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1 Introduction

We study the existence of at least three distinct classical solutions to the quasilinear periodic
boundary value problem with impulsive effects

−p(x′)x′′ + α(t)x = λ f (t, x) + µg(t, x), t ̸= tj, a.e. t ∈ [0, 1],

∆(h′(u′(tj))) = Ij(u(tj)), j = 1, 2, . . . , m,

x(1)− x(0) = x′(1)− x′(0) = 0,

(P f ,g
λ,µ)

where f : [0, 1]× R → R and g : R × R → R are L1-Carathéodory functions, λ > 0 and µ ≥ 0
are parameters, 0 = t0 < t1 < · · · < tm < tm+1 = 1, Ij : R → R, j = 1, . . . , m, are continuous
functions, ∆(h′(u′(tj))) = h′(u′(t+j ))− h′(u′(t−j )) with h′(u′(t±j )) = limt→t± h′(u′(t)), and

h(y) =
∫ y

0

(∫ τ

0
p(ξ)dξ

)
dτ for every y ∈ R.

Recall that a function h : [0, 1]× R → R is an L1-Carathéodory function if it satisfies:

(a) x 7→ h(t, x) is measurable for every x ∈ R;
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(b) t 7→ h(t, x) is continuous for a.e. x ∈ [0, 1];

(c) for every ε > 0 there exists a function lε ∈ L1([0, 1]) such that

sup
|x|≤ε

|h(t, x)| ≤ lε(t) for a.e. t ∈ [0, 1].

In this paper, and without further mention, we always assume that:

(Q1) p : R → (0, ∞) is continuous and nondecreasing on [0, ∞), and there exist M ≥ m > 0
such that

m ≤ p(x) ≤ M for all x ∈ R; (1.1)

(Q2) α ∈ C([0, 1]) and there exist α1 ≥ α0 > 0 such that

α0 ≤ α(t) ≤ α1 for all t ∈ [0, 1]; (1.2)

(Q3) Ij : R → R is nondecreasing and Ij(0) = 0 for j = 1, . . . , m.

In recent years, impulsive differential equations have played an important role in modern
applied mathematical models of real processes arising in phenomena studied in physics, ecol-
ogy, biological systems, biotechnology, and industrial robotics. Many authors have applied
variational methods to study the existence of multiple solutions of impulsive systems of the
form (1.1) or its variations, and we refer the reader to [2–4, 6, 7, 12, 17, 20] and references cited
therein for some recent results. For example, Bonanno and Livrea [3] studied the existence
and multiplicity of solutions to the periodic boundary value problem{

−x′′ + A(t)x = λb(t)∇G(x), t ∈ [0, T],

x(T)− x(0) = x′(T)− x′(0) = 0,

where A(t) = (ai,j(t))n×n is a positive definite matrix for all t ∈ [0, T], ai,j ∈ C([0, T], R),
G ∈ C1(Rn, R), and b ∈ L1([0, T])\{0} that is nonnegative a.e. In [6], by using a three critical
points theorem due to Bonanno and Marano, the existence of at least three solutions to a
quasilinear second order differential equation was discussed. Using the symmetric mountain
pass theorem and genus properties of critical point theory, Shen and Liu [17] investigated the
existence of infinitely many solutions to the second-order quasilinear periodic boundary value
problem with impulsive effects

−u(t)′′ + b(t)u(t)− (|u(t)|2)′′u(t) = f (t, u), t ∈ J,

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , m,

u(T) = u(0), u′(T) = u′(0),

where b ∈ L∞(0, T; R) and f : [0, T] × R → R is continuous. Using variational methods,
Heidarkhani and Moradi [7] discussed the existence of at least one weak solution and infinitely
many weak solutions to (P f ,g

λ,µ) with µ = 0 and Ij ≡ 0 for j = 1, 2, . . . , m.
Motivated by the above studies, in this paper, we establish new criteria to guarantee that

the problem (P f ,g
λ,µ) has at least three classical solutions for appropriate values of the parameters

λ and µ. It is worth stressing that we only assume g to be a L1-Carathéodory function which
permits us to use variational methods. In addition, we obtain multiplicity results for two
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cases: (i) if the nonlinearity f is asymptotically quadratic, and (ii) if it is subquadratic as
|u| → ∞. Our approach is based on variational methods and a three critical points theorem
due to Ricceri [14].

The remainder of this paper is organized as follows. Section 2 contains some preliminary
lemmas, and Section 2.1 contains our main results and their proofs.

2 Preliminaries

Our main tool is a theorem of Ricceri [14, Theorem 2] which is recalled in Lemma 2.1 below.
In what follows, we let X be a real Banach space, and as in [14], we let WX denote the class of
all functionals Φ : X → R having the property: If {un} is a sequence in X converging weakly
to u ∈ X with lim infn→∞ Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly
to u. For example, if X is uniformly convex and g : [0, ∞) → R is a continuous and strictly
increasing function, then the functional u → g(∥u∥) belongs to the class WX.

Lemma 2.1. Let X be a separable and reflexive real Banach space, let Φ : X → R be a coercive,
sequentially weakly lower semicontinuous C1-functional belonging to WX that is bounded on bounded
subsets of X and whose derivative admits a continuous inverse on X∗. Let J : X → R be a C1-functional
with a compact derivative and assume that Φ has a strict local minimum u0 with Φ(u0) = J(u0) = 0.
Finally, set

ρ = max

{
0, lim sup

∥u∥→∞

J(u)
Φ(u)

, lim sup
u→u0

J(u)
Φ(u)

}
, σ = sup

u∈Φ−1((0,∞))

J(u)
Φ(u)

,

and assume that ρ < σ. Then for each compact interval [c, d] ⊂ (1/σ, 1/ρ) (with the conventions
that 1/0 = ∞ and 1/∞ = 0), there exists R > 0 with the property: for every λ ∈ [c, d] and every
C1-functional Ψ : X → R with compact derivative, there exists γ > 0 such that for each µ ∈ [0, γ],
the equation

Φ′(u) = λJ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than R.

We refer the reader to the papers [5,8–10,18,19] in which Lemma 2.1 was successfully used
to ensure the existence of at least three solutions to boundary value problems.

The following two results of Ricceri are taken from [15, Theorem 1] and [16, Proposi-
tion 3.1], respectively.

Lemma 2.2. Let X be a reflexive real Banach space, I ⊆ R be an interval, and let Φ : X → R be a
sequentially weakly lower semicontinuous C1 functional that is bounded on bounded subsets of X, and
whose derivative admits a continuous inverse on X∗. Let J : X → R be a functional with a compact
derivative and assume that

lim
∥x∥→∞

(Φ(x)− λJ(x)) = ∞, for all λ ∈ I,

and that there exists ρ ∈ R such that

sup
λ∈I

inf
x∈X

(Φ(x)− λ(ρ − J(x))) < inf
x∈X

sup
λ∈I

(Φ(x)− λ(ρ − J(x))).
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Then there exist a nonempty open set A ⊆ I and a positive number R with the property: for every
λ ∈ A and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such that, for
each µ ∈ [0, δ], the equation

Φ′(u)− λJ′(u)− µΨ′(u) = 0

has at least three solutions in X whose norms are less than R.

Lemma 2.3. Let X be a nonempty set and let Φ and Ψ be two real functions on X. Assume that there
exist r > 0 and x0, x1 ∈ X such that

Φ(x0) = J(x0) = 0, Φ(x1) > r, and sup
x∈Φ−1(−∞,r]

J(x) < r
J(x1)

Φ(x1)
.

Then for each ρ satisfying

sup
x∈Φ−1(−∞,r]

J(x) < ρ < r
J(x1)

Φ(x1)
,

we have
sup
λ≥0

inf
x∈X

(Φ(x)− λ(ρ − J(x))) < inf
x∈X

sup
λ≥0

(Φ(x)− λ(ρ − J(x))).

We refer the reader to the paper of Sun et al. [18] in which Lemma 2.2 was successfully
employed to ensure the existence of at least three solutions to boundary value problems.

To construct an appropriate function space and apply critical point theory, we introduce
the following notations and results to be used in the proofs of our main results.

Let us define the Banach space E by

E =
{

u : [0, 1] → R | u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

,

equipped with the norm

∥u∥ =

( ∫ 1

0

(
|u′|2 + |u|2

)
dt
) 1

2

.

Clearly, E is a Hilbert space with the dual space E∗.
For every u ∈ E, we define

Φ(u) =
∫ 1

0
h(u′(t))dt +

1
2

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ, (2.1)

J(u) =
∫ 1

0
F(t, u(t))dt, (2.2)

and

Ψ(u) =
∫ 1

0
G(t, u(t))dt, (2.3)

where
F(t, x) =

∫ x

0
f (t, s)ds and G(t, x) =

∫ x

0
g(t, s)ds for all x ∈ R.

Standard arguments show that Iλ := Φ− µΨ−λJ is a Gâteaux differentiable functional whose
Gâteaux derivative at the point u ∈ E is given by

(Φ′ − µΨ′ − λJ′)(u)(v) =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt

+
m

∑
j=1

Ij(u(tj))v(tj)− λ
∫ 1

0
f (t, u(t))v(t)dt

− µ
∫ 1

0
g(t, u(t))v(t)dt, for all v ∈ E.
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Furthermore, from the definition of Φ, we see that it is sequentially weakly lower semicontin-
uous.

Definition 2.4. By a weak solution of the problem (P f ,g
λ,µ), we mean a function u ∈ E such that

∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

− λ
∫ 1

0
f (t, u(t))v(t)dt − µ

∫ 1

0
g(t, u(t))v(t)dt = 0,

for every v ∈ E.
By a classical solution of the problem (P f ,g

λ,µ), we mean a function u ∈ E such that u(t)

satisfies the equation in (P f ,g
λ,µ) for a.e. t ∈ [0, 1] \ {t1, . . . , tm} and both the impulse condition

and the boundary condition in (P f ,g
λ,µ) hold.

Clearly, a critical point u ∈ E of the functional Iλ is a weak solution of the problem (P f ,g
λ,µ).

Next , we show that u is indeed a classical solution.

Lemma 2.5. If u ∈ E is a critical point of Iλ, then u is a classical solution of (P f ,g
λ,µ).

Proof. Let u ∈ E be a critical point for Iλ. Then, for any v ∈ E, it follows that

0 =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

− λ
∫ 1

0
f (t, u(t))v(t)dt − µ

∫ 1

0
g(t, u(t))v(t)dt

=
m+1

∑
j=0

h′(u′(t))v(t)|
t−j+1

t=t+j
+

m

∑
j=1

Ij(u(tj))v(tj)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt

=
m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt.

That is, we have

m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0)

−
∫ 1

0
[(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t))]v(t)dt = 0 for all v ∈ E. (2.4)

Without loss of generality, we assume that v ∈ C∞
0 (tj, tj+1) and v(t) = 0 for t ∈ [0, tj]∪ [tj+1, 1].

Then, substituting into (2.4) gives

(h′(u′(t)))′ − α(t)u(t) + λ f (t, u(t)) + µg(t, u(t)) = 0 a.e. t ∈ (tj, tj+1).
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Thus, in view of the fact that (h′(u′(t)))′ = p(u′(t))u′′(t), we see that u satisfies the equation
in (P f ,g

λ,µ). Now, by (2.4), we have

m

∑
j=1

[−∆(h′(u′(tj))) + Ij(u(tj))]v(tj) + h′(u′(1))v(1)− h′(u′(0))v(0) = 0 (2.5)

for all v ∈ E. Next we shall show that u satisfies the impulsive condition in (P f ,g
λ,µ). If this is

not the case, without loss of generality, we assume that there exists j ∈ {1, . . . , m} such that

−∆(h′(u′(tj))) + Ij(u(tj)) ̸= 0.

Let

v(t) =
m+1

∏
i=0, i ̸=j

(t − ti).

Then,

m

∑
k=1

[−∆(h′(u′(tk))) + Ik(u(tk))]v(tk) + h′(u′(1))v(1)− h′(u′(0))v(0)

=
m

∑
k=1

[−∆(h′(u′(tk))) + Ik(u(tk))]
m+1

∏
i=0, i ̸=j

(tk − ti)

+ h′(u′(1))
m+1

∏
i=0, i ̸=j

(tm+1 − ti)− h′(u′(0))
m+1

∏
i=0, i ̸=j

(t0 − ti)

= [−∆(h′(u′(tj))) + Ij(u(tj))]
m+1

∏
i=0, i ̸=j

(tk − ti) ̸= 0,

which contradicts (2.5). Thus, u satisfies the impulse condition in (P f ,g
λ,µ). Similarly, we can

show that u satisfies the boundary condition in (P f ,g
λ,µ). Therefore, u is a solution of (P f ,g

λ,µ).

We will also need the following lemma in the proof of our main result.

Lemma 2.6. Let S : E → E∗ be the operator defined by

S(u)(v) =
∫ 1

0
h′(u′(t))v′(t)dt +

∫ 1

0
α(t)u(t)v(t)dt +

m

∑
j=1

Ij(u(tj))v(tj)

for every u, v ∈ E. Then S admits a continuous inverse on E∗.

Proof. For any u ∈ E, from conditions (Q1)–(Q3), it follows that

S(u)(u) =
∫ 1

0
h′(u′(t))u′(t)dt +

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

Ij(u(tj))ui(tj)

≥ min{m, α0}∥u∥2,
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which implies that S is coercive. Now, for any u, v ∈ E, we have

⟨S(u)− S(v), u − v⟩ =
∫ 1

0
(h′(u′(t))− h′(v′(t)))(u′(t)− v′(t))dt

+
∫ 1

0
α(t)(u(t)− v(t))2dt

+
m

∑
j=1

(
Ij(u(t))− Ij(v(t))

)
(u(t)− v(t))

≥ min{m, α0}∥u − v∥2.

Thus, S is strongly monotone. Moreover, since E is reflexive, if un → u strongly in E as n → ∞,
it can be shown that S(un) → S(u) weakly in E∗ as n → ∞. Hence, S is demicontinuous. By
[21, Theorem 26.A(d)], the inverse operator S−1 of S exists and is continuous.

2.1 Main result

In this section, we state and prove our main results. Let

λ1 = inf
u∈E\{0}


∫ 1

0 h(u′(t))dt + 1
2

∫ 1
0 α(t)|u(t)|2dt + ∑m

j=1
∫ u(tj)

0 Ij(ζ)dζ∫ 1
0 F(t, u(t))dt

:
∫ 1

0
F(t, u(t))dt > 0


and

λ2 =
1

max {0, λ0, λ∞}
,

where

λ0 = lim sup
u→0

∫ 1
0 F(t, u(t))dt∫ 1

0 h(u′(t))dt + 1
2

∫ 1
0 α(t)|u(t)|2dt + ∑m

j=1
∫ u(tj)

0 Ij(ζ)dζ

and

λ∞ = lim sup
∥u∥→∞

∫ 1
0 F(t, u(t))dt∫ 1

0 h(u′(t))dt + 1
2

∫ 1
0 α(t)|u(t)|2dt + ∑m

j=1
∫ u(tj)

0 Ij(ζ)dζ
.

Theorem 2.7. Assume that

(A1) there exists a constant ε > 0 such that

max

{
lim sup

u→0

maxt∈[0,1] F(t, u)
|u|2 , lim sup

|u|→∞

maxt∈[0,1] F(t, u)
|u|2

}
< ε;

(A2) there exists a function w ∈ E such that

∫ 1

0
h(w′(t))dt +

1
2

∫ 1

0
α(t)|w(t)|2dt +

m

∑
j=1

∫ w(tj)

0
Ij(ζ)dζ ̸= 0

and
8ε

min{m, α0}
<

∫ 1
0 F(t, w(t))dt∫ 1

0 h(w′(t))dt + 1
2

∫ 1
0 α(t)|w(t)|2dt + ∑m

j=1
∫ w(tj)

0 Ij(ζ)dζ
.
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Then for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such that for every λ ∈ [c, d] and
every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for every µ ∈ [0, γ],
the problem (P f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Remark 2.8. Under conditions (A1) and (A2), it is true that λ1 < λ2 as is shown in the proof
of Theorem 2.7 given below.

Proof of Theorem 2.7. Our aim is to apply Lemma 2.1 to the problem (P f ,g
λ,µ). Take X = E; clearly,

X is a separable and uniformly convex Banach space. From [13, Proposition 1.1] and its proof
with T = 1 and p = q = 2, we have

max
t∈[0,1]

|u(t)| ≤ 2∥u∥ for all u ∈ X. (2.6)

Let the functionals Φ, J, and Ψ be as given in (2.1)–(2.3). The functional Φ is C1, and by
Lemma 2.6, its derivative admits a continuous inverse on X∗. Moreover, Φ is sequentially
weakly lower semicontinuous since Φ′ is monotone (see the proof of Lemma 2.6). Since∫ 1

0
h(u′(t))dt =

∫ 1

0

(∫ u′(t)

0

(∫ τ

0
p(ξ)dξ

)
dτ

)
dt,

from (1.1) and (1.2), it follows that

1
2

min{m, α0}∥u∥2 ≤ m
2

∫ 1

0
|u′(t)|2dt +

α0

2

∫ 1

0
|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

≤ Φ(u)

≤ M
2

∫ 1

0
|u′(t)|2dt +

α1

2

∫ 1

0
|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

≤ 1
2

max{M, α1}∥u∥2 +
m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ (2.7)

for every u ∈ X. We then have
lim

∥u∥→+∞
Φ(u) = ∞,

i.e., Φ is coercive. Now, let A be a bounded subset of X. Then there exist a constant c > 0
such that ∥u∥ ≤ c for all u ∈ A. From (2.6), maxt∈[0,1] |u(t)| ≤ 2c for all u ∈ A. Thus, by the

continuity of each Ij, we see that there exists K > 0 such that
∣∣∣∑m

j=1
∫ u(tj)

0 Ij(ζ)dζ
∣∣∣ < K for all

u ∈ A. Then, by (2.7), we have

Φ(u) ≤ 1
2

max{M, α1}∥c∥2 + K,

so Φ is bounded on each bounded subset of X.
To prove that Φ ∈ WX, define

Φ1(u) =
∫ 1

0
h(u′(t))dt and Φ2(u) =

1
2

∫ 1

0
α(t)|u(t)|2dt +

m

∑
j=1

∫ u(tj)

0
Ij(ζ)dζ

for all u ∈ X. Then,
Φ(u) = Φ1(u) + Φ2(u) for all u ∈ X.
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As in (2.7), we have

Φ1(u) ≥ d(u) :=
m
2

∫ 1

0
|u′(t)|2dt for all u ∈ X. (2.8)

Let {uk} be a sequence in X and let u ∈ X be such that uk ⇀ u and lim infk→∞ Φ(uk) ≤
Φ(u). To show that {uk} has a subsequence strongly converging to u, assume, to the contrary,
that {uk} does not have such a subsequence. Then, there exist ϵ > 0 and a subsequence {ukn}
of {uk} such that ∥∥∥∥ukn − u

2

∥∥∥∥ ≥ ϵ for all n ∈ N.

Note that {ukn} converges uniformly to u by [13, Proposition 1.2]. Then, in view of the
definition of ∥ · ∥, there exists ϵ1 > 0 such that

d
(

ukn − u
2

)
≥ ϵ1 for all n ∈ N.

Thus, from (2.8)

Φ1

(
ukn − u

2

)
≥ ϵ1 for all n ∈ N. (2.9)

Now, the sequentially weakly lower semicontinuity of Φ implies that lim infn→∞ Φ(ukn) =

Φ(u). Hence, there exists a subsequence {wℓ} = {uknℓ
} of {ukn} such that

lim
ℓ→∞

Φ(wℓ) = Φ(u).

Since {wℓ} converges uniformly to u and Ij, j = 1 . . . , m, are continuous, we see that

lim
ℓ→∞

Φ2(wℓ) = Φ2(u),

and so
lim
ℓ→∞

Φ1(wℓ) = Φ1(u). (2.10)

It is clear that Φ1 is sequentially weakly lower semicontinuous and that (wℓ + u)/2 ⇀ u as
ℓ → ∞. Then,

Φ1(u) ≤ lim inf
ℓ→∞

Φ1

(
wℓ + u

2

)
. (2.11)

By simple calculations and the nondecreasing nature of p, we have that for y > 0,

h′′(
√

y) =
1
4

y−1 p(
√

y)− 1
4

y−3/2
∫ √

y

0
p(ξ)dξ

≥ 1
4

y−1 p(
√

y)− 1
4

y−3/2√yp(
√

y) = 0.

Hence, h(
√

y) is convex. Moreover, h(y) is continuous, strictly increasing for y ≥ 0, and
h(0) = 0. Thus, from [11, Theorem 2.1], we have

1
2

Φ1(wℓ) +
1
2

Φ1(u) ≥ Φ1

(
wℓ + u

2

)
+ Φ1

(
wℓ − u

2

)
for all ℓ ∈ N.

Taking limit superior as ℓ → ∞ and using (2.8), (2.9), and (2.10) in the above inequality, we
obtain

Φ1(u)− ϵ1 ≥ lim sup
ℓ→∞

Φ1

(
wℓ + u

2

)
,
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which contradicts (2.11). This shows that {uk} has a subsequence converging strongly to u.
Therefore, Φ ∈ WX.

The functionals J and Ψ are C1-functionals with compact derivatives. Moreover, Φ has
a strict local minimum 0 with Φ(0) = J(0) = 0. Therefore, the regularity assumptions on
Φ, J, and Ψ, as required in Lemma 2.1, are satisfied. In view of (A1), there exist τ1, τ2 with
0 < τ1 < τ2 such that

F(t, u) ≤ ε|u|2 (2.12)

for every t ∈ [0, 1] and every u with |u| ∈ [0, τ1) ∪ (τ2, ∞). Since F(t, u) is continuous on
[0, 1]× R, F(t, u) is bounded on [0, 1]× [τ1, τ2]. Thus, we can choose η > 0 and υ > 2 such
that

F(t, u) ≤ ε|u|2 + η|u|υ

for all (t, u) ∈ [0, 1]× R. Then, from (2.6), we have

J(u) ≤ 4ε∥u∥2 + η2υ∥u∥υ (2.13)

for all u ∈ X. Hence, from (2.7) and (2.13), we have

lim sup
|u|→0

J(u)
Φ(u)

≤ 8ε

min{m, α0}
. (2.14)

Moreover, by (2.12), for each u ∈ X \ {0},

J(u)
Φ(u)

=

∫
|u|≤τ2

F(t, u(t))dt

Φ(u)
+

∫
|u|>τ2

F(t, u(t))dt

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2]

F(t, u)

Φ(u)
+

4ε∥u∥2

Φ(u)

≤
supt∈[0,1],|u|∈[0,τ2]

F(t, u)
1
2 min{m, α0}∥u∥2

+
8ε

min{m, α0}
.

Therefore,

lim sup
∥u∥→∞

J(u)
Φ(u)

≤ 8ε

min{m, α0}
. (2.15)

In view of (2.14) and (2.15), we have

ρ = max

{
0, lim sup

∥u∥→∞

J(u)
Φ(u)

, lim sup
u→0

J(u)
Φ(u)

}
≤ 8ε

min{m, α0}
. (2.16)

Condition (A2) together with (2.16) yield

σ = sup
u∈Φ−1((0,∞))

J(u)
Φ(u)

= sup
X\{0}

J(u)
Φ(u)

≥
∫ 1

0 F(t, w(t))dt
Φ(w(t))

=

∫ 1
0 F(t, w(t))dt

1
2 max{M, α1}∥u∥2 + ∑m

j=1
∫ w(tj)

0 Ij(ζ)dζ

>
8ε

min{m, α0}
≥ ρ.



A quasilinear periodic boundary value problem with impulsive effects 11

Thus, all the conditions of Lemma 2.1 are satisfied. With λ1 = 1/σ and λ2 = 1/ρ, by Lemmas
2.1 and 2.5, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such that for every
λ ∈ [c, d] and every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that
for each µ ∈ [0, γ], the problem (P f ,g

λ,µ) has at least three classical solutions whose norms in X
are less than R.

The following result is another application of Lemma 2.1.

Theorem 2.9. Assume that

max
u∈E

{
lim sup

u→0

maxt∈[0,1] F(t, u)
|u|2 , lim sup

|u|→∞

maxt∈[0,1] F(t, u)
|u|2

}
≤ 0 (2.17)

and

sup
u∈E

∫ 1
0 F(t, u(t))dt∫ 1

0 h(u′(t))dt + 1
2

∫ 1
0 α(t)|u(t)|2dt + ∑m

j=1
∫ u(tj)

0 Ij(ζ)dζ
> 0. (2.18)

Then for each compact interval [c, d] ⊂ (λ1, ∞), there exists R > 0 such that for every λ ∈ [c, d] and
every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for each µ ∈ [0, γ],
the problem (P f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. For any ε > 0, (2.17) implies that there exist τ1 and τ2 with 0 < τ1 < τ2 such that

F(t, u) ≤ ε|u|2

for every t ∈ [0, 1] and every u with |u| ∈ [0, τ1) ∪ (τ2, ∞). Since F(t, u) is continuous on
[0, 1] × R, F(t, u) is bounded on [0, 1] × [τ1, τ2]. Thus, as before, we can choose η > 0 and
υ > 2 so that

F(t, u) ≤ ε|u|2 + η|u|υ

for all (t, u) ∈ [0, 1]× R. Then, by the same process as in the proof of Theorem 2.7, we obtain
(2.14) and (2.15). Since ϵ is arbitrary, (2.14) and (2.15) give

max

{
0, lim sup

∥u∥→+∞

J(u)
Φ(u)

, lim sup
u→0

J(u)
Φ(u)

}
≤ 0.

Then, with ρ and σ defined as in Lemma 2.1, we have ρ = 0, and by (2.18), we have σ > 0. In
this case, λ1 = 1/σ and λ2 = ∞. Thus, by Lemma 2.1 the theorem is proved.

Remark 2.10. In condition (A2) of Theorem 2.7, if we choose

w0(t) =


σ, t ∈ [0, 1/4] ,

2σt + σ/2, t ∈ [1/4, 1/2] ,

−2σt + 5σ/2, t ∈ [1/2, 3/4] ,

σ, t ∈ [3/4, 1] ,

(2.19)

where σ > 0, then w0 ∈ E, and (A2) now takes the form
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(Â2) there exists a positive constant σ such that

1
4

h(2σ) +
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ ̸= 0

and

8ε

min{m, α0}
<

∫ 1
0 F(t, w0(t))dt

1
4 h(2σ) + 1

4 h(−2σ) + 1
2

∫ 1
0 α(t)|w0(t)|2dt + ∑m

j=1
∫ w0(tj)

0 Ij(ζ)dζ
.

Next, we point out some results in which the function f is separable. To be precise, we
consider the problem

−p(x′)x′′ + α(t)x = λθ(t) f (x) + µg(t, x), t ̸= tj, a.e. t ∈ [0, 1],

∆(h′(u′(tj))) = Ij(u(tj)), j = 1, 2, . . . , m,

x(1)− x(0) = x′(1)− x′(0) = 0,

(ϕθ
λ,µ)

where θ : [0, 1] → R is a nonzero function with θ ∈ L1([0, 1]), f : R → R is a continuous
function, and g : [0, 1]× R → R is an L1-Carathéodory function. Let F(t, x) = θ(t)F(x) for
every (t, x) ∈ [0, 1]× R, where

F(x) =
∫ x

0
f (ξ)dξ for all x ∈ R.

The following existence results are then consequences of Theorem 2.7.

Theorem 2.11. Assume that

(A3) there exists a constant ε > 0 such that

sup
t∈[0,1]

θ(t) · max

{
lim sup

u→0

F(u)
|u|2 , lim sup

|u|→∞

F(u)
|u|2

}
< ε;

(A4) there exists a positive constant σ such that

1
4

h(2σ) +
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ ̸= 0

and

8ε

min{m, α0}
<

f (w0(t))
∫ 1

0 θ(t)dt
1
4 h(2σ) + 1

4 h(−2σ) + 1
2

∫ 1
0 α(t)|w0(t)|2dt + ∑m

j=1
∫ w0(tj)

0 Ij(ζ)dζ
,

where w0 is defined by (2.19).

Then for each compact interval [c, d] ⊂ (λ3, λ4), where λ3 and λ4 are the same as λ1 and λ2, but with∫ 1
0 F(t, u(t))dt replaced by

∫ 1
0 θ(t)F(u(t))dt, there exists R > 0 such that for every λ ∈ [c, d] and

every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0 such that for each µ ∈ [0, γ],
the problem (ϕθ

λ,µ) has at least three classical solutions whose norms in E are less than R.
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Theorem 2.12. Assume that there exists a positive constant σ such that

1
4

h(2σ)+
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ > 0

and ∫ 1

0
θ(t)F(w0(t))dt > 0, (2.20)

where w0 is given by (2.19). In addition, assume that

lim sup
u→0

F(u)
|u|2 = lim sup

|u|→∞

F(u)
|u|2 = 0. (2.21)

Then for each compact interval [c, d] ⊂ (λ3, ∞), where λ3 is the same as λ1 but with
∫ 1

0 F(t, u(t))dt
replaced by

∫ 1
0 θ(t)F(u(t))dt, there exists R > 0 such that for every λ ∈ [c, d] and every L1-

Carathéodory function g : [0, 1] × R → R, there exists γ > 0 such that for each µ ∈ [0, γ], the
problem (ϕθ

λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. From (2.21), we easily see that (A3) is satisfied for every ε > 0. Moreover, using (2.20),
by choosing ε > 0 small enough, (A4) will hold. Hence, the conclusion of this theorem follows
from Theorem 2.11.

As an example in which the hypotheses of Theorem 2.12 are satisfied, we have the follow-
ing.

Example 2.13. Let p(x) = 4− cot(x) for each x ∈ R, α(t) = θ(t) = 1 for every t ∈ [0, 1], m = 1,
t1 = 1/5, I1(x) = x3 for each x ∈ R, and

f (x) =


4x3, |x| ≤ 1,

4x, 1 < |x| ≤ 2,

8, |x| ≥ 2.

Then, it is easy to check that

F(x) =


x4, |x| ≤ 1,

2x2 − 1, 1 < |x| ≤ 2,

8x − 9, x > 2,

8x + 23, x < −2.

By choosing σ = 1, w0(t) becomes

w0(t) =


1, t ∈ [0, 1/4] ,

2t + 1/2, t ∈ [1/4, 1/2] ,

−2t + 5/2, t ∈ [1/2, 3/4] ,

1, t ∈ [3/4, 1] .

It is trivial to verify that

1
4

h(2σ)+
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ > 0,



14 J. R. Graef, S. Heidarkhani, L. Kong and S. Moradi

∫ 1

0
θ(t)F(w0(t))dt > 0,

and

lim
u→0

F(u)
|u|2 = lim

|u|→∞

F(u)
|u|2 = 0.

Hence, by Theorem 2.12, for each compact interval [c, d] ⊂ (0, ∞), there exists R > 0 such that
for every λ ∈ [c, d] and every L1-Carathéodory function g : [0, 1]× R → R, there exists γ > 0
such that for each µ ∈ [0, γ], the problem

−p(x′)x′′ + x = λ f (x) + µg(t, x), t ̸= 1
5 , a.e. t ∈ [0, 1],

∆(h′(u′( 1
5 ))) = I1(u( 1

5 )),

x(1)− x(0) = x′(1)− x′(0) = 0,

has at least three classical solutions whose norms in E are less than R.

The following theorem is a consequences of Lemma 2.3.

Theorem 2.14. Assume that there exist three positive constants 1 ≤ ζ < 2, θ, and σ, with

θ <

√
1
4

h(2σ) +
1
4

h(−2σ) +
31α0σ2

48
, (2.22)

such that

(B1) f (t, x) ≥ 0 for every (t, x) ∈
(
[0, 1/4]×[0, σ]

)
∪
(
[3/4, 1]×[0, σ]

)
∪
(
[1/4, 3/4]×[σ, 3σ/2]

)
;

(B2)

∫ 1
0 sup|u|≤θ F(t, u)dt

θ2 <
min{m, α0}

8

∫ 3
4

1
4

F(t, σ)dt

1
4 h(2σ) + 1

4 h(−2σ) + 31α1σ2

48 + ∑m
j=1
∫ w0(tj)

0 Ij(ζ)dζ
;

(B3) there exists p > 0 and a positive constant q such that

|F(t, u)| ≤ p|u|ζ + q for all (t, u) ∈ [0, 1]× R;

(B4) there exists l > 0 and a positive constant ϱ ∈ R such that

G(t, u) ≤ luζ + ϱ for all (t, u) ∈ [0, 1]× R.

Then there exist a nonempty open set A ⊂ [0, ∞) and a positive number R > 0 such that for every
λ ∈ A and every L1-Carathéodory function g : [0, 1]× R → R, there exists δ > 0 such that for each
µ ∈ [0, δ], the problem (P f ,g

λ,µ) has at least three classical solutions whose norms in E are less than R.

Proof. Since the embeddings E ↪→ Lq (q ≥ 1) and E ↪→ L∞ are compact (see Adams and
Fournier [1]), there exists a positive constant C such that

|u|Lq([0,1]) ≤ C∥u∥.

For any λ ≥ 0 and u ∈ E, from (Q3), (B3), and (B4), we have

Φ(u)− λΨ(u) ≥ 1
2

min{m, α0}∥u∥2 − λ
∫ 1

0
[F(t, u(t)) +

µ

λ
G(t, u(t))]dt

≥ 1
2

min{m, α0}∥u∥2 − λ

(∫ 1

0
p|u|ζdt + q

)
− µ

(
l
∫ 1

0
|u(t)|ζdt + ϱ

)
≥ 1

2
min{m, α0}∥u∥2 − λpC0∥u∥ζ − µlC1∥u∥ζ − λq − µϱ.
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Since ζ < 2,

lim
∥u∥→+∞

Φ(u)− λΨ(u) = ∞ for all λ > 0.

Let w0 be defined by (2.19) with σ given in the theorem. Now, mint∈[ 1
4 , 3

4 ]
{w0(t)} = σ and

maxt∈[ 1
4 , 3

4 ]
{w0(t)} = 3σ

2 , so

J(w0) =
∫ 1

4

0

∫ σ

0
f (t, ξ)dξdt +

∫ 3
4

1
4

∫ w0(t)

0
f (t, ξ)dξdt +

∫ 1

3
4

∫ σ

0
f (t, ξ)dξdt

≥
∫ 3

4

1
4

∫ σ

0
f (t, ξ)dξdt =

∫ 3
4

1
4

F(t, σ)dt.

Moreover, simple calculations show that

Φ(w0) =
1
4

h(2σ) +
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

≤ 1
4

h(2σ) +
1
4

h(−2σ) +
α1

2

∫ 1

0
|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

=
1
4

h(2σ) +
1
4

h(−2σ) +
31α1σ2

48
+

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ (2.23)

and

Φ(w0) =
1
4

h(2σ) +
1
4

h(−2σ) +
1
2

∫ 1

0
α(t)|w0(t)|2dt +

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

≥ 1
4

h(2σ) +
1
4

h(−2σ) +
α0

2

∫ 1

0
|w0(t)|2dt

=
1
4

h(2σ) +
1
4

h(−2σ) +
31α0σ2

48
. (2.24)

Let r = min{m,α0}
8 θ2. Then, from (2.22) and (2.24), we have Φ(w0) > r. From the definition of

Φ, (2.6), and (2.7), it follows that

Φ−1(−∞, r] = {x ∈ E : Φ(x) ≤ r}

⊆
{

x ∈ E : max
t∈[0,1]

|x(t)| ≤
√

8r
min{m, α0}

}

⊆
{

x ∈ E : max
t∈[0,1]

|x(t)| ≤ θ

}
.

Therefore,

sup
u∈Φ−1((−∞,r])

J(u) ≤
∫ 1

0
sup
|u|≤θ

F(t, u)dt.
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Thus, from (B2) and (2.23), we have

r
J(w0)

Φ(w0)
=

r
Φ(w0)

(∫ 1

0
F(t, w0(t))dt

)

≥

min{m, α0}
8

θ2

(∫ 3
4

1
4

F(t, σ)dt

)
1
4

h(2σ) +
1
4

h(−2σ) +
31α1σ2

48
+

m

∑
j=1

∫ w0(tj)

0
Ij(ζ)dζ

>
∫ 1

0
sup
|u|≤θ

F(t, u)dt ≥ sup
u∈Φ−1((−∞,r])

J(u).

We can then fix ρ so that

sup
u∈Φ−1((−∞,r])

J(u) < ρ < r
J(w0)

Φ(w0)
.

From Lemma 2.3, we obtain

sup
λ≥0

inf
u∈E

(Φ(u)− λ(ρ − J(u)) < inf
u∈E

sup
λ≥0

(Φ(u)− λ(ρ − J(u)).

Hence, by Lemma 2.2, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such
that for every λ ∈ [c, d], and every L1-Carathéodory function g : [0, 1]× R → R there exists
δ > 0 such that, for each µ ∈ [0, δ], Φ′(u)− λJ′(u)− µΨ′(u) = 0 has at least three solutions
in E. Hence, the problem (P f ,g

λ,µ) has at least three classical solutions whose norms are less
than R.

2.2 Results and discussion

In this paper we investigate the existence of multiple solutions to a quasilinear periodic bound-
ary value problem with impulsive effects. The main technique of proof involves variational
methods and critical points theorems for smooth functionals. We obtain the existence of at
least three solutions to the problem. The applicability of the results are illustrated by an
example.
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