models with delay terms – existence, uniqueness, sta-
tionary solutions, exponential decay, existence of attractors, et cetera – was initiated in the ref-
erences [6–8] and, after that, many different questions, as dealing with unbounded domains,
and models (for instance in three dimensions for modified terms) have been addressed (e.g.,
cf. [15,17,26,28,36] among others). In the past years, the asymptotic behaviour of the Navier–
Stokes–Voigt equations with delays or with memory have been studied in [3, 12, 24, 34, 35, 38].
It is worth pointing out that, in [24], the authors establish the existence of pullback attractors
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in V norm for a three dimensional NSV model when the forcing term containing the delay
is sublinear and only continuous. Since the uniqueness of solution is not guaranteed under
these assumptions, they use the theory of multi-valued dynamical systems and similar argu-
ments as in [28] for the proof of the asymptotic compactness of the process. In this work,
we suppose more restrictive conditions on the delay operator that assure the uniqueness of
solution, so we can apply the classical results of Dynamical Systems. However, in contrast
with [24], we modify the phase-space enlarging the set of initial conditions. Moreover, for
the associated single-valued process, we are able to obtain the existence of minimal pullback
attractors, with richer compactness sections and not only in (roughly speaking) V norm, but
also in D(A) norm. Moreover, some regularity properties of these attractors are also success-
fully established. This analysis is carried out by applying similar techniques as in [14], but
with the necessary modifications caused by the inclusion of a delay term.

As commented before, the difference between this model and the standard 2D-Navier–
Stokes model is that there exists a regularizing effect in the 2D-Navier–Stokes model, while
not here. For 2D-Navier–Stokes a continuous energy method can be applied thanks to the
extra estimates that hold in higher norms (e.g., cf. [28]), which does not seem to hold for the
NSV model. Some of the proofs in the previously cited references about NSV (e.g., cf. [20])
rely on splitting the problem in two, one with exponential decay, and the other with good
asymptotic properties in the domain of a suitable fractional power of the Stokes operator.
However, similarly as in [14], we will provide a simpler proof, which does not require the
above mentioned technicalities, but a sharp use of the energy equality, and the energy method
used by Rosa in [32]. Moreover, it is worth pointing out that our results in Section 3 do not
use the regularity assumption on ∂Ω at all, and the force term may take values in V ′ instead
of in L2 as appears in [20].

The structure of the paper is the following. In Section 2 we recall some definitions of
classical functional spaces to state our problem in an abstract form, basic properties and
estimates of the involved operators. We also obtain a result on the existence, uniqueness
and regularity of the weak solution for problem (1.1). We start Section 3 with a brief recall
of the main definitions on the theory of minimal pullback attractors and bi-space attractors
for non-autonomous dynamical systems within the framework of universes. Then, we prove
the existence of pullback attractors in (roughly speaking) V norm and for two choices of
the attracted universes, namely, the standard one of fixed bounded sets, and secondly, one
given by a tempered growth condition. We also establish some relations among these families
and improve compactness and attraction norm results. In Section 4, extra regularity for the
obtained attractors will be deduced by using a bootstrapping argument that involves fractional
powers of the Stokes operator. Finally, in Section 5, the problem of attraction in D(A) norm is
studied although it is more involved (namely it fits out from the standard theoretical results).
Indeed under suitable assumptions, all attractors are proved to coincide.

2 Existence and uniqueness of solution

In this section we prove existence, uniqueness and regularity of the solutions to problem (1.1).
These results will be obtained in a similar way as in [14], but with the necessary changes due
to the inclusion of a delay term. We begin by stating the problem in an abstract setting, and to
do so we recall several definitions of functional spaces, operators and some of their properties
(for the details see [37]).

To start with, we consider the usual spaces in the variational theory of Navier–Stokes
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equations: H, the closure of V = {u ∈ (C∞
0 (Ω))3 : div u = 0} in (L2(Ω))3 with norm |·| , and

inner product (·, ·), and V, the closure of V in (H1
0(Ω))3 with norm ∥·∥ , and inner product

((·, ·)), that is, the L2-product of gradients, thanks to the Poincaré inequality.
We will use ∥·∥∗ for the norm in V ′ and ⟨·, ·⟩ for the duality ⟨V ′, V⟩ . We consider every

element h ∈ H as an element of V ′, given by the equality ⟨h, v⟩ = (h, v) for all v ∈ V. It follows
that V ⊂ H ⊂ V ′, where the injections are dense and compact.

Let us define the linear continuous operator A : V → V ′ as ⟨Au, v⟩ = ((u, v)) for all
u, v ∈ V, and we denote D(A) = {u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has
that D(A) = (H2(Ω))3 ∩ V, and Au = −P∆u for all u ∈ D(A) is the Stokes operator (P is
the ortho-projector from (L2(Ω))3 onto H). On D(A) we consider the norm | · |D(A) defined
by |u|D(A) = |Au|. Observe that on D(A) the norms ∥ · ∥(H2(Ω))3 and | · |D(A) are equivalent,
and D(A) is compactly and densely injected in V. We will also denote by {wj}j≥1 ⊂ D(A)

a Hilbert basis of H formed by normalized eigenfunctions of the Stokes operator A, with
corresponding eigenvalues {λj}j≥1 being 0 < λ1 ≤ λ2 ≤ . . . and limj→∞ λj = ∞. Recall that
the first eigenvalue of A satisfies

λ1 = inf
v∈V\{0}

∥v∥2

|v|2 . (2.1)

For the fractional powers of A, we have the following inclusions with continuous injection
(cf. [33, Chapter III, Lemmas 2.4.2 and 2.4.3]):

D(Aβ) ⊂ (L6/(3−4β)(Ω))3, ∀ 0 ≤ β < 3/4, (2.2)

D(A3/4) ⊂ (Lp(Ω))3, ∀ 1 ≤ p < ∞, (2.3)

and
D(Aβ) ⊂ (L∞(Ω))3, ∀ 3/4 < β ≤ 1. (2.4)

Now, we define

b(u, v, w) =
3

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
wj dx,

for every functions u, v, w : Ω → R3 for which the right-hand side is well defined. In particu-
lar, b has sense for all u, v, w ∈ V, and is a continuous trilinear form on V × V × V, i.e., there
exists a constant C1 > 0 such that

|b(u, v, w)| ≤ C1∥u∥∥v∥∥w∥, ∀u, v, w ∈ V. (2.5)

Important properties concerning b are that

b(u, v, w) = −b(u, w, v), ∀u, v, w ∈ V,

b(u, v, v) = 0, ∀u, v ∈ V, (2.6)

and, using Agmon inequality (e.g. cf. [10]), we can assure that there exists a constant C2 > 0
such that

|b(u, v, w)| ≤ C2|Au|1/2∥u∥1/2∥v∥|w|, ∀u ∈ D(A), v ∈ V, w ∈ H. (2.7)

For any u ∈ V, we will use B(u) to denote the element of V ′ given by ⟨B(u), w⟩ = b(u, u, w)

for all w ∈ V. Thus, by (2.5),

∥B(u)∥∗ ≤ C1∥u∥2, ∀u ∈ V, (2.8)
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and in particular, by (2.7) and the identification of H′ with H, if u ∈ D(A), then B(u) ∈ H, with

|B(u)| ≤ C2|Au|1/2∥u∥3/2, ∀u ∈ D(A). (2.9)

In fact, from (2.4), one also deduces that if u ∈ D(Aβ) with 3/4 < β ≤ 1, then B(u) ∈ H,
and more exactly

|B(u)| ≤ C(β)|Aβu|∥u∥, ∀u ∈ D(Aβ), ∀ 3/4 < β ≤ 1. (2.10)

Analogously, if 0 ≤ β < 3/4, from (2.2) one obtains that if u ∈ D(Aβ) ∩ V, B(u) ∈
D(Aβ−3/4), and more exactly

|Aβ−3/4B(u)| ≤ C(β)|Aβu|∥u∥, ∀u ∈ D(Aβ) ∩ V, ∀ 0 ≤ β < 3/4. (2.11)

Finally, in the case β = 3/4, from (2.3) one can see that if u ∈ D(A3/4), then B(u) ∈ D(A−δ)

for all δ > 0, and more exactly

|A−δB(u)| ≤ C(3/4,δ)|A3/4u|∥u∥, ∀u ∈ D(A3/4), ∀δ > 0.

Now, we establish some appropriate assumptions on the term in (1.1) containing the delay.
Let (X, ∥ · ∥X) be a Banach space. We will denote CX = C([−h, 0]; X), the space of

continuous functions from [−h, 0] into X, with the norm ∥φ∥CX = maxs∈[−h,0] ∥φ(s)∥X, and
L2

X = L2(−h, 0; X), where the norm will be denoted by ∥ · ∥L2
X

. On the delay operator from
(1.1), we consider that is well defined as g : R × CH → (L2(Ω))3, and it satisfies the following
assumptions:

(I) for all ξ ∈ CH, the function R ∋ t 7→ g(t, ξ) ∈ (L2(Ω))3 is measurable,

(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH ,

(IV) there exists Cg > 0 such that for all τ ≤ t, and for all u, v ∈ C([τ − h, t]; H),∫ t

τ
|g(s, us)− g(s, vs)|2 ds ≤ C2

g

∫ t

τ−h
|u(s)− v(s)|2 ds.

Examples of fixed, variable and distributed delay operators can be found, for instance, in
[6, Section 3], [8, Sections 3.5 and 3.6], and [17, Section 3], and we omit them here just for the
sake of brevity.

Observe that (I)–(III) imply that given T > τ and u ∈ C([τ − h, T]; H), the function gu :
[τ, T] → (L2(Ω))3 defined by gu(t) = g(t, ut) for all t ∈ [τ, T], is measurable and, in fact,
belongs to L∞(τ, T; (L2(Ω))3). Then, thanks to (IV), the mapping

G : u ∈ C([τ − h, T]; H) → gu ∈ L2(τ, T; (L2(Ω))3)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ − h, T; H)

into L2(τ, T; (L2(Ω))3). From now on, we will denote g(t, ut) = G̃(u)(t) for each
u ∈ L2(τ − h, T; H), and thus property (IV) will also hold for all u, v ∈ L2(τ − h, T; H).
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Since it will be used to deduce some estimates for the solutions of (1.1), we study the
autonomous equation u + α2Au = φ. From the Lax–Milgram lemma, we know that for each
φ ∈ V ′ there exists a unique uφ ∈ V such that uφ + α2Auφ = φ. Therefore, the mapping

C : u ∈ V 7→ u + α2Au ∈ V ′

is linear and bijective, with C−1φ = uφ. Moreover, by the definition of D(A), we also have that
C−1(H) = D(A). Now, reasoning as in [14], we obtain that

∥uφ∥ ≤ α−2∥φ∥∗, ∀φ ∈ V ′, (2.12)

and
|Auφ| ≤ 2α−2|φ|, ∀φ ∈ H. (2.13)

Let us consider that uτ ∈ V, ϕ ∈ L2
H, and f ∈ L2

loc(R; V ′).

Definition 2.1. A weak solution to (1.1) is a function u that belongs to L2(τ − h, T; H) ∩
L2(τ, T; V) for all T > τ, such that u(τ) = uτ, u(t) = ϕ(t − τ) a.e. t ∈ (τ − h, τ), and
satisfies

d
dt
(u(t) + α2Au(t)) + νAu(t) + B(u(t)) = f (t) + g(t, ut), in D′(τ, ∞; V ′). (2.14)

Observe that if u is a weak solution to (1.1), then u(t)+ α2Au(t) ∈ L2(τ, T; V ′) for all T > τ,
and by (2.8), d

dt (u(t) + α2Au(t)) ∈ L1(τ, T; V ′) for all T > τ. Therefore, by using (2.12) and
reasoning as in [14], we can deduce that u ∈ C([τ, ∞); V), whence the initial datum u(τ) = uτ

has full sense, and u′ ∈ L2(τ, T; V) for all T > τ.
Furthermore, the following energy equality holds:

1
2

d
dt
(|u(t)|2 + α2∥u(t)∥2) + ν∥u(t)∥2 = ⟨ f (t), u(t)⟩+ (g(t, ut), u(t)), a.e. t > τ. (2.15)

Concerning the existence and uniqueness of weak solution to (1.1), we have the following
result.

Theorem 2.2. Let f ∈ L2
loc(R; V ′), and g : R × CH → (L2(Ω))3 satisfying (I)–(IV), be given. Then,

for each τ ∈ R, uτ ∈ V and ϕ ∈ L2
H, there exists a unique weak solution u = u(·; τ, uτ, ϕ) of (1.1).

Moreover, if f ∈ L2
loc(R; (L2(Ω))3) and uτ ∈ D(A), then u has the following regularity

u ∈ C([τ, ∞); D(A)), u′ ∈ L2(τ, T; D(A)) for all T > τ, (2.16)

and a.e. t > τ satisfies

1
2

d
dt
(∥u(t)∥2 + α2|Au(t)|2) + ν|Au(t)|2 + (B(u(t)), Au(t)) = ( f (t) + g(t, ut), Au(t)). (2.17)

Proof. Uniqueness. Consider two weak solutions u(1) and u(2) to problem (1.1), corresponding
to the same initial data, and denote û = u(1) − u(2). Observe that by (2.5) and (2.6),

|b(u(1)(s), u(1)(s), û(s))− b(u(2)(s), u(2)(s), û(s))| = |b(û(s), u(1)(s), û(s))|
≤ C1∥u(1)(s)∥∥û(s)∥2.
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Then, from the equation satisfied by û and the energy equality, it follows that

|û(t)|2 + α2∥û(t)∥2 + 2ν
∫ t

τ
∥û(s)∥2 ds

= − 2
∫ t

τ
b(û(s), u(1)(s), û(s)) ds + 2

∫ t

τ
(g(s, u(1)

s )− g(s, u(2)
s ), û(s)) ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds + 2

∫ t

τ
|g(s, u(1)

s )− g(s, u(2)
s )||û(s)| ds

for all t ≥ τ. Now, by the Young inequality and the assumption (IV) on g, taking into account
that û(s) = 0 for s ∈ (τ − h, τ), we obtain that

|û(t)|2 + α2∥û(t)∥2 + 2ν
∫ t

τ
∥û(s)∥2 ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds +

∫ t

τ
|g(s, u(1)

s )− g(s, u(2)
s )|2 ds +

∫ t

τ
|û(s)|2 ds

≤ 2C1

∫ t

τ
∥u(1)(s)∥∥û(s)∥2 ds + λ−1

1 (C2
g + 1)

∫ t

τ
∥û(s)∥2 ds

for all t ≥ τ, and in particular

∥û(t)∥2 ≤ α−2(2C1 + λ−1
1 (C2

g + 1)
) ∫ t

τ

(
∥u(1)(s)∥+ 1

)
∥û(s)∥2 ds

for all t ≥ τ. Thus, from the Gronwall lemma, we conclude uniqueness.

Existence. We will follow a Galerkin scheme similarly as in [14, Theorem 4]. Let {wj}j≥1 ⊂
D(A) be the Hilbert basis of H formed by normalized eigenfunctions of the Stokes operator
A introduced before.

For each integer m ≥ 1, we pose the approximate problems of finding um ∈ Vm :=
span[w1, . . . , wm] with um(t) = ∑m

j=1 γm,j(t)wj, where the coefficients γm,j are required to sat-
isfy the system

d
dt
(um(t) + α2Aum(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj)

= ⟨ f (t), wj⟩+ (g(t, um
t ), wj), a.e. t > τ, 1 ≤ j ≤ m, (2.18)

and the initial conditions

um(τ) = Pmuτ and um(τ + s) = Pmϕ(s) a.e. s ∈ (−h, 0),

where Pm is the orthogonal projector from H onto Vm. Observe that, by the choice of the basis
{wj}j≥1, the restriction Pm |V of Pm to V belongs to L(V), ∥Pm |V∥L(V) ≤ 1 for all m ≥ 1, and
limm→∞ ∥uτ − Pmuτ∥ = 0.

The above system of ordinary functional differential equations with finite delay fulfills the
conditions for existence and uniqueness of local solution (see for example [18]).

Next, we will deduce a priori estimates that in particular assure that the solutions um do
exist for all time t ∈ [τ − h, ∞).

Multiplying each equation in (2.18) by γm,j(t) and summing from j = 1 to j = m, we obtain
that a.e. t > τ,

d
dt
(|um(t)|2 + α2∥um(t)∥2) + 2ν∥um(t)∥2 = 2⟨ f (t), um(t)⟩+ 2(g(t, um

t ), um(t))

≤ ν∥um(t)∥2 + ν−1∥ f (t)∥2
∗ + |g(t, um

t )|2 + |um(t)|2,
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where we have used (2.6) to remove the nonlinear term b, and the Young inequality.
By integrating in time, from the assumptions on the delay operator g, in particular we

deduce that

|um(t)|2 + α2∥um(t)∥2

≤ |Pmuτ|2 + α2∥Pmuτ∥2 + ν−1
∫ t

τ
∥ f (s)∥2

∗ ds + C2
g

∫ t

τ−h
|um(s)|2 ds +

∫ t

τ
|um(s)|2 ds

≤ |uτ|2 + α2∥uτ∥2 + C2
g∥ϕ∥2

L2
H
+ ν−1

∫ t

τ
∥ f (s)∥2

∗ ds + λ−1
1 (C2

g + 1)
∫ t

τ
∥um(s)∥2 ds

for all t ≥ τ, and any m ≥ 1. Now, by the Gronwall lemma we conclude that the sequence
{um}m≥1 is bounded in C([τ, T]; V) for all T > τ. Moreover, since um

τ = Pmϕ converges to
ϕ in L2(−h, 0; H), in particular, thanks to (IV), the sequence {g(·, um

· )}m≥1 is bounded in
L2(τ, T; (L2(Ω))3) for all T > τ.

Now from (2.8), (2.18) and by the choice of the basis, we obtain that vm = Cum satisfies

∥(vm)′(t)∥∗ ≤ ν∥um(t)∥+ C1∥um(t)∥2 + ∥ f (t)∥∗ + λ−1/2
1 |g(t, um

t )|, a.e. t > τ,

which implies that the sequence {dvm/dt}m≥1 is bounded in L2(τ, T; V ′) for all T > τ. There-
fore, taking into account that dum/dt = C−1 (dvm/dt) , we have that the sequence {dum/dt}m≥1

is bounded in L2(τ, T; V) for all T > τ.
Thus, by the compactness of the injection of V into H and the Ascoli–Arzelà theorem, we

deduce that there exist a subsequence {um′}m′≥1 ⊂ {um}m≥1 and a function u ∈ W1,2(τ, T; V)

for all T > τ, with uτ = ϕ, such that

um′ ∗
⇀ u weakly-star in L∞(τ, T; V),

um′ → u strongly in C([τ, T]; H),

um′ → u a.e. in Ω × (τ, T),

g(·, um′
· ) → g(·, u·) strongly in L2(τ, T; (L2(Ω))3),

dum′

dt
⇀

du
dt

weakly in L2(τ, T; V),

dvm′

dt
= C

(
dum′

dt

)
⇀ C

(
du
dt

)
weakly in L2(τ, T; V ′),

(2.19)

for all T > τ.
Now, using the same reasoning as in [14], we can obtain that B(um′

) ⇀ B(u) weakly in
L2(τ, T; V ′), for all T > τ. So, from all the convergences above, we can take limits in (2.18) and
conclude that u satisfies (2.14).

Notice also that u(τ) = limm′→∞ um′
(τ) = limm′→∞ Pm′uτ = uτ. Thus, u is the weak solu-

tion to (1.1).
Finally, the regularity property (2.16) and the identity (2.17) follow from the corresponding

results proved in [14, Theorem 4] and the fact that, if f ∈ L2
loc(R; (L2(Ω))3), then the function

f (·) + g(·, u·) belongs to L2
loc(τ, ∞; (L2(Ω))3).

Remark 2.3. Observe that in the above proof, using the uniqueness of solution to the problem,
for any T > τ we have that the whole sequence of the Galerkin approximations {um} con-
verges to u in C([τ, T]; H). Actually, all the convergences in (2.19), except the third one, hold
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for the whole sequence. Analogously, one also deduces that for any t ∈ [τ, T], um(t) ⇀ u(t)
weakly in V.

In addition, if uτ ∈ D(A) and f ∈ L2
loc(R; (L2(Ω))3), then for any T > τ the sequence {um}

converges to u in C([τ, T]; V), and weakly-star in L∞(τ, T; D(A)), for any t ∈ [τ, T], um(t) ⇀
u(t) in D(A), and the sequence {dum/dt} converges to du/dt weakly in L2(τ, T; D(A)).

Remark 2.4. (i) The solution depends continuously on the initial data in the strong topology
of V × L2

H. Moreover, when f ∈ L2
loc(R; (L2(Ω))3), the solution depends continuously on the

initial data in the strong topology of D(A)× L2
V . Indeed, this can be proved similarly to the

proof of uniqueness of weak solution to (1.1), considering the difference of two solutions and
using the Gronwall lemma.

(ii) The existence and uniqueness part of Theorem 2.2 do not need any regularity assump-
tion on the boundary of the domain. In fact, this assumption is only required for the additional
regularity results.

3 Existence of minimal pullback attractors in V norm

Before to start, let us recall some abstract definitions and results on pullback attractors and bi-
space attractors theories. In fact, abstract existence results are omitted for the sake of brevity.
For instance, they can be found in [4, 5, 13, 27] for pullback attractors (and references therein)
and in [11] for bi-space pullback attractors (see also [1, 9, 39] for the autonomous bi-space
attractors theory). They will be applied to a suitable dynamical system associated to (1.1), or
to a restricted version involving more regularity or because of better properties.

Consider given a metric space (X, dX), and let us denote R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

A process U on X is a mapping R2
d × X ∋ (t, τ, x) 7→ U (t, τ)x ∈ X such that U (τ, τ)x = x

for any (τ, x) ∈ R × X, and U (t, r)(U (r, τ)x) = U (t, τ)x for any τ ≤ r ≤ t and all x ∈ X.
A process U is said to be continuous if for any pair τ ≤ t, the mapping U (t, τ) : X → X is

continuous. It is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if xn → x ∈ X
and U (t, τ)xn → y ∈ X, then U (t, τ)x = y. It is clear that every continuous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a family of
nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

The process U is pullback D̂0-asymptotically compact if for any t ∈ R and any sequences
{τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, the sequence
{U (t, τn)xn} is relatively compact in X.

A process U on X being pullback D̂0-asymptotically compact possesses a family of non-
empty compact subsets of X, namely the atomized structure for the asymptotic behavior, the
omega-limit family ΛX(D̂0) = {ΛX(D̂0, t) : t ∈ R} with

ΛX(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U (t, τ)D0(τ)
X

.

It pullback attracts in X norm to D̂0 (cf. [13, Proposition 3.4]), i.e.

lim
τ→−∞

distX(U (t, τ)D0(τ), ΛX(D̂0, t)) = 0, ∀t ∈ R,

where distX(·, ·) denotes the Hausdorff semi-distance in X. In fact, it is the minimal family
of closed sections in X that attracts D̂0. Moreover, if U is also a closed process on X, then (cf.
[13, Proposition 3.5]) it is invariant, i.e. U (t, τ)ΛX(D̂0, τ) = ΛX(D̂0, t) for all τ ≤ t.
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Let be given D a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂
P(X). The class D will be called a universe in P(X).

Definition 3.1. A process U on X is said to be pullback D-asymptotically compact if it is
D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for U on X if for
any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that U (t, τ)D(τ) ⊂ D0(t) for all
τ ≤ τ0(t, D̂).

The suitable combination of the above two ingredients leads to

Definition 3.2. Given a metric space X, a universe D in P(X), and a process U on X, a family
AD = {AD(t) : t ∈ R} is called a pullback D-attractor for U if (i) AD(t) is compact in X for
any t ∈ R, (ii) AD pullback D-attracts in X and (iii) it is invariant (i.e. U (t, τ)AD(τ) = AD(t)
for any τ ≤ t).

Besides, it is said the minimal pullback D-attractor for U on X if given any family Ĉ =

{C(t) : t ∈ R} ⊂ P(X) of closed sets that pullback D-attracts under U , then AD(t) ⊂ C(t).

Without minimality, pullback attractors are not unique in general (cf. [27]). Minimality in-
volves uniqueness and a clear candidate, after the definition of omega-limit families. Namely,
the following result is well-known.

Theorem 3.3 (cf. [13, Theorem 3.11]). Consider a closed process U : R2
d × X → X, a universe D

in P(X), and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U , and
assume also that U is pullback D̂0-asymptotically compact. Then, the family AD = {AD(t) : t ∈ R}
defined by AD(t) =

⋃
D̂∈D ΛX(D̂, t)

X
is the minimal pullback D-attractor for U in X.

Remark 3.4. Under the assumptions of Theorem 3.3, the family AD satisfies AD(t)⊂ ΛX(D̂0, t)
for any t ∈ R. Actually, if D̂0 ∈ D, then AD = ΛX(D̂0). Moreover, if AD ∈ D, then it is the
unique family of closed subsets in D that satisfies (ii)–(iii) in Definition 3.2. A sufficient
condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is closed for all t ∈ R, and
the family D is inclusion-closed (i.e., if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with
D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).

We will denote DF(X) the universe of fixed nonempty bounded subsets of X, i.e., the class
of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded
subset of X.

Now, it is easy to conclude the following result.

Corollary 3.5 (cf. [27, Corollaries 20 and 21]). Under the assumptions of Theorem 3.3, if D contains
DF(X), then the minimal pullback attractor ADF(X) also exists and ADF(X)(t) ⊂ AD(t) for all t ∈ R.
Moreover, if for some T ∈ R, the set ∪t≤TD0(t) is bounded, then ADF(X)(t) = AD(t) for all t ≤ T.

Comparison results with different universes are also possible if the process U is well-
posed in several metric spaces with a connection between them. Namely, Theorem 3.15 in [13]
allows us to gain additional regularity about attractors. For the sake of brevity, we omit such
statement. Nevertheless, we will recall another one with previous definitions, which will be
analogously useful for our results (this is inspired from another study, cf. [25, Section 5]).

Theory of bi-space attractors (cf. [1,9,39] for autonomous setting and the references therein)
is close to the previous results but joining extra regularity of the solution operator involving
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two spaces. Since our context is non-autonomous, we borrow some of these results from [11],
settled in this framework also for closed processes. Consider given two metric spaces (Xi, dXi),
i = 1, 2 (not necessarily related) and a process U on X1. It is said (cf. [11, Definition 2.12]) that
U is (X1, X2) closed if for any τ ≤ t and {xn} ⊂ X1 ∩ X2 with U (t, τ)xn ∈ X1 ∩ X2, if xn → x
in X2 and U (t, τ)xn → y ∈ X2, then x ∈ X1 and U (t, τ)x = y.

Given a parameterized-in-time family D̂0 ⊂ P(X1), a process U on X1 is said (X1, X2)

pullback D̂0-asymptotically compact (cf. [11, Definition 2.4]) if for any t ∈ R, sequence {τn} ⊂
(−∞, t] and {xn} ⊂ X1 with τn → −∞ and xn ∈ D0(τn), the sequence {U (t, τn)xn} is relatively
compact in X2. Analogously to Definition 3.1, a process U on X1 is said to be (X1, X2) pullback
D-asymptotically compact if it is (X1, X2) pullback D̂-asymptotically compact for any D̂ ∈ D.

We may run parallel the construction of a family with the desired properties of minimal
pullback attractor for a universe D in P(X1), provided that for any D̂ = {D(s) : s ∈ R} ∈ D
and t ∈ R there exists sD̂,t ≤ t such that U (t, s)D(s) ⊂ X2 for all s ≤ sD̂,t (cf. [11, (2.2)]). In this
case, data comes from X1 and the arrival attracting space is X2 with its corresponding metric
[11, Definition 2.2].

Definition 3.6. Let be given a process U on X1 and a universe D in P(X1). The family
ÂD = {ÂD(t) : t ∈ R} is called a (X1, X2) pullback D-attractor if (i) ÂD(t) ⊂ X1 ∩ X2 is
a nonempty compact set in X2 for each t ∈ R, (ii) it is pullback D-attracting using the Haus-
dorff semidistance in X2 and (iii) it is invariant. Besides, it is said minimal if for any other
family Ĉ of nonempty closed time-sections with values in X2 and pullback D-attracting in X2,
then ÂD(t) ⊂ Ĉ(t) for any t ∈ R.

Similarly to Theorem 3.3, we may ensure the existence of the minimal (X1, X2) pullback
D-attractor under rather general conditions (cf. [11, Theorem 2.16]).

Theorem 3.7. Let be given two metric spaces Xi, i = 1, 2, a process U on X1, and a universe D in
P(X1). Suppose that there exists a family B̂0 in P(X1) that is pullback D-absorbing, such that for any
t ∈ R there exists sB̂0,t ≤ t such that U (t, s)B̂0(s) ⊂ X2 for any s ≤ sB̂0,t. If the process U is (X1, X2)

closed and (X1, X2) pullback B̂0-asymptotically compact, then there exists ÂD the minimal (X1, X2)

pullback D-attractor for U , and it is given by ÂD(t) = ∪D̂∈DΛX2(D̂, t)
X2

⊂ ΛX2(B̂0, t).

Remark 3.8. If X2 ⊂ X1 with continuous injection, the following consequences are immediate:
(i) A process U on X1 that is X1 closed, it is also (X1, X2) closed. (ii) Given a universe D in
P(X1) and a process U (X1, X2) pullback D-asymptotically compact, then ΛX1(D̂) = ΛX2(D̂)

for any D̂ ∈ D thanks to the minimality properties of omega-limit families and that a compact
set in X2 is compact in X1. (iii) A process U that has a (X1, X2) pullback D-attractor ÂD, it also
has a (X1, X1) pullback D-attractor AD just using the embedding X2 ⊂ X1 (same arguments
of minimality and compact sets than in (ii), even using different clousures). In this case we
make an abuse of notation, identifying both families without any extra notation, gaining extra
regularity in X2 for the sections of the attractor.

In view of Theorem 2.2 and Remark 2.4 (i), we will apply the above abstract results in the
phase-space X = V × L2

H, which is a Hilbert space with the norm ∥(uτ, ϕ)∥2
X = ∥uτ∥2 + ∥ϕ∥2

L2
H

for a pair (uτ, ϕ) ∈ X.
The first consequence after the Theorem 2.2 and Remark 2.4 (i) is the following

Corollary 3.9. Let f ∈ L2
loc(R; V ′), and g : R× CH → (L2(Ω))3 satisfying (I)–(IV), be given. Then,

the bi-parametric family of maps S(t, τ) : V × L2
H → V × L2

H, with τ ≤ t, given by

S(t, τ)(uτ, ϕ) = (u(t; τ, uτ, ϕ), ut(·; τ, uτ, ϕ)), (3.1)
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where u = u(·; τ, uτ, ϕ) is the unique weak solution to (1.1), defines a continuous process on V × L2
H.

We will need the following continuity result for the process S in a weak sense.

Proposition 3.10. Let f ∈ L2
loc(R; V ′), g : R × CH → (L2(Ω))3 satisfying (I)–(IV), and τ < t be

given. Then, for any sequence such that

(uτ,n, ϕn) ⇀ (uτ, ϕ) weakly in V × L2
V

and
dϕn

ds
⇀

dϕ

ds
weakly in L2

V ,

the following convergences hold for the sequence of solutions u(·; τ, uτ,n, ϕn) towards the solution
u(·; τ, uτ, ϕ):

u(·; τ, uτ,n, ϕn)
∗
⇀ u(·; τ, uτ, ϕ) weakly-star in L∞(τ, t; V),

u(·; τ, uτ,n, ϕn) → u(·; τ, uτ, ϕ) strongly in C([τ − h, t]; H),
u(t; τ, uτ,n, ϕn) ⇀ u(t; τ, uτ, ϕ) weakly in V,
u(·; τ, uτ,n, ϕn) ⇀ u(·; τ, uτ, ϕ) weakly in L2(τ − h, t; V).

(3.2)

Proof. Taking into account that {ϕn} is bounded in W1,2(−h, 0; V) ⊂ C([−h, 0]; V), and the
compactness of the injection of V into H, by the Ascoli–Arzelà theorem we deduce that ϕn → ϕ

strongly in CH. Therefore, the a priori estimates obtained for the Galerkin approximations in
Theorem 2.2 also hold for the sequence of solutions {u(·; τ, uτ,n, ϕn)}, and then all the conver-
gences in (3.2) hold. Finally, the fact that the whole sequence satisfies the above convergences
is a consequence of the uniqueness of solution for the problem (cf. Remark 2.3).

Now, we introduce an additional assumption on g in order to obtain some asymptotic
estimates for the solutions to (1.1).

(V) Assume that νλ1 > Cg, and that there exists a value 0 < σ < 2(ν − λ−1
1 Cg)(λ

−1
1 + α2)−1

such that for every u ∈ L2(τ − h, t; H),∫ t

τ
eσs|g(s, us)|2 ds ≤ C2

g

∫ t

τ−h
eσs|u(s)|2 ds, ∀t ≥ τ.

Lemma 3.11. Consider given f ∈ L2
loc(R; V ′) and g : R × CH → (L2(Ω))3 satisfying conditions

(I)–(V). Then, for any (uτ, ϕ) ∈ V × L2
H, the following estimate holds for the solution u to (1.1) for all

t ≥ τ,

∥u(t)∥2 ≤ α−2 max{λ−1
1 + α2, Cg}eσ(τ−t)∥(uτ, ϕ)∥2

V×L2
H
+ α−2ε−1

∫ t

τ
eσ(s−t)∥ f (s)∥2

∗ ds, (3.3)

where
ε = 2ν − σ(λ−1

1 + α2)− 2λ−1
1 Cg > 0. (3.4)

Proof. By the energy equality (2.15) and the Young inequality, we have

d
dt
(|u(t)|2 + α2∥u(t)∥2) + 2ν∥u(t)∥2

≤ ε∥u(t)∥2 + ε−1∥ f (t)∥2
∗ + Cg|u(t)|2 + C−1

g |g(t, ut)|2, a.e. t > τ.
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Thus,

d
dt
(eσt|u(t)|2 + α2eσt∥u(t)∥2) + eσt(2ν − ε − σ(λ−1

1 + α2)− λ−1
1 Cg

)
∥u(t)∥2

≤ eσtε−1∥ f (t)∥2
∗ + eσtC−1

g |g(t, ut)|2, a.e. t > τ,

and therefore, integrating in time above and using property (V), we obtain

eσt(|u(t)|2 + α2∥u(t)∥2) +
(
2ν − ε − σ(λ−1

1 + α2)− λ−1
1 Cg

) ∫ t

τ
eσs∥u(s)∥2 ds

≤ eστ(λ−1
1 + α2)∥uτ∥2 + ε−1

∫ t

τ
eσs∥ f (s)∥2

∗ ds + Cg

∫ t

τ−h
eσs|u(s)|2 ds

≤ eστ

(
(λ−1

1 + α2)∥uτ∥2 + Cg

∫ 0

−h
|ϕ(s)|2 ds

)
+ ε−1

∫ t

τ
eσs∥ f (s)∥2

∗ ds + λ−1
1 Cg

∫ t

τ
eσs∥u(s)∥2 ds

for all t ≥ τ, and from this last inequality and (3.4), in particular we deduce (3.3).

From now on, being σ > 0 given in (V), we will assume that f ∈ L2
loc(R; V ′) satisfies∫ 0

−∞
eσs∥ f (s)∥2

∗ ds < ∞. (3.5)

At the light of the previous result, we now define an appropriate concept of (tempered)
universe for problem (1.1).

Definition 3.12. Denote by Dσ(V × L2
H) the class of all families of nonempty subsets D̂ =

{D(t) : t ∈ R} ⊂ P(V × L2
H) such that

lim
τ→−∞

(
eστ sup

(v,φ)∈D(τ)

∥(v, φ)∥2
V×L2

H

)
= 0.

According to the notation introduced in the previous section, we will denote by DF(V ×
L2

H) the universe of fixed bounded sets in V × L2
H. Observe that trivially DF(V × L2

H) ⊂
Dσ(V × L2

H) and that Dσ(V × L2
H) is inclusion-closed.

Remark 3.13. Although from Lemma 3.11 it is easy to see that the family {BV×L2
H
(0, ρσ(t)) :

t ∈ R} ⊂ P(V × L2
H) is pullback Dσ(V × L2

H)-absorbing for the process S, where

ρ2
σ(t) = 1 + α−2ε−1(1 + λ−1

1 heσh)e−σt
∫ t

−∞
eσs∥ f (s)∥2

∗ ds,

we will need, in order to apply Proposition 3.10, to obtain a different pullback Dσ(V × L2
H)-

absorbing family.

Lemma 3.14. Assume that g : R × CH → (L2(Ω))3 fulfills conditions (I)–(V), and f ∈ L2
loc(R; V ′)

satisfies (3.5). Then, for any t ∈ R and D̂ ∈ Dσ(V × L2
H), there exist τ1(D̂, t, h) < t − 2h and

functions {ρi}2
i=1 such that for any τ ≤ τ1(D̂, t, h) and any (uτ, ϕ) ∈ D(τ), it holds

∥u(r; τ, uτ, ϕ)∥2 ≤ ρ2
1(t), ∀ r ∈ [t − 2h, t], (3.6)

∫ t

t−h
∥u′(θ; τ, uτ, ϕ)∥2 dθ ≤ ρ2

2(t), (3.7)
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where

ρ2
1(t) = 1 + α−2ε−1e−σ(t−2h)

∫ t

−∞
eσs∥ f (s)∥2

∗ ds, (3.8)

ρ2
2(t) = 4α−4hρ2

1(t)
(

ν2 + C2
1ρ2

1(t) + 2λ−2
1 C2

g

)
+ 4α−4

∫ t

t−h
∥ f (s)∥2

∗ ds, (3.9)

and ε is given by (3.4).

Proof. Let τ1(D̂, t, h) < t − 2h be such that

α−2 max{λ−1
1 + α2, Cg}e−σ(t−2h)eστ∥(uτ, ϕ)∥2

V×L2
H
≤ 1 ∀ τ ≤ τ1(D̂, t, h), (uτ, ϕ) ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t, h) and (uτ, ϕ) ∈ D(τ). The estimate (3.6) follows directly from
(3.3), using the increasing character of the exponential.

Now, from (2.8), (2.14), (2.1) and the fact that A is an isometric isomorphism, we obtain
that v = Cu satisfies

∥v′(θ)∥∗ ≤ ν∥u(θ)∥+ C1∥u(θ)∥2 + ∥ f (θ)∥∗ + λ−1/2
1 |g(θ, uθ)|, a.e. θ > τ,

and therefore,

∥v′(θ)∥2
∗ ≤ 4ν2∥u(θ)∥2 + 4C2

1∥u(θ)∥4 + 4∥ f (θ)∥2
∗ + 4λ−1

1 |g(θ, uθ)|2, a.e. θ > τ.

Integrating in time and using properties (II) and (IV), we deduce∫ t

t−h
∥v′(θ)∥2

∗ dθ ≤ 4ν2
∫ t

t−h
∥u(θ)∥2 dθ + 4C2

1

∫ t

t−h
∥u(θ)∥4 dθ

+ 4
∫ t

t−h
∥ f (θ)∥2

∗ dθ + 4λ−2
1 C2

g

∫ t

t−2h
∥u(θ)∥2 dθ,

whence, by (2.12) and (3.6), the estimate (3.7) follows.

Remark 3.15. Observe that limt→−∞ eσtρ1(t) = 0.

Corollary 3.16. Under the assumptions of Lemma 3.14, the family D̂σ = {Dσ(t) : t ∈ R} ⊂
P(V × L2

H) defined by

Dσ(t) =

{
(w, ψ) ∈ V × L2

V : ∃dψ

ds
∈ L2

V , ∥(w, ψ)∥V×L2
V
≤ ρ̃σ(t),

∥∥∥∥dψ

ds

∥∥∥∥
L2

V

≤ ρ2(t)

}
(3.10)

is pullback Dσ(V × L2
H)-absorbing for the process S on V × L2

H defined by (3.1), where ρ̃σ(t) satisfies

ρ̃2
σ(t) = (1 + h)ρ2

1(t), (3.11)

with ρ1(t) and ρ2(t) given by (3.8) and (3.9) respectively. Moreover, D̂σ ∈ Dσ(V × L2
H).

Now, we prove that the process S is (V × L2
H, V ×CH) pullback D̂σ-asymptotically compact.

To this end, we will apply an energy method used by Rosa (cf. [32], see also [26] and [14]),
which does not require any additional estimates on the solutions in higher norms in contrast
with the energy continuous method (e.g., cf. [28]), or the method used in [20] with the fractional
powers of the operator A. Our proof here relies on a sharp use of the differential equality that
leads to the existence of an absorbing family, the use of weak limits in V × L2

V in a diagonal
argument, and the convergences established in Proposition 3.10.
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Lemma 3.17. Under the assumptions of Lemma 3.14, the process S defined by (3.1) is (V × L2
H, V ×

CH) pullback D̂σ-asymptotically compact, where D̂σ = {Dσ(t) : t ∈ R} is defined in Corollary 3.16.

Proof. Let us consider t ∈ R, a sequence {τn} ⊂ (−∞, t] with τn → −∞, and a sequence
{(uτn , ϕn)} with (uτn , ϕn) ∈ Dσ(τn) for all n. We must prove that the sequence

{S(t, τn)(uτn , ϕn)} = {(u(t; τn, uτn , ϕn), ut(·; τn, uτn , ϕn))}

is relatively compact in V × CH.
First, we check the asymptotic compactness in the first component of S. By Corollary 3.16,

for each integer k ≥ 0, there exists τD̂σ
(k) ≤ t− k such that S(t− k, τ)Dσ(τ) ⊂ Dσ(t− k) for all

τ ≤ τD̂σ
(k). From this and a diagonal argument, we can extract a subsequence {(uτn′ , ϕn′

)} ⊂
{(uτn , ϕn)} such that

S(t − k, τn′)(uτn′ , ϕn′
) ⇀ (wk, ψk) weakly in V × L2

V , (3.12)
d
ds

ut−k(·; τn′ , uτn′ , ϕn′
) ⇀

d
ds

ψk weakly in L2
V , (3.13)

for all integer k ≥ 0, where (wk, ψk) ∈ Dσ(t − k).
Now, applying Proposition 3.10 on each fixed interval [t − k, t], we deduce that

(w0, ψ0) = (V × L2
V)− weak lim

n′→∞
S(t, τn′)(uτn′ , ϕn′

)

= (V × L2
V)− weak lim

n′→∞
S(t, t − k)S(t − k, τn′)(uτn′ , ϕn′

)

= S(t, t − k)
[
(V × L2

V)− weak lim
n′→∞

S(t − k, τn′)(uτn′ , ϕn′
)

]
= S(t, t − k)(wk, ψk).

From (3.12) with k = 0, we obtain in particular that ∥w0∥ ≤ lim infn′→∞ ∥u(t; τn′ , uτn′ , ϕn′
)∥. We

will prove now that it also holds that

lim sup
n′→∞

∥u(t; τn′ , uτn′ , ϕn′
)∥ ≤ ∥w0∥, (3.14)

which combined with the weak converge of u(t; τn′ , uτn′ , ϕn′
) to w0 in V, will imply the con-

vergence in the strong topology of V.
Observe that, as we already used in Lemma 3.11, for any τ ∈ R and (uτ, ϕ) ∈ V × L2

H, the
solution u(·; τ, uτ, ϕ), for short denoted u(·), satisfies the differential equality

d
dt
(eσt|u(t)|2 + α2eσt∥u(t)∥2) = σeσt|u(t)|2 + α2σeσt∥u(t)∥2 − 2νeσt∥u(t)∥2

+ 2eσt⟨ f (t), u(t)⟩+ 2eσt(g(t, ut), u(t)), a.e. t > τ. (3.15)

Since in particular 0 < σ < 2ν(λ−1
1 + α2)−1, notice that [·], with [v]2 = (2ν − α2σ)∥v∥2 − σ|v|2,

defines an equivalent norm to ∥ · ∥ in V.
We integrate the above expression in the interval [t − k, t] for the solutions u(·; τn′ , uτn′ , ϕn′

)
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with τn′ ≤ t − k, which yields

|u(t; τn′ , uτn′ , ϕn′
)|2 + α2∥u(t; τn′ , uτn′ , ϕn′

)∥2

= |u(t; t − k, S(t − k, τn′)(uτn′ , ϕn′
))|2 + α2∥u(t; t − k, S(t − k, τn′)(uτn′ , ϕn′

))∥2

= e−σk
(
|u(t − k; τn′ , uτn′ , ϕn′

)|2 + α2∥u(t − k; τn′ , uτn′ , ϕn′
)∥2
)

+ 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))]2 ds. (3.16)

On other hand, by (3.12), (3.13) and Proposition 3.10, we deduce that

u(·; t − k, S(t − k, τn′)(uτn′ , ϕn′
)) ⇀ u(·; t − k, wk, ψk) weakly in L2(t − k, t; V).

From this, as eσ(·−t) f (·) ∈ L2(t − k, t; V ′), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))⟩ ds

=
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds.

Since
∫ t

t−k eσ(s−t)[v(s)]2 ds defines an equivalent norm in L2(t − k, t; V), we also deduce from
above that∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds ≤ lim inf

n′→∞

∫ t

t−k
eσ(s−t)[u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))]2 ds.

Finally, again by (3.12), (3.13) and Proposition 3.10, it holds that

u(·; t − k, S(t − k, τn′)(uτn′ , ϕn′
)) → u(·; t − k, wk, ψk) strongly in L2(t − k − h, t; H),

and therefore,

lim
n′→∞

∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

=
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds (3.17)

From (3.16)–(3.17), taking into account (3.12) with k = 0, the compactness of the injection
of V into H, and (3.10), we conclude that

|w0|2 + α2 lim sup
n′→∞

∥u(t; τn′ , uτn′ , ϕn′
)∥2

≤ e−σk(λ−1
1 + α2)ρ̃2

σ(t − k) + 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds.
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Now, taking into account that w0 = u(t; t − k, wk, ψk), integrating again in (3.15), we obtain

|w0|2 + α2∥w0∥2 = e−σk(|wk|2 + α2∥wk∥2) + 2
∫ t

t−k
eσ(s−t)⟨ f (s), u(s; t − k, wk, ψk)⟩ ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), u(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[u(s; t − k, wk, ψk)]2 ds.

Comparing the above two expressions, in particular we conclude that

|w0|2 + α2 lim sup
n′→∞

∥u(t; τn′ , uτn′ , ϕn′
)∥2 ≤ e−σk(λ−1

1 + α2)ρ̃2
σ(t − k) + |w0|2 + α2∥w0∥2.

But from Remark 3.15 and (3.11), we have that limk→∞ e−σkρ̃2
σ(t − k) = 0, so (3.14) holds, and

we conclude that
u(t; τn′ , uτn′ , ϕn′

) → w0 strongly in V.

Finally, we prove the asymptotic compactness in the second component of S. From (3.12)
and (3.13) with k = 0, we have that

ut(·; τn′ , uτn′ , ϕn′
) ⇀ ψ0 weakly in L2

V ,
d
ds

ut(·; τn′ , uτ′
n , ϕn′

) ⇀
d
ds

ψ0 weakly in L2
V .

Thus, by applying the Ascoli–Arzelà theorem, we can deduce that there exists a subsequence
(relabelled the same) such that ut(·; τn′ , uτn′ , ϕn′

) converges to ψ0 in CH. So, the proof is fin-
ished.

As a consequence of the above results, we obtain the existence of minimal pullback attrac-
tors for the process S on V × L2

H defined by (3.1).

Theorem 3.18. Assume that g : R×CH → (L2(Ω))3 fulfills conditions (I)–(V), and f ∈ L2
loc(R; V ′)

satisfies (3.5). Then, there exist the (V × L2
H, V × CH) minimal pullback Dσ(V × L2

H) and DF(V ×
L2

H)-attractors {ADσ(V×L2
H)
(t) : t ∈ R} and {ADF(V×L2

H)
(t) : t ∈ R} respectively, both belonging to

Dσ(V × L2
H), which means that they have compact sections in V × CH and pullback attracts in this

norm, and the following relations hold:

ADF(V×L2
H)
(t) ⊂ ADσ(V×L2

H)
(t) = ΛV×CH (D̂σ, t), ∀ t ∈ R. (3.18)

Moreover, if f satisfies the stronger requirement

sup
r≤0

(
e−σr

∫ r

−∞
eσs∥ f (s)∥2

∗ ds
)
< ∞, (3.19)

then both attractors coincide, i.e.,

ADF(V×L2
H)
(t) = ADσ(V×L2

H)
(t), ∀ t ∈ R. (3.20)

Proof. The process S is continuous on V × L2
H by Corollary 3.9. By Remark 3.8, S is (V ×

L2
H, V × CH) closed. There exists a pullback absorbing family D̂σ ∈ Dσ(V × L2

H) by Corol-
lary 3.16, and the process S is (V × L2

H, V × CH) pullback D̂σ-asymptotically compact by
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Lemma 3.17. The existence of ADσ(V×L2
H)

and ADF(V×L2
H)

follows from Theorem 3.7 (actu-
ally Theorem 3.3 and Corollary 3.5 could also be applied, but using the bi-space attractors
theory we strengthen compactness and attraction norm).

Moreover, the inclusion relation in (3.18) follows from Corollary 3.5.
The fact that ADσ(V×L2

H)
belongs to Dσ(V × L2

H) is due to Remark 3.4, since the pullback

absorbing family D̂σ ∈ Dσ(V × L2
H) has closed sections and this universe is inclusion-closed.

Finally, the equality (3.20) is a consequence of Corollary 3.5, since Dσ(t) ⊂ BV×L2
V
(0, ρ̃σ(t))

for all t ∈ R, and the assumption (3.19) is equivalent to have that supt≤T ρ̃σ(t) is bounded for
any T ∈ R.

Just splitted for the sake of clarity, with the same arguments as above, we obtain the
following result, which relates the above attractors for the universes DF(V × L2

H) ⊂ Dσ(V ×
L2

H) with new ones for the universes DF(V × CH) ⊂ Dσ(V × CH).

Corollary 3.19. Under the assumptions of Theorem 3.18 there exist the minimal pullback attractors
ADF(V×CH) and ADσ(V×CH), both belonging to Dσ(V × CH), all time sections are compact subsets in
V × CH, they attract in V × CH norm, and the following relations hold:

ADF(V×CH)(t) ⊂ ADF(V×L2
H)
(t) ⊂ ADσ(V×CH)(t) = ADσ(V×L2

H)
(t), ∀ t ∈ R.

Proof. Observe that S is well-defined on V × CH by Theorem 2.2 and closed by Remark 2.4
(i). Observe that D̂σ ⊂ P(V × CH). Then the existence of attractors and its inclusion in
Dσ(V × CH) follows from Theorem 3.3 and Remark 3.4.

The equality relation of pullback Dσ(V × CH) and Dσ(V × L2
H)-attractors follows from

[13, Theorem 3.15]. Indeed, observe that after an elapsed time h, by (3.3), S(· + h, ·) maps
elements from Dσ(V × L2

H) into Dσ(V × CH).
The rest of inclusions follows from Corollary 3.5 or by minimality arguments.

Remark 3.20. The stronger attraction and compactness properties of these results also apply
to several previous ones concerning asymptotic behavior of PDE with delays (e.g., cf. [16]).

Remark 3.21. Observe that by the invariance of the minimal pullback attractors under the
process S, and the regularity of the solutions, it is clear that the second component of any
time section of ADσ(V×L2

H)
and ADF(V×L2

H)
lives in CV . In fact, denoting R2

σ(t) = 2ρ2
1(t), from

(3.6) it holds that
ADσ(V×L2

H)
(t) ⊂ BV×CV (0, Rσ(t)), ∀ t ∈ R.

4 Regularity of the pullback attractors

The main goal of this paragraph is to provide some extra regularity for the attractors obtained
in the previous section. This will be obtained by a bootstrapping argument, and making the
most out of a representation of the solutions to the problem splitting it in two parts, the linear
part with an exponential decay, and the nonlinear part with good enough estimates. In order
to achieve these results, we will use the fractional powers of the Stokes operator, introduced
in Section 2.

Observe that for every τ ∈ R, (uτ, ϕ) ∈ V × L2
H, f ∈ L2

loc(R; V ′), and g : R × CH →
(L2(Ω))3 satisfying (I)–(IV), by Theorem 2.2, there exists a unique weak solution u to problem
(1.1). Moreover, let us point out that the following representation of the solution holds:

u(t; τ, uτ, ϕ) = y(t; τ, uτ, ϕ) + z(t; τ, 0, 0), ∀ t ≥ τ,
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where y = y(·; τ, uτ, ϕ) and z = z(·; τ, 0, 0) are solutions of

y ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,
d
dt
(y(t) + α2Ay(t)) + νAy(t) = 0, in D′(τ, ∞; V ′),

y(τ) = uτ,

y(t) = ϕ(t − τ) a.e. t ∈ (τ − h, τ)

(4.1)

and 

z ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,
d
dt
(z(t) + α2Az(t)) + νAz(t) = f (t) + g(t, ut)− B(u(t)), in D′(τ, ∞; V ′),

z(τ) = 0,

z(t) = 0 a.e.t ∈ (τ − h, τ)

(4.2)

respectively.
The existence and uniqueness of weak solution to (4.1) and to (4.2) can be obtained rea-

soning as in the proof of Theorem 2.2.
For the problem (4.1) we have the following result.

Lemma 4.1. For any τ ∈ R, (uτ, ϕ) ∈ V × L2
H and σ fulfilling that 0 < σ < 2(ν − λ−1

1 Cg)(λ
−1
1 +

α2)−1, the solution y = y(·; τ, uτ, ϕ) of (4.1) satisfies

∥y(t)∥2 ≤ α−2(λ−1
1 + α2)eσ(τ−t)∥(uτ, ϕ)∥2

V×L2
H

for all t ≥ τ. (4.3)

Proof. It is analogous to the proof of (3.3), and we omit it.

For the study of the problem (4.2), we will make use of the following lemma.

Lemma 4.2. Let me given F ∈ L2
loc(R; D(A−β)) with 0 ≤ β ≤ 1/2, τ ∈ R and σ fulfilling that

0 < σ < 2(ν − λ−1
1 Cg)(λ

−1
1 + α2)−1. Then, the problem

z ∈ C([τ, ∞); V) ∩ L2(τ − h, T; H) for all T > τ,
d
dt
(z(t) + α2Az(t)) + νAz(t) = F(t), in D′(τ, ∞; V ′),

z(τ) = 0,

z(t) = 0 a.e. t ∈ (τ − h, τ)

has a unique solution z, which also satisfies z ∈ C([τ, ∞); D(A1−β)), and

|A1−βz(t)|2 ≤ α−2ε−1
∫ t

τ
eσ(s−t)|A−βF(s)|2 ds for all t ≥ τ,

where ε is given by (3.4).

Proof. It can be done analogously as in [14, Lemma 26] with z = 0 in (τ − h, τ).

Now we can prove the following regularity result for the pullback attractors in V norm.
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Theorem 4.3. Consider given g : R × CH → (L2(Ω))3 satisfying conditions (I)–(V). Assume that
f ∈ L2

loc(R; D(A−β)) for some 0 ≤ β ≤ 1/2, and that

sup
r≤0

∫ r

r−1
∥ f (s)∥2

∗ds < ∞. (4.4)

Then:

(1) If f also satisfies ∫ 0

−∞
eσs|A−β f (s)|2ds < ∞, (4.5)

and 
sup
r≤0

∫ r

r−1
|A−1/4−β f (s)|2ds < ∞, if 0 < β < 1/4,

sup
r≤0

∫ r

r−1
|A−δ f (s)|2ds < ∞ for some 0 < δ < 1/4, if β = 0,

(4.6)

then, for any t1 < t2, the pullback attractor ADσ(V×L2
H)

= ADF(V×L2
H)

fulfills that⋃
t1≤t≤t2

ADσ(V×L2
H)
(t)=

⋃
t1≤t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A1−β)× CD(A1−β). (4.7)

(2) If f also satisfies

sup
r≤0

∫ r

r−1
|A−β f (s)|2ds < ∞, (4.8)

then, for any t2 ∈ R, it holds that⋃
t≤t2

ADσ(V×L2
H)
(t) =

⋃
t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A1−β)× CD(A1−β). (4.9)

Proof. Let us fix t ∈ R and (v, ψ) ∈ ADσ(V×L2
H)
(t) = ADF(V×L2

H)
(t). By Remark 3.21 and (4.4),

we see that ⋃
r≤t

ADσ(V×L2
H)
(r) ⊂ BV×CV (0, R̃σ(t)), (4.10)

where R̃2
σ(t) = 2 + 2α−2ε−1e2σh supr≤t(e

−σr
∫ r
−∞ eσs∥ f (s)∥2

∗ds), with ε given by (3.4).
Let {τn}n≥1 ⊂ (−∞, t − h] be a sequence with τn → −∞ as n → ∞. By the invariance

of ADσ(V×L2
H)

, for each n ≥ 1 there exists (uτn , ϕn) ∈ ADσ(V×L2
H)
(τn) such that (v, ψ) =

S(t, τn)(uτn , ϕn), and therefore,

(v, ψ) = Y(t, τn)(uτn , ϕn) + Z(t, τn)(0, 0),

where
Y(t, τn)(uτn , ϕn) = (y(t; τn, uτn , ϕn), yt(·; τn, uτn , ϕn))

and
Z(t, τn)(0, 0) = (z(t; τn, 0, 0), zt(·; τn, 0, 0))

are continuous processes on V × L2
H associated to problems (4.1) and (4.2), respectively.

From (4.3) and (4.10) we deduce that ∥Y(t, τn)(uτn , ϕn)∥V×CV → 0 as n → ∞. Thus,

lim
n→∞

∥Z(t, τn)(0, 0)− (v, ψ)∥V×CV = 0. (4.11)
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Let us denote (un(r), un
r (·)) = S(r, τn)(uτn , ϕn) for r ≥ τn and n ≥ 1. By (4.10) and the invari-

ance of ADσ(V×L2
H)

,

(un(r), un
r (·)) ∈ ADσ(V×L2

H)
(r) ⊂ BV×CV (0, R̃σ(t)), ∀τn ≤ r ≤ t, ∀n ≥ 1. (4.12)

Now we distinguish three cases.

Case 1. If 1/4 ≤ β ≤ 1/2.
In this case, from (2.11), the continuous injection of V in D(A3/4−β) and (4.12), we deduce

that

|A−βB(un(r))| ≤ C(3/4−β)|A3/4−βun(r)|∥un(r)∥
≤ C̃(3/4−β)∥un(r)∥2

≤ C̃(3/4−β)R̃
2
σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2, condition (V) on g, and the continuous injection of
H in D(A−β), we obtain that

|A1−βz(θ; τn, 0, 0)|2 ≤ 3α−2ε−1eσh
( ∫ t

−∞
eσ(s−t)|A−β f (s)|2 ds + σ−1C̃2

(3/4−β)R̃
4
σ(t)

+
∫ t

τn

eσ(s−t)|A−βg(s, un
s )|

2
ds
)

≤ 3α−2ε−1eσh
( ∫ t

−∞
eσ(s−t)|A−β f (s)|2 ds + σ−1C̃2

(3/4−β)R̃
4
σ(t)

+ CβC2
gλ−1

1

( ∫ τn

τn−h
eσ(s−t)∥ϕn(s − τn)∥2 ds +

∫ t

τn

eσ(s−t)∥un(s)∥2 ds
))

for all θ ∈ [t − h, t], and then, from (4.12), we deduce that

∥Z(t, τn)(0, 0)∥2
D(A1−β)×C

D(A1−β)

≤ M2
σ,β(t), (4.13)

where

M2
σ,β(t) = 6α−2ε−1eσh

(∫ t

−∞
eσ(s−t)|A−β f (s)|2 ds + σ−1C̃2

(3/4−β)R̃
4
σ(t) + 2CβC2

gλ−1
1 σ−1R̃2

σ(t)
)

.

From (4.11), (4.13) and the weak lower semi-continuity of the norm, we deduce that (v, ψ)

belongs to BD(A1−β)×C
D(A1−β)

(0, Mσ,β(t)), and therefore (4.7) holds.

Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,⋃
t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A1−β)×C

D(A1−β)
(0, M̃σ,β(t2)), for all t2 ∈ R, (4.14)

where

M̃2
σ,β(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−β f (s)|2ds

+ σ−1C̃2
(3/4−β)R̃

4
σ(t2) + 2CβC2

gλ−1
1 σ−1R̃2

σ(t2)

)
.

Case 2. If 0 < β < 1/4.
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In this case, if f satisfies (4.6), as 1/4 < 1/4 + β < 1/2, from (4.14) we have that⋃
r≤t

ADσ(V×L2
H)
(r) ⊂ BD(A3/4−β)×C

D(A3/4−β)
(0, M̃σ,1/4+β(t)).

Thus, by (2.11) and (4.12), we obtain that

|A−βB(un(r))| ≤ C(3/4−β)|A3/4−βun(r)|∥un(r)∥
≤ C(3/4−β)M̃σ,1/4+β(t)R̃σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2 we deduce that

∥Z(t, τn)(0, 0)∥2
D(A1−β)×C

D(A1−β)

≤ R2
σ,β(t), (4.15)

where

R2
σ,β(t) = 6α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)|A−β f (s)|2 ds

+ σ−1C2
(3/4−β)M̃

2
σ,1/4+β(t)R̃2

σ(t) + 2CβC2
gλ−1

1 σ−1R̃2
σ(t)

)
.

Again, from (4.11), (4.15) and the weak lower semi-continuity of the norm, we deduce that
(v, ψ) belongs to BD(A1−β)×C

D(A1−β)
(0, Rσ,β(t)), and therefore (4.7) holds.

Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,⋃
t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A1−β)×C

D(A1−β)
(0, R̃σ,β(t2)), for all t2 ∈ R, (4.16)

where

R̃2
σ,β(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−β f (s)|2 ds

+ σ−1C2
(3/4−β)M̃

2
σ,1/4+β(t2)R̃2

σ(t2) + 2CβC2
gλ−1

1 σ−1R̃2
σ(t2)

)
.

Case 3. If β = 0.
In this case, if f satisfies (4.6), as 0 < δ < 1/4, from (4.16) we see that⋃

r≤t
ADσ(V×L2

H)
(r) ⊂ BD(A1−δ)×CD(A1−δ)

(0, R̃σ,δ(t)).

So, by (2.10) and (4.12), we deduce that

|B(un(r))| ≤ C(1−δ)|A1−δun(r)|∥un(r)∥
≤ C(1−δ)R̃σ,δ(t)R̃σ(t), ∀τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (4.5), from Lemma 4.2 we deduce that

∥Z(t, τn)(0, 0)∥2
D(A)×CD(A)

≤ R2
σ,δ,0(t) (4.17)

where

R2
σ,δ,0(t) = 6α−2ε−1eσh

( ∫ t

−∞
eσ(s−t)| f (s)|2 ds + σ−1C2

(1−δ)R̃
2
σ,δ(t)R̃2

σ(t) + 2C2
gλ−1

1 σ−1R̃2
σ(t)

)
.
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Again, from (4.11), (4.17) and the weak lower semi-continuity of the norm, we deduce that

(v, ψ) ∈ BD(A)×CD(A)
(0, Rσ,δ,0(t)),

and therefore (4.7) holds.
Moreover, if f satisfies (4.8), then (4.9) holds, and more exactly,⋃

t≤t2

ADσ(V×L2
H)
(t) ⊂ BD(A)×CD(A)

(0, R̃σ,δ,0(t2)), for all t2 ∈ R,

where

R̃2
σ,δ,0(t2) = 6α−2ε−1eσh

(
sup
t≤t2

∫ t

−∞
eσ(s−t)| f (s)|2 ds

+ σ−1C2
(1−δ)R̃

2
σ,δ(t2)R̃2

σ(t2) + 2C2
gλ−1

1 σ−1R̃2
σ(t2)

)
.

5 Attraction in D(A) norm

By the previous results, when f ∈ L2
loc(R; (L2(Ω))3), the restriction to D(A) × L2

V of the
process S defined by (3.1) is a process on D(A)× L2

V . Now, we will prove that under suitable
assumptions on f and g, we can obtain the existence of minimal pullback attractors for S on
D(A)× L2

V and even more.

Proposition 5.1. Assume that f ∈ L2
loc(R; (L2(Ω))3), and g : R × CH → (L2(Ω))3 satisfying (I)–

(IV), are given. Then, the restriction to D(A)× L2
V of the bi-parametric family of maps S(t, τ), with

τ ≤ t, given by (3.1), is a continuous process on D(A)× L2
V .

Proof. It is a consequence of Theorem 2.2 and Remark 2.4 (i).

As in the previous section, we will need the following continuity result for the process S
in a weak sense.

Proposition 5.2. Let f ∈ L2
loc(R; (L2(Ω))3), g : R× CH → (L2(Ω))3 satisfying (I)–(IV), and τ < t

be given. Then, for any sequence such that

(uτ,n, ϕn) ⇀ (uτ, ϕ) weakly in D(A)× L2
D(A)

and
dϕn

ds
⇀

dϕ

ds
weakly in L2

D(A),

the following convergences hold for the sequence of solutions u(·; τ, uτ,n, ϕn) towards the solution
u(·; τ, uτ, ϕ):

u(·; τ, uτ,n, ϕn)
∗
⇀ u(·; τ, uτ, ϕ) weakly-star in L∞(τ, t; D(A)),

u(·; τ, uτ,n, ϕn) → u(·; τ, uτ, ϕ) strongly in C([τ − h, t]; V),

u(t; τ, uτ,n, ϕn) ⇀ u(t; τ, uτ, ϕ) weakly in D(A),

u(·; τ, uτ,n, ϕn) ⇀ u(·; τ, uτ, ϕ) weakly in L2(τ − h, t; D(A)).
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Proof. It can be done analogously to that of Proposition 3.10.

For the obtention of a pullback absorbing family for the process S restricted to D(A)× L2
V ,

we first have the following result.

Lemma 5.3. Suppose that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and that g : R × CH → (L2(Ω))3

fulfills conditions (I)–(V). Then, for any τ ∈ R, (uτ, ϕ) ∈ D(A)× L2
V , and 0 < σ < σ/3, the solution

u = u(·; τ, uτ, ϕ) of (1.1) satisfies

|Au(t)|2 ≤ α−2 max{λ−1
1 + α2, Cg}eσ(τ−t)∥(uτ, ϕ)∥2

D(A)×L2
V
+ 2α−2ε−1

∫ t

τ
eσ(s−t)| f (s)|2 ds

+ 4α−2CεC3
σ(σ − 3σ)−1

(
e−3σ(t−τ)∥(uτ, ϕ)∥6

V×L2
H
+ M3

t,σ

)
(5.1)

for all t ≥ τ, where ε > 0 is given by (3.4),

Cε = 27C4
2(2ε3)−1, (5.2)

Cσ = α−2 max
{

max{λ−1
1 + α2, Cg},

(
2ν − σ(λ−1

1 + α2)− 2λ−1
1 Cg

)−1
}

, (5.3)

and
Mt,σ = sup

r≤t

∫ r

−∞
eσ(s−r)∥ f (s)∥2

∗ds. (5.4)

Proof. From Lemma 3.11, we have that

∥u(s)∥2 ≤ Cσ

(
eσ(τ−s)∥(uτ, ϕ)∥2

V×L2
H
+ Mt,σ

)
, ∀τ ≤ s ≤ t. (5.5)

On the other hand, by (2.17),

d
dt
(eσt∥u(t)∥2 + α2eσt|Au(t)|2) + 2νeσt|Au(t)|2 + 2eσt(B(u(t)), Au(t))

= σeσt∥u(t)∥2 + α2σeσt|Au(t)|2 + 2eσt( f (t) + g(t, ut), Au(t)), a.e. t > τ.

Thus, taking into account that ∥u(t)∥2 ≤ λ−1
1 |Au(t)|2,

2| (B(u(t)), Au(t)) | ≤ 2C2∥u(t)∥3/2|Au(t)|3/2

≤ Cε∥u(t)∥6 +
ε

2
|Au(t)|2,

2| ( f (t), Au(t)) | ≤ ε

2
|Au(t)|2 + 2

ε
| f (t)|2,

and

2|(g(t, ut), Au(t))| ≤
Cg

λ1
|Au(t)|2 + λ1

Cg
|g(t, ut)|2,

we deduce that

eσt(∥u(t)∥2 + α2|Au(t)|2) + (2ν − ε − σ(λ−1
1 + α2)− λ−1

1 Cg)
∫ t

τ
eσs|Au(s)|2 ds

≤ eστ(λ−1
1 + α2)|Auτ|2 + 2ε−1

∫ t

τ
eσs| f (s)|2 ds + λ1Cg

∫ t

τ−h
eσs|u(s)|2 ds

+ Cε

∫ t

τ
eσs∥u(s)∥6 ds

≤ eστ
(
(λ−1

1 + α2)|Auτ|2 + Cg∥ϕ∥2
L2

V

)
+ 2ε−1

∫ t

τ
eσs| f (s)|2 ds + λ−1

1 Cg

∫ t

τ
eσs|Au(s)|2 ds

+ Cε

∫ t

τ
eσs∥u(s)∥6 ds
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for all t ≥ τ.
From this inequality, since the choice of ε makes the term

∫ t
τ eσs|Au(s)|2 ds disappear, using

(5.5) we easily obtain (5.1).

Definition 5.4. For any σ, σ > 0, consider the universe Dσ(D(A)× L2
V)∩Dσ(V × L2

H) formed
by the class of all families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(D(A)× L2

V) such
that

lim
τ→−∞

(
eστ sup

(v,φ)∈D(τ)

∥(v, φ)∥2
D(A)×L2

V

)
= lim

τ→−∞

(
eστ sup

(v,φ)∈D(τ)

∥(v, φ)∥2
V×L2

H

)
= 0.

Accordingly to the notation introduced in Section 3, DF(D(A)× L2
V) will denote the class

of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of D(A)× L2
V .

Observe that the universe Dσ(D(A)× L2
V) ∩ Dσ(V × L2

H), which is inclusion-closed, contains
the universe DF(D(A)× L2

V).

Remark 5.5. Under the additional assumption∫ 0

−∞
eσs| f (s)|2 ds < ∞, (5.6)

from Lemma 5.3 it is easy to see that, for 0 < σ < σ/3, the family {BD(A)×L2
V
(0, R̃σ,σ(t)) : t ∈

R} ⊂ P(D(A)× L2
V) is pullback Dσ(D(A)× L2

V) ∩ Dσ(V × L2
H)-absorbing for the process S

on D(A)× L2
V , where

R̃2
σ,σ(t) = 1+ 2α−2ε−1(1+ λ−1

1 heσh)e−σt
∫ t

−∞
eσs| f (s)|2 ds+(1+ λ−1

1 h)4α−2CεC3
σ(σ− 3σ)−1M3

t,σ.

However, in order to apply Proposition 5.2, we need to obtain a different pullback Dσ(D(A)×
L2

V) ∩Dσ(V × L2
H)-absorbing family.

Lemma 5.6. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for 0 < σ < σ/3 and for any t ∈ R and D̂ ∈ Dσ(D(A)×
L2

V) ∩ Dσ(V × L2
H), there exist τ2(D̂, t, h) < t − 2h and functions {ρi}4

i=3 such that for any τ ≤
τ2(D̂, t, h) and any (uτ, ϕ) ∈ D(τ), it holds

|Au(r; τ, uτ, ϕ)|2 ≤ ρ2
3(t), ∀ r ∈ [t − 2h, t], (5.7)

∫ t

t−h
|Au′(θ; τ, uτ, ϕ)|2 dθ ≤ ρ2

4(t), (5.8)

where

ρ2
3(t) = 1 + 2α−2ε−1e−σ(t−2h)

∫ t

−∞
eσs| f (s)|2 ds + 4α−2CεC3

σ(σ − 3σ)−1M3
t,σ, (5.9)

ρ2
4(t) = 16α−4hρ2

3(t)
(

ν2 + C2
2λ−3/2

1 ρ2
3(t) + 2λ−2

1 C2
g

)
+ 16α−4

∫ t

t−h
| f (s)|2 ds, (5.10)

where ε, Cε, Cσ and Mt,σ are given by (3.4), (5.2), (5.3) and (5.4), respectively.

Proof. Let τ2(D̂, t, h) < t − 2h be such that

α−2 max{λ−1
1 + α2, Cg}e−σ(t−2h)eστ∥(uτ, ϕ)∥2

D(A)×L2
V

+ 4α−2CεC3
σ(σ − 3σ)−1e−3σ(t−2h)e3στ∥(uτ, ϕ)∥6

V×L2
H
≤ 1 ∀ τ ≤ τ2(D̂, t, h), (uτ, ϕ) ∈ D(τ).
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Consider fixed τ ≤ τ2(D̂, t, h) and (uτ, ϕ) ∈ D(τ). The estimate (5.7) follows directly from
(5.1), using the increasing character of the exponential.

Now, from (2.9), (2.14) and (2.1), we obtain that v = Cu satisfies

|v′(θ)| ≤ ν|Au(θ)|+ C2|Au(θ)|1/2∥u(θ)∥3/2 + | f (θ)|+ |g(θ, uθ)|
≤ ν|Au(θ)|+ C2λ−3/4

1 |Au(θ)|2 + | f (θ)|+ |g(θ, uθ)|, a.e. θ > τ,

and therefore,

|v′(θ)|2 ≤ 4ν2|Au(θ)|2 + 4C2
2λ−3/2

1 |Au(θ)|4 + 4| f (θ)|2 + 4|g(θ, uθ)|2, a.e. θ > τ.

Integrating in time above and using properties (II) and (IV) on g, we deduce∫ t

t−h
|v′(θ)|2 dθ ≤ 4ν2

∫ t

t−h
|Au(θ)|2 dθ + 4C2

2λ−3/2
1

∫ t

t−h
|Au(θ)|4 dθ

+ 4
∫ t

t−h
| f (θ)|2 dθ + 4λ−2

1 C2
g

∫ t

t−2h
|Au(θ)|2 dθ,

whence, by (2.13) and (5.7), the estimate (5.8) follows.

Corollary 5.7. Under the assumptions of Lemma 5.6, for 0 < σ < σ/3, the family D̂σ,σ = {Dσ,σ(t) :
t ∈ R} ⊂ P(D(A)× L2

V) defined by

Dσ,σ(t) =
{
(w, ψ) ∈ D(A)× L2

D(A) : ∃dψ

ds
∈ L2

D(A),

∥(w, ψ)∥D(A)×L2
D(A)

≤ Rσ,σ(t),
∥∥∥∥dψ

ds

∥∥∥∥
L2

D(A)

≤ ρ4(t)
}

(5.11)

is pullback Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H)-absorbing for the process S on D(A) × L2
V defined by

(3.1), (and therefore DF(D(A)× L2
V)-absorbing too), where Rσ,σ(t) satisfies

R2
σ,σ(t) = (1 + h)ρ2

3(t), (5.12)

with ρ3(t) and ρ4(t) given by (5.9) and (5.10) respectively.

Now, we prove that the process S is (D(A)× L2
V , D(A)× CV) pullback Dσ(D(A)× L2

V) ∩
Dσ(V × L2

H)-asymptotically compact. We will apply, under the natural necessary changes, the
same energy method used in the proof of Lemma 3.17.

Lemma 5.8. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3, the restriction to D(A)× L2
V of the

process S defined by (3.1) is (D(A) × L2
V , D(A) × CV) pullback Dσ(D(A) × L2

V) ∩ Dσ(V × L2
H)-

asymptotically compact.

Proof. Let us fix 0 < σ < σ/3. Let be given D̂ ∈ Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H), t ∈ R, a
sequence {τn} ⊂ (−∞, t] with τn → −∞, and a sequence {(uτn , ϕn)} with (uτn , ϕn) ∈ D(τn)

for all n. We must prove that the sequence

{S(t, τn)(uτn , ϕn)} = {(u(t; τn, uτn , ϕn), ut(·; τn, uτn , ϕn))}

is relatively compact in D(A)× CV .
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First, we check the asymptotic compactness in the first component of S. By Corollary 5.7,
for each integer k ≥ 0, there exists τD̂(k) ≤ t − k such that S(t − k, τ)D(τ) ⊂ Dσ,σ(t − k) for all
τ ≤ τD̂(k). From this and a diagonal argument, we can extract a subsequence {(uτn′ , ϕn′

)} ⊂
{(uτn , ϕn)} such that

S(t − k, τn′)(uτn′ , ϕn′
) ⇀ (wk, ψk) weakly in D(A)× L2

D(A), (5.13)

d
ds

ut−k(·; τn′ , uτn′ , ϕn′
) ⇀

d
ds

ψk weakly in L2
D(A), (5.14)

for all integer k ≥ 0, where (wk, ψk) ∈ Dσ,σ(t − k).
Now, applying Proposition 5.2 on each fixed interval [t − k, t], we deduce that

(w0, ψ0) = (D(A)× L2
D(A))− weak lim

n′→∞
S(t, τn′)(uτn′ , ϕn′

)

= (D(A)× L2
D(A))− weak lim

n′→∞
S(t, t − k)S(t − k, τn′)(uτn′ , ϕn′

)

= S(t, t − k)
[
(D(A)× L2

D(A))− weak lim
n′→∞

S(t − k, τn′)(uτn′ , ϕn′
)

]
= S(t, t − k)(wk, ψk).

From (5.13) with k = 0, we obtain in particular that |Aw0| ≤ lim infn′→∞ |Au(t; τn′ , uτn′ , ϕn′
)|.

We will prove now that it also holds that

lim sup
n′→∞

|Au(t; τn′ , uτn′ , ϕn′
)| ≤ |Aw0|, (5.15)

which combined with the weak converge of u(t; τn′ , uτn′ , ϕn′
) to w0 in D(A), will imply the

convergence in the strong topology of D(A).
Observe that, as we already used in Lemma 5.3, for any τ ∈ R and (uτ, ϕ) ∈ D(A)× L2

V ,
the solution u(·; τ, uτ, ϕ), for short denoted u(·), satisfies the differential equality

d
dt
(eσt∥u(t)∥2 + α2eσt|Au(t)|2) = σeσt∥u(t)∥2 + α2σeσt|Au(t)|2 − 2νeσt|Au(t)|2

− 2eσt(B(u(t)), Au(t)) + 2eσt( f (t) + g(t, ut), Au(t)) (5.16)

a.e. t > τ. Since in particular 0 < σ < 2ν(λ−1
1 + α2)−1, notice that [[·]], with [[v]]2 =

(2ν − α2σ)|Av|2 − σ∥v∥2, defines an equivalent norm to | · |D(A) in D(A).
We integrate the above expression in the interval [t − k, t] for the solutions u(·; τn′ , uτn′ , ϕn′

)

with τn′ ≤ t − k, which yields

∥u(t; τn′ , uτn′ , ϕn′
)∥2 + α2|Au(t; τn′ , uτn′ , ϕn′

)|2

= ∥u(t; t − k, S(t − k, τn′)(uτn′ , ϕn′
))∥2 + α2|Au(t; t − k, S(t − k, τn′)(uτn′ , ϕn′

))|2

= e−σk
(
∥u(t − k; τn′ , uτn′ , ϕn′

)∥2 + α2|Au(t − k; τn′ , uτn′ , ϕn′
)|2
)

+ 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))]]2 ds. (5.17)
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From (5.13), (5.14) and Proposition 5.2, in particular we have that

u(·; t − k, S(t − k, τn′)(uτn′ , ϕn′
)) → u(·; t − k, wk, ψk) strongly in C([t − k, t]; V), (5.18)

and also

u(·; t − k, S(t − k, τn′)(uτn′ , ϕn′
)) ⇀ u(·; t − k, wk, ψk) weakly in L2(t − k, t; D(A)). (5.19)

Then, it is not difficult to see that

lim
n′→∞

∫ t

t−k
eσ(s−t)(B(u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

=
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds. (5.20)

On other hand, as eσ(·−t) f (·) ∈ L2(t − k, t; (L2(Ω))3), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))) ds

=
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds.

Moreover, from (5.18), in particular we also have that

u(·; t − k, S(t − k, τn′)(uτn′ , ϕn′
)) → u(·; t − k, wk, ψk) strongly in L2(t − k − h, t; H),

which jointly with (5.19), implies that

lim
n′→∞

∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, S(t − k, τn′)(uτn′ , ϕn′

))), Au(s; t − k, S(t − k, τn′)(uτn′ , ϕn′
))) ds

=
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

Finally, as
∫ t

t−k eσ(s−t)[[v(s)]]2 ds defines an equivalent norm in L2(t − k, t; D(A)), we also de-
duce from above that∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds

≤ lim inf
n′→∞

∫ t

t−k
eσ(s−t)[[u(s; t − k, S(t − k, τn′)(uτn′ , ϕn′

))]]2 ds. (5.21)

From (5.17), (5.20)–(5.21), taking into account (5.13) with k = 0, the compactness of the injec-
tion of D(A) into V, and (5.11), we conclude that

∥w0∥2 + α2 lim sup
n′→∞

|Au(t; τn′ , uτn′ , ϕn′
)|2

≤ e−σk(λ−1
1 + α2)R2

σ,σ(t − k) + 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds.
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Now, taking into account that w0 = u(t; t − k, wk, ψk), integrating again in (5.16), we obtain

∥w0∥2 + α2|Aw0|2 = e−σk(∥wk∥2 + α2|Awk|2) + 2
∫ t

t−k
eσ(s−t)( f (s), Au(s; t − k, wk, ψk)) ds

+ 2
∫ t

t−k
eσ(s−t)(g(s, us(·; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

− 2
∫ t

t−k
eσ(s−t)(B(u(s; t − k, wk, ψk)), Au(s; t − k, wk, ψk)) ds

−
∫ t

t−k
eσ(s−t)[[u(s; t − k, wk, ψk)]]2 ds.

Comparing the above two expressions, we conclude that

∥w0∥2 + α2 lim sup
n′→∞

|Au(t; τn′ , uτn′ , ϕn′
)|2 ≤ e−σk(λ−1

1 + α2)R2
σ,σ(t − k) + ∥w0∥2 + α2|Aw0|2.

But from (5.9) and (5.12), we have that lim
k→∞

e−σkR2
σ,σ(t − k) = 0, so (5.15) holds, and we con-

clude that
u(t; τn′ , uτn′ , ϕn′

) → w0 strongly in D(A).

Finally, we prove the asymptotic compactness in the second component of S. From (5.13)
and (5.14) with k = 0, we have that

ut(·; τn′ , uτn′ , ϕn′
) ⇀ ψ0 weakly in L2

D(A),

d
ds

ut(·; τn′ , uτ′
n , ϕn′

) ⇀
d
ds

ψ0 weakly in L2
D(A).

Thus, by applying the Ascoli–Arzelà theorem, we can deduce that there exists a subsequence
(relabeled the same) such that ut(·; τn′ , uτn′ , ϕn′

) converges to ψ0 in CV . So, the proof is finished.

Remark 5.9. Since S : R2
d ×D(A)× L2

V → D(A)× L2
V is a continuous process, by the regularity

properties established in Theorem 2.2 and Remark 2.4 (i), S : R2
d × D(A)× CV → D(A)× CV

is a well-defined closed process. In particular, {ΛD(A)×CV
(D̂, t)}t∈R is meaningful for any

D̂ ∈ Dσ(D(A) × L2
V) ∩ Dσ(V × L2

H) by Lemma 5.8. Actually, by the embedding CV ⊂ L2
V ,

recalling Remark 3.8 (ii), it holds that ΛD(A)×CV
(D̂, t) = ΛD(A)×L2

V
(D̂, t) for any t ∈ R, which

is therefore invariant for S.

In general, the pullback absorbing family D̂σ,σ defined by (5.11) does not belong to the
universe Dσ(D(A) × L2

V) ∩ Dσ(V × L2
H), and we do not know whether or not S is pullback

D̂σ,σ-asymptotically compact. Thus, we cannot apply Theorem 3.3 nor Theorem 3.7 to the
family D̂σ,σ. Nevertheless, collecting the proved results, we may construct by hand a minimal
pullback Dσ(D(A)× L2

V)∩Dσ(V × L2
H)-attractor in a better norm than the natural one for the

phase-space D(A)× L2
V , namely in the D(A)× CV norm.

Theorem 5.10. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (4.4) and (5.6), and g : R × CH →

(L2(Ω))3 fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3, the family Aσ,σ = {Aσ,σ(t) : t ∈
R}, given by

Aσ,σ(t) =
⋃

D̂∈Dσ(D(A)×L2
V)∩Dσ(V×L2

H)

ΛD(A)×CV
(D̂, t)

D(A)×CV
, ∀t ∈ R,

satisfies the following properties:
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(a) limτ→−∞ distD(A)×CV
(S(t, τ)D(τ),Aσ,σ(t)) = 0 for all t ∈ R and any D̂ ∈ Dσ(D(A) ×

L2
V) ∩Dσ(V × L2

H) (pullback attraction).

(b) Aσ,σ(t) is compact in D(A)× CV for all t ∈ R.

(c) It is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(D(A)× CV) (resp. Ĉ = {C(t) : t ∈
R} ⊂ P(D(A)× L2

V)) is a family of closed subsets of D(A)× CV (resp. D(A)× L2
V) such that

limτ→−∞ distD(A)×CV
(S(t, τ)D(τ), C(t)) = 0 (resp. limτ→−∞ distD(A)×L2

V
(S(t, τ)D(τ), C(t))

= 0) for all t ∈ R and any D̂ ∈ Dσ(D(A)× L2
V) ∩Dσ(V × L2

H), then Aσ,σ(t) ⊂ C(t) for all
t ∈ R.

(d) S(t, τ)Aσ,σ(τ) = Aσ,σ(t) for all τ ≤ t (invariance).

In particular, Aσ,σ is the (D(A)× L2
V , D(A)× CV) minimal pullback Dσ(D(A)× L2

V) ∩ Dσ(V ×
L2

H)-attractor for the process S : R2
d × D(A)× L2

V → D(A)× L2
V .

Proof. It suffices to check (a)–(d).
Claim (a). The pullback D(A)× CV-attraction property is an easy consequence of Lemma

5.8 (see also Remark 5.9).
Claim (b). Consider a sequence {yn} ⊂ Aσ,σ(t). We will extract a converging subsequence

{yn′} ⊂ {yn} with D(A)× CV − limn′ yn′ ∈ Aσ,σ(t).
By definition of Aσ,σ(t) we may consider a sequence {xn}n with xn ∈ ΛD(A)×CV

(D̂n, t),
where D̂n ∈ Dσ(D(A)× L2

V) ∩Dσ(V × L2
H), with distD(A)×CV

(xn, yn) < 1/n. For each n ∈ N,
this means that there exist sequences {zm,n}m and {τn

m}m with limm τn
m = −∞, zm,n ∈ Dn(τn

m)

and xn = D(A)× CV − limm S(t, τn
m)zm,n. We may consider m(n) such that

distD(A)×CV
(xn, S(t, τn

m(n))z
m(n),n) < 1/n, ∀n ≥ 1.

It is obvious that we are done if we obtain a subsequence {xn′} converging in D(A)×CV since
Aσ,σ(t) is closed in D(A)× CV and then limn′ yn′

= limn′ xn′ ∈ Aσ,σ(t).
Now we rearrange the arguments of Lemma 5.8. For each integer k ≥ 0, by the absorbing

property established in Corollary 5.7, there exists τD̂n
(k) ≤ t − k such that

S(t − k, τ)Dn(τ) ⊂ Dσ,σ(t − k), ∀τ ≤ τD̂n
(k).

From this and a diagonal argument we can extract subsequences (the notation τn′

m(n′) and

zm(n′),n′
is shorten for simplicity) {τn′} and {zn′} with τn′ → −∞ and zn′ ∈ Dn′(τn′) such that

S(t − k, τn′)zn′
⇀ (wk, ψk) weakly in D(A)× L2

D(A), for all k ≥ 0,

where (wk, ψk) ∈ Dσ,σ(t − k).
Now we can repeat verbatim the arguments from Lemma 5.8 to conclude that

D(A)× CV − lim
n′

S(t, τn′)zn′
= (w0, ψ0)

which is also the limit of xn′
and yn′

, so Aσ,σ(t) is relatively compact and closed, therefore
compact in D(A)× CV .

Claim (c). The minimality among the families of closed subsets in D(A)× CV is obvious,
since Aσ,σ(t) is the closure of omega-limit sets in this topology. For the case of D(A)× L2

V ,
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observe that the omega-limit sets in this topology are those obtained in the D(A)× CV topol-
ogy (see Remark 5.9 (ii)). Besides, from (b), we have that Aσ,σ(t) is compact in D(A)× CV ,
and therefore also compact (in particular closed) in D(A)× L2

V . So the minimality argument
is analogous.

Claim (d). We prove it by double inclusion. Let us first check that Aσ,σ is negatively
invariant, that is,

Aσ,σ(t) ⊂ S(t, τ)Aσ,σ(τ), ∀τ ≤ t. (5.22)

Consider y ∈ Aσ,σ(t). Then y = D(A)× CV − limn yn with yn ∈ ΛD(A)×CV
(D̂n, t), where D̂n ∈

Dσ(D(A)× L2
V) ∩ Dσ(V × L2

H). As long as each ΛD(A)×CV
(D̂n, t) is invariant for the process

S, there exists xn ∈ ΛD(A)×CV
(D̂n, τ) with yn = S(t, τ)xn. Observe that Aσ,σ(τ) is compact

(proved previously in (b)) in D(A)× CV . Therefore there exists a subsequence {xn′} ⊂ {xn}
with D(A)×CV − limn′ xn′

= x ∈ Aσ,σ(τ). In particular, by the D(A)× L2
V continuity of S(t, τ)

(in fact, it is also continuous in D(A)× CV) it holds that yn′
= S(t, τ)xn′

converges to S(t, τ)x
in D(A)× L2

V . So, by the uniqueness of the limit, y = S(t, τ)x and (5.22) holds.
Let us check the converse inclusion

S(t, τ)Aσ,σ(τ) ⊂ Aσ,σ(t), ∀τ ≤ t.

Fix τ ≤ t and x ∈ Aσ,σ(τ). Then x = D(A)× CV − limn xn with xn ∈ ΛD(A)×CV
(D̂n, τ), where

D̂n ∈ Dσ(D(A)× L2
V) ∩Dσ(V × L2

H). Using again the invariance property ΛD(A)×CV
(D̂n, t) =

S(t, τ)ΛD(A)×CV
(D̂n, τ), denote yn := S(t, τ)xn. As long as S(t, τ) is continuous in D(A)× CV ,

Aσ,σ(t) ⊃ ΛD(A)×CV
(D̂n, t) ∋ yn = S(t, τ)xn → S(t, τ)x,

and since Aσ,σ(t) is closed in D(A)× CV , we obtain that S(t, τ)x ∈ Aσ,σ(t), which concludes
the positive invariance of Aσ,σ.

Remark 5.11. Observe that [14, Theorem 35] can be improved analogously as we have pro-
ceeded here. The notation Xσ,σ coined in [14] -in a context without delay effects- for the
analogous role of Aσ,σ here, was used because at that moment we did not realize that this
family already had compact sections and therefore it was the minimal pullback attractor (in
several topologies).

Under the additional assumption

sup
r≤0

∫ r

r−1
| f (s)|2ds < ∞, (5.23)

the pullback absorbing family D̂σ,σ defined by (5.11) does belong to Dσ(D(A)× L2
V)∩Dσ(V ×

L2
H), whence now we can apply Theorem 3.3, and actually we have the following result.

Theorem 5.12. Assume that f ∈ L2
loc(R; (L2(Ω))3) satisfies (5.23), and g : R × CH → (L2(Ω))3

fulfills conditions (I)–(V). Then, for any 0 < σ < σ/3,

Aσ,σ = ADF(V×L2
H)

.

Actually, ADF(V×L2
H)

is the unique family of closed subsets in D(A)× L2
V in the universe Dσ(D(A)×

L2
V) ∩Dσ(V × L2

H) that is invariant for S and pullback Dσ(D(A)× L2
V) ∩Dσ(V × L2

H)-attracting.
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Proof. Consider a fixed value σ ∈ (0, σ/3).
Observe that under the above assumption on f , the family D̂σ,σ = {Dσ,σ(t) : t ∈ R}

defined by (5.11)–(5.12) belongs to Dσ(D(A)× L2
V) ∩Dσ(V × L2

H).
Let us prove the equality Aσ,σ = ADF(V×L2

H)
by double inclusion.

By Theorem 5.10, Aσ,σ is well defined, and indeed, Aσ,σ(t) ⊂ Dσ,σ(t) for any t ∈ R. By
(5.23), for any fixed t ∈ R, the set

⋃
s≤t Dσ,σ(s) is bounded in D(A)× L2

D(A) since sups≤t R2
σ,σ(s)

< ∞. In particular, from the invariance of Aσ,σ, we conclude that

Aσ,σ(t) ⊂ ADF(V×L2
H)
(t), ∀t ∈ R.

On the other hand, again by (5.23), from Theorem 4.3 we have that for any τ ∈ R,⋃
r≤τ ADF(V×L2

H)
(r) is a bounded subset of D(A)× L2

V , and therefore,

distD(A)×L2
V
(ADF(V×L2

H)
(t),Aσ,σ(t)) ≤ distD(A)×L2

V
(S(t, τ)

⋃
r≤τ

ADF(V×L2
H)
(r),Aσ,σ(t)),

where the right-hand side goes to zero as τ → −∞. So we conclude that

ADF(V×L2
H)
(t) ⊂ Aσ,σ(t).

The final statement about uniqueness is a direct consequence of Remark 3.4.

Remark 5.13. Observe that, in particular, if f ∈ L2
loc(R; (L2(Ω))3) satisfies (5.23), by Corollary

3.5 the minimal pullback attractor ADF(D(A)×L2
V)

does exist, and it also coincides with the
family ADF(V×L2

H)
. They have compact sections in D(A) × CV and pullback attract in this

metric. Moreover, from Theorem 4.3 we have that⋃
t≤t2

Aσ,σ(t) =
⋃

t≤t2

ADF(V×L2
H)
(t) is a bounded subset of D(A)× CD(A) for any t2 ∈ R.
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