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Abstract. We study the problem −∆u = λu − u−1 with a Neumann boundary condi-
tion; the peculiarity being the presence of the singular term −u−1. We point out that
the minus sign in front of the negative power of u is particularly challenging, since
no convexity argument can be invoked. Using bifurcation techniques we are able to
prove the existence of solution (uλ, λ) with uλ approaching the trivial constant solution
u = λ−1/2 and λ close to an eigenvalue of a suitable linearized problem. To achieve this
we also need to prove a generalization of a classical two-branch bifurcation result for
potential operators. Next we study the radial case and show that in this case one of the
bifurcation branches is global and we find the asymptotical behavior of such a branch.
This results allows to derive the existence of multiple solutions u with λ fixed.
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1 Introduction

In the last decades several authors have studied semilinear elliptic problems with singular
nonlinear term (with respect to the unknown function u). The model problem is the following:

−∆u = γu−q + f (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where q > 0 γ ̸= 0 and f is a non linear term with standard growth conditions. Existence and
multiplicity of solutions to problem (1.1) are usually investigated in terms of the behavior of
f and the sign of γ.

A main aspect to be taken into account is the variational nature of (1.1): formally speaking
solutions u of (1.1) are expected to be critical points of the functional

I(u) :=
1
2

∫
Ω
|∇u|2 dx − γ

1 − q

∫
Ω

u1−q dx −
∫

Ω
F(x, u) dx,
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defined on W1,2
0 (Ω) and restricted to {u ≥ 0}, where F(x, s) is a primitive in s of f (x, s) (if

q = 1 a logarithm should be introduced). Unfortunately the presence of the singular term
makes it problematic to give a rigorous formulation of the above ideas.

The majority of the known results concern the case γ > 0, where the term u 7→ − γ
1−q u1−q

is convex in the interval ]0,+∞[. This fact helps a lot, whether one tries to directly deal with
I (by using some nonsmooth-critical-point theory) or to use an approximation scheme (by a
sequence In → I, In being C1 on W1,2

0 (Ω)). For instance, if f = 0, the problem has a unique
weak solution ū in W1,2

0 (Ω) when 0 < q < 3 and the solution is a minimizer for I. This
result can be extended for all q > 0 dropping the request that ū ∈ W1,2

0 (Ω) (see [5, 9]). For
a small non exhaustive list of multiplicity results for solutions of this kind of problems see
[1, 3, 7, 11, 13–15, 17, 18, 26, 27] (and the references therein).

If we turn to γ < 0 the literature is scarcer: to the author’s knowledge the main results
are contained in [6, 12, 22, 27, 28]. In this situation solutions are “attracted” from the value
zero and tend to develop “dead cores”, so the formulation (1.1) needs to be modified in order
to admit non strictly positive solutions. For instance the only solution for the case f = 0 is
u = 0 (as one can easily see by multiplying the equation by u). Moreover a direct variational
approach using the functional I seems difficult for the moment and the usual approach goes
by perturbation methods.

We have found particularly interesting the paper [22] by Montenegro and Silva, where the
authors use perturbation methods and show that there exist two nontrivial solutions when
γ = −1, 0 < q < 1, f (x, u) = µup, with q < p < and µ > 0 big enough. If we pass to q = 1,
simple tests in the radial case suggest that the Dirichlet problem only has the trivial solution.
As we said before solutions starting from zero are “forced to stick” at zero and not allowed to
“emerge” (in contrast with the case of q < 1). On this respect see Remark 4.9.

For this reasons, in the case q = 1, we are lead to replace the Dirichlet condition with a
Neumann one. In particular we have considered the problem

−∆u = λu − 1
u

in Ω,

u > 0 in Ω,

∇u · ν = 0 on ∂Ω

(1.2)

where Ω is a bounded smooth open subset of RN and ν denotes the unit normal defined on
∂Ω. This corresponds to the problem of [22] with q = p = 1 (with Neumann condition).

In case N = 1 (1.2) is closely related to a problem studied by Del Pino, Manásevich, and
Montero in 1992 (see [10]) who deal with an ODE, in the periodic case, with a more general,
non autonomous, singular term f (u, x) (singular in u and T-periodic in x). Using topological
degree arguments they prove for instance that the equation:

−ü = λu − 1
uα

, u(x) > 0, u(x + T) = u(x),

where α ≥ 1, has a solution provided λ ̸= µk
4 for all k. Here µk denote the eigenvalues of

a suitable linearized problem which arises in a natural way from the problem. In this case,
which has a variational structure, the results of [10] can be derived from the existence of two
global bifurcation branches which originate from trivial solutions of the linearized problem.

In this paper we present two types of results concerning problem (1.2). In Theorem (2.1)
of Section 2 we prove the existence of two local bifurcation branches (u1,ρ, λ1,ρ) and (u2,ρ, λ2,ρ)

of solutions of (1.2), such that (ui,ρ, λ1,ρ) → (û, λ̂), as ρ → 0, where λ̂/2 is an eigenvalue of
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−∆ with Neumann condition and û is the constant function: û ≡ λ̂−1/2. The proof of (2.1)
heavily relies on a variant of the well known abstract results on the existence of two bifurcation
branches in the variational case (see [4, 19, 20, 25]). To the author surprise such a variant (see
Theorem (3.1) seems not to be present in the literature so its proof is carried on in Section
3. It has to be said that proving (3.1) requires some additional technicalities compared to the
standard version. Indeed in [4,20] the proof goes by studying a suitable perturbed function fρ

on the unit sphere S, while in our case S has to be replaced by a sphere-like set Sρ also varying
with ρ. This requires to construct suitable projections to show that all Sρ’s are homeomorphic
to S0 = S (for ρ small). Apart from this the proof of (3.1) follows the ideas of [2].

In Section 4 we study the radial case in dimension N = 2 (the same could be probably
done for N ≥ 3) using ODE techniques and a continuation argument for the nodal regions
of the solutions. In this way, following the ideas of [24], we are able to prove that one of
the two branches (uρ, λρ) is global and bounded in λρ. This is done by proving that nodal
regions of uρ cannot collapse along the branch and that λρ → λ̄ as

∥∥uρ

∥∥→ +∞, where ρ̄ is an
eigenvalue of another suitable linear problem. In this way – in the radial case – we can find a
lower estimate in the number of solutions for a fixed λ, by counting the number of branches
that cross λ.

2 A local bifurcation result for the singular problem

Let Ω be a bounded open subset of RN with smooth boundary.

Theorem 2.1. Let µ̂ > 0 be an eigenvalue of the following Neumann problem:{
−∆u = µu in Ω,

∇u · ν = 0 on ∂Ω,
(2.1)

(ν denotes the normal to ∂Ω).
Then there exists ρ0 > 0 such that for all ρ ∈ ]0, ρ0[ there exist two distinct pairs (u1,ρ, λ1,ρ) and

(u2,ρ, λ2,ρ) such that, for i = 1, 2:

(ui,ρ, λi,ρ) are solutions of (1.2), ui,ρ → 1√
µ/2

(in W1,2(Ω) ) , λi,ρ
ρ→0−−→ µ̂

2
.

Proof. We start by introducing some changes of variables. First of all notice that, for all λ > 0,
Problem (1.2) has the constant solution u(x) = 1√

λ
. If we seek for solutions of the form

u = 1√
λ
+ z we easily end up with the equivalent problem on z:

−∆z = 2λz − hλ(z) in Ω,√
λz > −1 in Ω,

∇z · ν = 0 on ∂Ω,

(2.2)

where hλ :
]
− 1√

λ
,+∞

[
→ R is defined by

hλ(s) =
λ
√

λs2

1 +
√

λs
.
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Now we consider another simple transformation: v :=
√

λz, so that (2.2) turns out to be
equivalent to 

−∆v = 2λ
(
v − 1

2 h1(v)
)

in Ω,

v > −1 in Ω,

∇v · ν = 0 on ∂Ω.

(2.3)

Now choose s0 with 0 < s0 < 1/2 and a C∞ cutoff function η : R → [0, 1] such that
η(s) = 1 for |s| ≤ s0, η(s) = 0, for |s| ≥ 2s0. Define h̃1 : R → R by

h̃1(s) := η(s) h1(s) (2.4)

(h̃1(s) is given the value zero for s = −1). Then h̃1 ∈ C∞
0 (R; R), h̃′1(0) = h′′1 (0) = 0, h̃1 = h1

on [−s0, s0]. Denote by H̃1 : R → R the primitive function for h̃1 (i.e. H̃′
1 = h̃1) such that

H̃1(0) = 0.
Now we apply the bifurcation theorem (3.1) with H := W1,2(Ω). L = L2(Ω), H = 0,

λ̂ = µ, H1(v) := 1
2

∫
Ω H̃1(v) dx. In this way we get that there exists ρ0 > 0 such that for all

ρ ∈]0, ρ0[ there are two distinct pairs (v1,ρ, µ1,ρ) and (v2,ρ, µ2,ρ) which are weak solutions of

{
−∆v = µ

(
v − 1

2 h̃1(v)
)

in Ω,

∇v · ν = 0 on ∂Ω
(2.5)

and such that

vi,ρ
ρ→0−−→ 0 (in W1,2(Ω)), µi,ρ

ρ→0−−→ µk, i = 1, 2. (2.6)

We claim the there exists a constant K such, for any µ ∈ [µ̂k − 1, µ̂k + 1] and any weak solution
v of (2.5), v is bounded and:

∥v∥∞ ≤ Kµ

∥∥∥∥v − 1
2

h̃1(v)
∥∥∥∥

2
. (2.7)

For this we use a standard bootstrap argument using the fact that the function k(s) =

(s − 1
2 h̃1(s)), appearing on the right hand side of (2.5), verifies

|k(s)| ≤ M|s| ∀s ∈ R (2.8)

for a suitable M (since h̃′1 is bounded). Assume that v is a solution, i.e. −∆v = µk(v), and
v ∈ Lq(Ω) for some q > 1 (for sure this is true for q = 2∗). Then, by (2.8), k(v) ∈ Lq(Ω). From
the standard Calderón–Zygmund theory (see e.g. Section 9.6 in [16]), we have v ∈ W2,q(Ω).
Then, using the Sobolev embedding Theorem, either v ∈ Lq1(Ω) with q1 ≤ Nq

N−2q (if 2q ≤ N)
or v ∈ C0,α with α > 0 (in the case 2q > N). Iterating this argument a finite number of times
we get the conclusion. Notice that we could go further and prove that v is C∞ and is a classical
solution.

Using (2.6) and (2.7) we get that vi,ρ → 0 in L∞(Ω) as ρ → 0, so |vi,ρ| < s0, i = 1, 2, for
ρ0 small. This implies that h̃1(vi,ρ) = h1(vi,ρ), and vi,ρ actually solve (2.3) with λi,ρ := µi,ρ

2 .
Going backwards and setting ui,ρ := 1√

λi,ρ
+
√

λi,ρvi,ρ, we find the desired solutions of (1.2).
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3 A variant for the two bifurcation branches theorem for potential
operators

Let L and H be two Hilbert spaces such that H ⊂ L with a compact embedding i : H → L.
We use the notations ∥·∥, ⟨·, ·⟩ and ∥·∥L, ⟨·, ·⟩L to indicate the norms and inner products in H

and L respectively. Let A : H → H be a bounded linear symmetric operator such that

⟨Au, u⟩ ≥ ν ∥u∥2 − M ∥u∥2
L ∀u ∈ H (3.1)

where ν > 0 and M are two constants. We say that λ ∈ R is an “eigenvalue for A” if there
exists e ∈ H \ {0} with

⟨Ae, v⟩ = λ ⟨e, v⟩L ∀v ∈ H

which corresponds to say that:
Ae = λi∗e.

In this case we say that e is an “eigenvector” corresponding to λ.
It is well known that there exists a sequence (λn) of eigenvalues of A with λn ≤ λn+1,

λn → +∞, such that the corresponding eigenvectors generate H. It is convenient to agreee
that λ0 = −∞. We can suppose that for any k ≥ 1 we are given an eigenvector ek relative to
λk with ∥en∥L = 1, and

⟨en, em⟩ = ⟨en, em⟩L = 0 if n ̸= m.

If λ ∈ R we define

E−
λ := span {ei : λi < λ} , E0

λ := span {ei : λi = λ} , E+
λ := span {ei : λi > λ}(H)

(E0
λ = {0} if λ is not an eigenvalue). If λn ≤ λ ≤ λn+1 it is clear that

sup
{u∈E−

λ : ∥u∥L=1}
⟨Au, u⟩ ≤ λn, inf

{u∈E+λ : ∥u∥L=1}
⟨Au, u⟩ ≥ λn+1,

while ⟨Au, u⟩ = λ, if u ∈ E0
λ.

Theorem 3.1 (Bifurcation). Let H ∈ C1(H; R), H1 ∈ C1(L; R) be such that

H(0) = 0, ∇H(0) = 0, lim
u→0

∥∇H(u)∥L

∥u∥L

= 0

H1(0) = 0, ∇LH1(0) = 0, lim
u→0

∥∇LH1(u)∥L

∥u∥L

= 0.
(3.2)

Notice that we are using the symbol ∇ to denote the gradient with respect to the inner product in H

and ∇L for the corresponding gradient in L.
Let λ̂ be an eigenvalue for A. Then, for any ρ > 0 small, there exist (u1,ρ, λ1,ρ) and (u2,ρ, λ2,ρ)

which solve the problem

Au +∇H(u) = λi∗ (u +∇LH1(u)) , u ̸= 0, (3.3)

such that u1,ρ ̸= u2,ρ and

u1,ρ
H−→ 0, u2,ρ

H−→ 0, λ1,ρ → λ̂, λ2,ρ → λ̂ as ρ → 0. (3.4)
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Proof. We adapt the proof of Lemma 3.4 in [2]. Let λ̂ = λi = λk with λi−1 < λi and λk < λk+1.
We define f : H → R and g : L → R by

f (u) :=
1
2
⟨Au, u⟩+H(u), g(u) :=

1
2
∥u∥2

L +H1(u).

Let C := {u ∈ L : 1 < ∥u∥L < 2}. Moreover, if 0 < ρ < 1 we define

fρ(u) :=
1
ρ2 f (ρu), gρ(u) :=

1
ρ2 g(ρu),

Hρ(u) :=
1
ρ2H(ρu), H1,ρ(u) :=

1
ρ2H1(ρu),

Sρ :=
{

u ∈ C : gρ(u) = 1
}

.

In fact fρ(u) = 1
2 ⟨Au, u⟩+Hρ(u) and gρ(u) = 1

2 ∥u∥2
L +H1,ρ(u).

Since the result we are proving only involves the behaviour of H,H1 near zero, we are
allowed to modify H and H1 outside of a small ball around the origin. More precisely using
(3.2) we can find R in ]0, 1/3[ such that

∥∇H(u)∥ ≤ ν

8
∥u∥ ∀u with ∥u∥ < 3R, ∥∇LH1(u)∥ ≤ 1

2
∥u∥1 ∀u with ∥u∥1 < 3R, (3.5)

and define H̃(u) := η(∥u∥)H(u), H̃1(u) := η(∥u∥1)H1(u), where η : [0,+∞[→ [0, 1] is a
cutoff function with η(s) = 1 for 0 ≤ s ≤ R, η(s) = 0 for s ≥ 3R, and η′(s) ≤ 1. Now since

H̃(u) = H(u) ∀u with ∥u∥ < R, H̃1(u) = H1(u) ∀u with ∥u∥L < R,

then the conclusion of Theorem 3.1 holds for H,H1 if and only if it holds for H̃, H̃1. Indeed
the first component uρ of a bifucation branch (for any of the two problems) eventually verifies∥∥uρ

∥∥ < R and
∥∥uρ

∥∥
1 < R. So from now on we replace H with H̃ and H1 with H̃1, maintaining

the same notation. With simple computations we can deduce from (3.5) that the redefined
functions verify:

(a) |∇H(u)| ≤ ν

4
∥u∥ ∀u ∈ H, (b) |∇LH1(u)| ≤ ∥u∥L ∀u ∈ L. (3.6)

From (a) in (3.6) we get

|H(u)| ≤ ν

4
∥u∥2 ⇒ |Hρ(u)| ≤

ν

4
∥u∥2 ∀u ∈ H, ∀ρ ∈ [0, 1]. (3.7)

Using (3.1) and (3.7) we get that:

∥u∥2 ≤ 4
ν

(
fρ(u) + M ∥u∥2

L

)
. (3.8)

From (3.2) and (3.8) we easily get that, if c ∈ R and ρ → 0:

sup
u∈C, fρ(u)≤c

|Hρ(u)| → 0, sup
u∈C

|H1,ρ(u)| → 0,

sup
u∈C, fρ(u)≤c

∥∥∇Hρ(u)
∥∥→ 0, sup

u∈C

∥∥∇LH1,ρ(u)
∥∥

L
→ 0.

(3.9)
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So if we extend the definition to ρ = 0 by letting f0(u) := 1
2 ⟨Au, u⟩ and g0(u) := 1

2 ∥u∥2
L,

then (ρ, u) 7→ fρ(u) is continuous on [0,+∞[×H and (ρ, u) 7→ gρ(u) is continuous on
[0,+∞[×L. We also define Sρ for ρ = 0:

S0 := {u ∈ L : g0(u) = 1} =
{

u ∈ L : ∥u∥2
L = 2

}
.

Notice that the critical values of f0 on Sρ are precisely the eigenvalues λn.
We claim that there exist ρ̄ > such that the L-closure of Sρ is contained in C for all ρ ∈]0, ρ̄]

in other terms Sρ is closed for ρ > 0 small. Indeed if the claim were false there would exist

two sequences (ρn) and (un) such that ρn → 0, ρn → 0, gρn(un) =
∥un∥2

L

2 + H1(ρnun)
ρ2 = 1, and

∥un∥L ∈ {1, 2}. From (3.2) we would have H1(ρnun)
ρ2

n
= H1(ρnun)

∥ρnun∥2
L

∥un∥2
L → 0, so ∥un∥L →

√
2

which yields a contradiction for n large.
Let us split H as H = X1 ⊕ X2 ⊕ X3, where

X1 := E−
λ̂

, X2 := E0
λ̂
, X3 := E+

λ̂

and consider the orthogonal projections Πi : H → Xi. i = 1, 2, 3. We also denote Π13 :=
Π1 + Π3. Given ρ ∈ [0, ρ̄] and δ ∈]0, 1[, we set

Cδ := {u ∈ C : ∥Π2(u)∥L ≥ δ} , Sρ,δ := Sρ ∩ Cδ.

Since Sρ is closed, then Sρ,δ is a smooth manifold with boundary, the boundary being

Σρ,δ :=
{

u ∈ Sρ : ∥Π2(u)∥L = δ
}

.

Notice that S0,δ ̸= ∅ ( δ < 1). Let us indicate by f̄ρ the restriction of fρ on Sρ,δ.
We will use the notion of lower critical point for f̄ρ (see [2,21] and the references therein): u

is (lower) critical for f̄ρ if and only there exist λ, µ ∈ R such that µ ≥ 0, µ = 0 if ∥Π2(u)∥L > δ,
and

⟨Au, v⟩+
〈
∇Hρ(u), v

〉
= λ

〈
u +∇LH1,ρ(u), v

〉
L
+ µ ⟨Π2(u), v⟩L ∀v ∈ H. (3.10)

Define Γ : Cδ × [1/2, 2] → Cδ and φ : [0, ρ̄]× Cδ × [1/2, 2] → R by

Γ(u, t) :=
δΠ2(u)

∥Π2(u)∥L

+ t
(

u − δΠ2(u)
∥Π2(u)∥L

)
= tΠ13(u) + (δ + t (∥Π2(u)∥L − δ))

Π2(u)
∥Π2(u)∥L

,

φ(ρ, u, t) := gρ (Γ(u, t)) .

With easy computations:

φ(0, u, t) =
1
2

(
t2 ∥Π13(u)∥2

L + (δ + t (∥Π2(u)∥L − δ))2
)

=
1
2

(
t2(∥u∥2

L − 2δ ∥Π2(u)∥L + δ2) + 2δt(∥Π2(u)∥L − δ) + δ2
)

.

Since 1 < ∥u∥L < 2 and ∥Π2(u)∥L ≥ δ, we have

t2

2
− 2δt2 ≤ φ(0, u, t) ≤

(
2 +

δ2

2

)
t2 + 2δt +

δ2

2
.
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In particular:

2 − 2δ ≤ φ(0, u, 2), φ (0, u, 1/2) ≤ 1
2
+

δ2

8
+ δ +

δ2

2
<

1
2
+ 2δ.

We can choose δ0 > 0 so that 2 − 2δ > 3/2 and 1
2 + 2δ < 3/4 for all δ ∈]0, δ0]. From now on

we consider 0 < δ ≤ δ0. By (3.9), up to shrinking ρ̄, we have

sup
u∈Cδ

φ(ρ, u, 1/2) < 1, inf
u∈Cδ

φ(ρ, u, 2) > 1 ∀ρ ∈ [0, ρ̄].

Moreover,

∂

∂t
φ(0, u, t) = t(∥u∥2

L − 2δ ∥Π2(u)∥L + δ2) + δ(∥Π2(u)∥L − δ) ≥ t(1 − 4δ)

so, up to shrinking δ0, we have ∂
∂t φ(0, u, t) ≥ 1

4 for all t ≥ 1
2 . Up to further shrinking ρ̄ > 0

(again we use (3.9)), we have that ρ ∈ [0, ρ̄], δ ∈]0, δ0], u ∈ Cδ imply

φ(ρ, u, 1/2) < 1, φ(ρ, u, 2) > 1,
∂

∂t
φ(ρ, u, t) ≥ 1

8
∀t ∈ [1/2, 2].

We can therefore conclude that for all u ∈ [0, ρ̄] and u ∈ Cδ there exists a unique t̄ = t̄(ρ, u)
in [1/2, 2] such that φ(ρ, u, t̄(u, ρ)) = 1, that is Γ(u, t̄(ρ, u)) ∈ Sρ,δ. It is easy to check that
t̄ : [0, ρ̄]× Cδ → [1/2, 2] is continuous and so is Φ : [0, ρ̄]× Cδ → Sρ,δ defined by Φ(ρ, u) :=
Γ(u, t̄(ρ, u)). Notice that

t ∈ [1/2, 2], u ∈ Cδ, ∥Π2(u)∥L = δ ⇒ ∥Π2(Γ(u, t))∥L = δ.

Therefore Φ(ρ, ·) maps {u ∈ Cδ, ∥Π2(u)∥L = δ} into Σρ,δ. Also notice that Φ(ρ, u) ◦ Φ(0, u) =
u whenever u ∈ Sρ,δ and Φ(0, u) ◦ Φ(ρ, u) = u whenever u ∈ S0,δ. We have thus proven that
Φ(ρ, ·)|S0,δ is a homeomorphism from (S0,δ, Σ0,δ) to (Sρ,δ, Σρ,δ) whose inverse is Φ(0, ·)|Sρ,δ .

Now let

a′ρ := sup
(X1⊕X2)∩Σρ,δ

fρ a′′ρ := inf
(X2⊕X3)∩Sρ,δ

fρ (3.11)

b′ρ := sup
(X1⊕X2)∩Sρ,δ

fρ b′′ρ := inf
(X2⊕X3)∩Σρ,δ

fρ. (3.12)

Notice that, by definition, a′′ρ ≤ b′ρ. For ρ = 0 it is easy to see that

a′0 = λi−1 +
δ2

2
(λ̂ − λi−1) < λ̂ = a′′0 = b′0 = λ̂ < λk+1 −

δ2

2
(λk+1 − λ̂) = b′′0

(recall that 0 < δ < 1). Let ε0 > 0 with ε0 < λ̂ − λi−1. We claim that, if δ2(λ̂ − λi−1) < 2ε0,
then

there exists no u ∈ Σ0,δ with u lower critical for f̄0 and λi−1 + ε0 ≤ f0(u). (3.13)

By contradiction assume that such a u exists; then there exist λ ∈ R and µ ≥ 0 such that (3.10)
holds. Let ui = Πi(u), i = 1, 2, 3. Taking v = u2 in (3.10) (with ρ = 0) yields

λ̂ ∥u2∥2
L = ⟨Au2, u2⟩ = ⟨Au, u2⟩ = λ ⟨u, u2⟩L + µ ⟨u2, u2⟩L = (λ + µ) ∥u2∥2

L .
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Since ∥u2∥L = δ > 0, we have λ + ν = λ̂, so λ = λ̂ − ν ≤ λ̂. Taking v = u3:

λk+1 ∥u3∥2 ≤ ⟨Au3, u3⟩ = ⟨Au, u3⟩ = ⟨λu + µu2, u3⟩ = λ ∥u3∥2
L ≤ λ̂ ∥u3∥2

L .

Since λk+1 < λ̂, we have u3 = 0. Then u ∈ X1 ⊕ X2 ∩ Σ0,δ, which implies

f0(u) ≤ a′0 = λi−1 +
δ2

2
(λ̂ − λi−1) < λi−1 + ε0

which gives a contradiction. Hence the claim is proven. Notice that (3.13) implies that the
only critical value λ0 of f̄0, with λi−1 + ε0 ≤ λ0 ≤ λk+1 − ε0, is λ0 = λ̂. Indeed assume u0 to
be a critical point with f̄0(u0) = λ0: then, by (3.13), u0 /∈ Σ0,δ so (3.10) holds with µ = 0 which
easily implies λ0 = λ̂.

From now on we fix ε0 > 0 such that 5ε0 < min(λ̂ − λi−1, λk+1 − λ̂) and δ > 0 such that
δ2(λ̂ − λi−1) ≤ ε0 (so (3.13) holds with ε0/2). Using (3.9) we can derive that, given ε ∈]0, ε0]

there exists ρ(ε) ∈]0, ρ̄] such that, if ρ ∈]0, ρ(ε)]:

a′ρ ≤ λi−1 + ε0 < λ̂ − 4ε < λ̂ − ε ≤ a′′ρ ≤ inf
X2∩Sρ,δ

fρ

≤ sup
X2∩Sρ,δ

fρ ≤ b′ρ ≤ λ̂ + ε < λ̂ + 4ε < λk+1 − ε0 ≤ b′′ρ ;
(3.14)

there are no u ∈ Σρ,δ with u lower critical for f̄ρ and

fρ(u) ∈ [λi−1 + ε0, λk+1 − ε0] ;
(3.15)

there are no u ∈ Sρ,δ with u lower critical for f̄ρ and

fρ(u) ∈
[
λi−1 + ε0, λ̂ − ε

]
∪
[
λ̂ + ε, λk+1 − ε0

]
;

(3.16)∣∣ f0(u)− fρ(Φ(ρ, u))
∣∣ < ε ∀u ∈ S0,δ with f0(u) ≤ λk+1 − ε0; (3.17)∣∣ fρ(u)− f0(Φ(0, (u))
∣∣ < ε ∀u ∈ Sρ,δ with fρ(u) ≤ λk+1 − ε0. (3.18)

To prove (3.17) and (3.18) we use (3.8). If σ ∈ [ε, 4ε], set Aσ
ρ := f̄ λ̂/2−σ

ρ , Bσ
ρ := f̄ λ̂/2+σ

ρ i.e.:

Aσ
ρ =

{
u ∈ Sρ,δ : fρ(u) ≤ λ̂/2 − σ

}
, Bσ

ρ =
{

u ∈ Sρ,δ : fρ(u) ≤ λ̂/2 + σ
}

.

Moreover set Ãσ
ρ := Φ(ρ, Aσ

0 ), B̃σ
ρ := Φ(ρ, Bσ

0 ), Âσ
ρ := Φ(0, Aσ

ρ), B̂σ
ρ := Φ(0, Bσ

ρ ). From (3.17)
and (3.18) (remind that Φ(ρ, ·)−1 = Φ(0, ·)) we get

A4ε
0 ⊂ Φ(0, A3ε

ρ ) ⊂ A2ε
0 ⊂ Φ(0, Aε

ρ), Bε
0 ⊂ Φ(0, B2ε

ρ ) ⊂ B3ε
0 Φ(0, B4ε

ρ ),

A4ε
ρ ⊂ Φ(ρ, A3ε

0 ) ⊂ A2ε
ρ ⊂ Φ(ρ, Aε

0), Bε
ρ ⊂ Φ(ρ, B2ε

0 ) ⊂ B3ε
ρ Φ(ρ, B4ε

0 ).

The above inclusions give rise to the following diagram in homology:

Hq(Bε
ρ, A4ε

ρ ) Hq(B̃2ε
ρ , Ã3ε

ρ ) Hq(B3ε
ρ , A2ε

ρ ) Hq(B̃4ε
ρ , Ãε

ρ)

Hq(B̂ε
ρ, Â4ε

ρ ) Hq(B2ε
0 , A3ε

0 ) Hq(B̂3ε
ρ , Â2ε

ρ ) Hq(B4ε
0 , Aε

0)

i∗1

ϕ∗
1

i∗2 i∗3

ϕ∗
3

j∗1 j∗2

ϕ∗
2

j∗3

ϕ∗
2

where i1, i2, i3, j1, j2, j3 are embeddings and ϕ1, ϕ3 are restrictions of Φ(0, ·), while ϕ2, ϕ4

are restrictions of Φ(ρ, ·). It is clear that ϕ∗
i are isomorphisms. Notice that i2 ◦ ϕ2 ◦ j1 ◦ ϕ1 is

the embedding of (Bε
ρ, A4ε

ρ ) in (B3ε
ρ , A2ε

ρ ) and j3 ◦ ϕ3 ◦ i2 ◦ ϕ2 is the embedding of (B2ε
0 , A3ε

0 ) in
(B4ε

0 , Aε
0).
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Since there are no critical values for f̄0 in [λ̂ − 4ε, λ̂ − ε] ∪ [λ̂ + ε, λ̂ + 4ε] (see (3.16)),
then the pair (Bε

ρ, A4ε
ρ ) is a deformation retract of the pair (B3ε

ρ , A2ε
ρ ), so i∗2 ◦ ϕ∗

2 ◦ j∗1 ◦ ϕ∗
1 is

an isomorphism. For analogous reasons j∗3 ◦ ϕ∗
3 ◦ i∗2 ◦ ϕ∗

2 is an isomorphism. It follows that
i∗2 ◦ ϕ∗

2 : Hq(B2ε
0 , A3ε

0 ) → Hq(B3ε
ρ , A2ε

ρ ) is an isomorphism.
From the definitions (3.11) and (3.12) we have the inclusions:

(S0,δ ∩ (X1 ⊕ X2), Σ0,δ ∩ (X1 ⊕ X2)) ⊂ (B3ε
ρ , A2ε

ρ ) ⊂ (S0,δ \ X3,Sρ,δ \ (X2 ⊕ X3))

which allow to repeat the arguments of [2] (see also the proof of Lemma 2.3 in [21]). To
estimate the relative category:

cat(B3ε
ρ ,A2ε

ρ )(B3ε
ρ ) ≥ 2 ∀ρ ∈ ]0, ρ(ε)].

This implies that f̄ρ hat at least two critical points ū1,ρ, ū2,ρ with λ̂ − 3ε ≤ fρ(ūi,ρ) ≤ λ̂ + 2ε.

We have
∥∥ūi,ρ

∥∥2
L

/2 +H1,ρ(ūi,ρ) = 1 and〈
Aūi,ρ +∇Hρ(ūi,ρ), v

〉
= λi,ρ

〈
ūi,ρ +∇LH1,ρ(ūi,ρ), v

〉
L

∀v ∈ H (3.19)

for a suitable Lagrange multiplier λi,ρ ∈ R (there is no µ, due to (3.15)). Taking v = ūi,ρ in
(3.19):

[
λ̂ − 2ε, λ̂ + 3ε

]
∋ f̄ (ūi,ρ) =

1
2
〈

Aūi,ρ, ūi,ρ
〉
+Hρ(ūi,ρ)

= Hρ(ūi,ρ)−
1
2
〈
∇Hρ(ūi,ρ), ūi,ρ

〉
+

λi,ρ

2

(∥∥ūi,ρ
∥∥2

L
+
〈
∇LH1,ρ(ūi,ρ), ūi,ρ

〉
L

)

= Hρ(ūi,ρ)−
〈
∇Hρ(ūi,ρ), ūi,ρ

〉
2︸ ︷︷ ︸

:=C1(ρ)

+λi,ρ

1 +

(〈
∇LH1,ρ(ūi,ρ), ūi,ρ

〉
L

2
−H1,ρ(ūi,ρ)

)
︸ ︷︷ ︸

:=C2(ρ)


By using (3.9) we obtain C1(ρ) → 0, C2(ρ) → 0, so for ρ(ε) small enough we have |λi,ρ − λ̂| <
4ε. We have thus proven that λ1,ρ → λ̂ as ρ → 0. Let ui,ρ := ρū1,ρ. Clearly ui,ρ

L−→ 0 as ρ → 0. By
multiplying (3.19) by ρ and using the definitions of Hρ and H1,ρ we get that (u, λ) = (ui,ρ, λi,ρ)

verify (3.3). Taking the scalar product with ui,ρ in (3.3) gives
〈

Aui,ρ, ui,ρ
〉
→ 0. Then, by (3.1),

we have ui,ρ
H−→ 0.

4 A global bifurcation result for radial solutions

We consider the case N = 2 and Ω = B(0, R) =
{

x ∈ R2 : ∥X∥ < R
}

. We look for radial
solutions for Problem (2.2), i.e. z(x, y) = w(∥(x, y)∥). Actually with similar arguments we
could have considered the general case N ≥ 2. Given R > 0, it is therefore convenient to
introduce the Hilbert space

E :=
{

w : [0, R] → R :
∫ R

0
ρẇ2 dρ < +∞

}

endowed with (v, w)E :=
∫ R

0
ρv̇ẇ dρ +

∫ R

0
ρvw dρ and for λ > 0 the set

Wλ :=
{

w ∈ E : 1 +
√

λw(ρ) > 0
}

, W := {(w, λ) ∈ R × E : λ > 0, w ∈ Wλ} .
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It is clear that ∥w∥∞ ≤ C∥w∥E, for a suitable constant C, so W is open in E and W is open in
R × E. As well known the search for radial solutions leads to the equationẅ +

ẇ
ρ
= −λw − λw

1 +
√

λw
=: fλ(w),

ẇ(0) = ẇ(R) = 0.
(4.1)

By the above we mean that

(w, λ) ∈ W ,
∫ R

0
ρẇδ̇ dρ =

∫ R

0
ρ fλ(w)δ dρ ∀v ∈ E. (4.2)

It is standard to check that “weak solutions”, i.e. solutions to (4.2) actually solve (4.1) in a
classical sense.

It is clear that (0, λ) is a solution for (4.1) for any λ ∈ R. We call “nontrivial ” solution a
pair (w, λ) with w ̸= 0 such that (4.1) holds.

Remark 4.1. If (w, λ) is a nontrivial solution then λ > 0. To see this it suffices to multiply
(4.1) by u and integrate over [0, R]. Actually this property is true in the general case (not just
in the radial problem).

We shall use the following simple inequality.

Remark 4.2. Let 0 < a < b < +∞. We have

b − a
b

≤ ln
(

b
a

)
≤ b − a

a
. (4.3)

We have indeed

ln
(

b
a

)
= ln

(
1 +

b − a
a

)
≤ b − a

a

and

ln
(

b
a

)
= − ln

( a
b

)
= − ln

(
1 +

a − b
b

)
≥ − a − b

b
=

b − a
b

.

A

B C

D

Figure 4.1: The different cases

Now let us suppose that a solution (w, λ) exists so we can find some properties and
estimates on w. Arguing as in the proof of Lemma 2.2 in [8] we have that either w = 0 or [0, R]
can be split as the union of a finite number of subintervals [r1,i, r2,i], i = 1 . . . , k, where w has
one of the following behaviors (see Figure 4.1, we are skipping the index i):

(A) w(r1) > 0, ẇ(r1) = 0, ẇ < 0 in ]r1, r2], and w(r2) = 0;

(B) w(r1) = 0, ẇ < 0 in [r1, r2[, ẇ(r2) = 0, and w(r2) < 0;
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(C) w(r1) < 0, ẇ(r1) = 0, ẇ > 0 in ]r1, r2], and w(r2) = 0;

(D) w(r1) = 0, ẇ > 0 in [r1, r2[, ẇ(r2) = 0, and w(r2) > 0.

So let w : [r1, r2] → R be as in one of the above cases. Multiplying (4.1) by ẇ gives

1
2

ẅẇ′ +
ẇ2

ρ
=

d
dρ

Fλ(w)

where
Fλ(s) = ln(1 +

√
λs)−

√
λs − λ

2
s2.

Let p := ẇ2, the previous equation can be written as

1
2

ṗ +
p
ρ
=

d
dρ

Fλ(w)

which is equivalent to

d
dρ

(ρ2 p) = 2ρ2 d
dρ

Fλ(w)ρ2 = 2ρ2 d
dρ

F1

(√
λw
)

.

We integrate between ρ1 and ρ2, where r1 ≤ ρ1 ≤ ρ2 ≤ r2:

ρ2
2 p(ρ2)− ρ2

1 p(ρ1) = 2ρ2
2Fλ(w(ρ2))− 2ρ2

1Fλ(w(ρ1))−
∫ ρ2

ρ1

4σFλ(w(σ)) dσ.

Notice that Fλ is increasing on
]
− 1√

λ
, 0
[

and decreasing on ]0,+∞[, so

σ 7→ Fλ(w(σ)) is increasing (decreasing) in cases (A) and (C) (in cases (B) and (D)).

We hence get, in cases (A) and (C):

−2(ρ2
2 − ρ2

1)Fλ(w(ρ2)) ≤ −
∫ ρ2

ρ1

4σFλ(w(σ)) dσ ≤ −2(ρ2
2 − ρ2

1)Fλ(w(ρ1))

while in cases (B) and (D):

−2(ρ2
2 − ρ2

1)Fλ(w(ρ1)) ≤ −
∫ ρ2

ρ1

4σFλ(w(σ)) dσ ≤ −2(ρ2
2 − ρ2

1)Fλ(w(ρ2)).

So in cases (A) and (C) we have

2ρ2
1(Fλ(w(ρ2))− Fλ(w(ρ1)) ≤ ρ2

2 p(ρ2)− ρ2
1 p(ρ1) ≤ 2ρ2

2(Fλ(w(ρ2))− Fλ(w(ρ1)) (4.4)

and in cases (B) and (D):

2ρ2
2(Fλ(w(ρ2))− Fλ(w(ρ1)) ≤ ρ2

2 p(ρ2)− ρ2
1 p(ρ1) ≤ 2ρ2

1(Fλ(w(ρ2))− Fλ(w(ρ1)). (4.5)

Now we estimate w(ρ) – we need to take into account all the four cases (A), (B), (C), (D).

Case (A). We rename ρ̄ := r1, ρ0 := r2 and let h := w(ρ̄) > 0. We use (4.4) with ρ1 = ρ̄ and
ρ2 = σ ∈ [ρ̄, ρ0]:

2ρ̄2(Fλ(w(σ))− Fλ(h)) ≤ σ2ẇ(σ)2 ≤ 2σ2(Fλ(w(σ))− Fλ(h)).
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Then we take the square root and divide:

√
2

ρ̄

σ
≤ −ẇ(σ)√

Fλ(w(σ))− Fλ(h)
≤

√
2

and now we integrate between ρ̄ and ρ ∈ [ρ̄, ρ0] getting

√
2ρ̄ ln

(
ρ

ρ̄

)
≤ −Φλ,h(w(ρ)) + Φλ,h(h) ≤

√
2(ρ − ρ̄)

where Φλ,h : [0, h] → R is defined by

Φλ,h(s) :=
∫ s

0

dξ√
Fλ(ξ)− Fλ(h)

(it is simple to check the the integral converges at ξ = h). So we deduce

Φ−1
λ,h

(
Φλ,h(h)−

√
2 (ρ − ρ̄)

)
≤ w(ρ) ≤ Φ−1

λ,h

(
Φλ,h(h)−

√
2ρ̄ ln

(
ρ

ρ̄

))
which we prefer to write as

Φ−1
λ,h

(
Φλ,h(h) +

√
2 (ρ̄ − ρ)

)
≤ w(ρ) ≤ Φ−1

λ,h

(
Φλ,h(h) +

√
2ρ̄ ln

(
ρ̄

ρ

))
. (4.6)

In particular, taking ρ = ρ0, which gives w(ρ0) = 0, (and using (4.3)) we have

√
2

ρ̄

ρ0
(ρ0 − ρ̄) ≤

√
2ρ̄ ln

(
ρ0

ρ̄

)
≤ Φλ,h(h) ≤

√
2 (ρ0 − ρ̄) . (4.7)

Moreover taking ρ1 = ρ̄ and ρ2 = ρ0 in (4.4) we have:

√
2

ρ̄

ρ0

√
−Fλ(h)) ≤ −ẇ(ρ0) ≤

√
2
√
−Fλ(h)) (4.8)

Case (B). We rename ρ0 := r1, ρ̄ := r2 and let h := w(ρ̄) < 0. We use (4.5) with ρ1 = σ ∈ [ρ0, ρ̄]

and ρ2 = ρ̄:

2ρ̄2(Fλ(h)− Fλ(w(σ))) ≤ −σ2ẇ(σ)2 ≤ 2σ2(Fλ(h)− Fλ(w(σ))).

We change sign and proceed as in case (A):

2σ2(Fλ(w(σ))− Fλ(h)) ≤ σ2ẇ(σ)2 ≤ 2ρ̄2(Fλ(w(σ))− Fλ(h))).

Take the square root and divide:

√
2 ≤ −ẇ(σ)√

Fλ(w(σ))− Fλ(h)
≤

√
2

ρ̄

σ
.

Integrate on [ρ, ρ̄0]:

√
2(ρ̄ − ρ) ≤ −Φλ,h(h) + Φλ,h(w(ρ)) ≤

√
2ρ̄ ln

(
ρ̄

ρ

)
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defining Φλ,h : [h, 0] → R as in case (A). Applying Φ−1
λ,h we get that (4.6) holds in case (B) too.

In particular, taking ρ = ρ0 (and using (4.3)):

√
2(ρ̄ − ρ0) ≤ −Φλ,h(h) ≤

√
2ρ̄ ln

(
ρ̄

ρ0

)
≤

√
2

ρ̄

ρ0
(ρ̄ − ρ0) (4.9)

and taking ρ1 = ρ0 and ρ2 = ρ̄ in (4.5) we have

√
2
√
−Fλ(h)) ≤ −ẇ(ρ0) ≤

√
2

ρ̄

ρ0

√
−Fλ(h)) (4.10)

Case (C). We rename ρ̄ := r1, ρ0 := r2 end let h := w(ρ̄) < 0. Using (4.4) with ρ1 = ρ̄ and
ρ2 = σ ∈ [ρ̄, ρ0] we obtain the same inequality of case (A). After taking the square root and
dividing:

√
2

ρ̄

σ
≤ ẇ(σ)√

Fλ(w(σ))− Fλ(h)
≤

√
2.

We integrate between ρ̄ and ρ ∈ [ρ̄, ρ0] getting

√
2ρ̄ ln

(
ρ

ρ̄

)
≤ Φλ,h(w(ρ))− Φλ,h(h) ≤

√
2(ρ − ρ̄)

with Φλ,h : [h, 0] → R defined as above. So we deduce

Φ−1
λ,h

(
Φλ,h(h) +

√
2ρ̄ ln

(
ρ

ρ̄

))
≤ w(ρ) ≤ Φ−1

λ,h

(
Φλ,h(h) +

√
2 (ρ − ρ̄)

)
. (4.11)

In particular, taking ρ = ρ0 (and using (4.3)):

√
2

ρ̄

ρ̄0
(ρ0 − ρ̄) ≤

√
2ρ̄ ln

(
ρ0

ρ̄

)
≤ −Φλ,h(h) ≤

√
2 (ρ0 − ρ̄) . (4.12)

Moreover taking ρ1 = ρ̄ and ρ2 = ρ0 in (4.4) we have

√
2

ρ̄

ρ0

√
−Fλ(h)) ≤ ẇ(ρ0) ≤

√
2
√
−Fλ(h)). (4.13)

Case (D). We rename ρ0 := r1, ρ̄ := r2 and let h := w(ρ̄) > 0. Using (4.5) with ρ1 = σ ∈ [ρ0, ρ̄]

and ρ2 = ρ̄ we obtain the same inequalities of case (B). When we take the square root and
divide: √

2 ≤ ẇ(σ)√
Fλ(w(σ))− Fλ(h)

≤
√

2
ρ̄

σ
.

Integrate on [ρ, ρ̄0]:

√
2(ρ̄ − ρ) ≤ Φλ,h(h)− Φλ,h(w(ρ)) ≤

√
2ρ̄ ln

(
ρ̄

ρ

)
with the usual definition of Φλ,h : [h, 0] → R. Applying Φ−1

λ,h we obtain that (4.11) holds in
case (D) too. In particular, taking ρ = ρ0 (and using (4.3)):

√
2 (ρ̄ − ρ0) ≤ Φλ,h(h) ≤

√
2ρ̄ ln

(
ρ̄

ρ̄0

)
≤

√
2

ρ̄

ρ0
(ρ̄ − ρ0) (4.14)
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and taking ρ1 = ρ0 and ρ2 = ρ̄0 in (4.5) we have
√

2
√
−Fλ(h)) ≤ ẇ(ρ0) ≤

√
2

ρ̄

ρ0

√
−Fλ(h)). (4.15)

Now we have

√
2Φλ,h(h) =

∫ h

0

dξ√
F(
√

λξ)− F(
√

λh)
=

∫ 1

0

h dσ√
F(σ

√
λh)− F(

√
λh)

=
1√
λ

Φ̄(
√

λh)

where

Φ̄(s) :=
∫ 1

0

s dσ√
F(σs)− F(s)

= sgn(s)
∫ 1

0

√
s2

F(σs)− F(s)
dσ.

With simple computations:

lim
s→0

s2

F(σs)− F(s)
=

1
1 − σ2 , lim

s→+∞

s2

F(σs)− F(s)
=

2
1 − σ2 ,

and

lim
s→−1−

s2

F(σs)− F(s)
= 0.

So we deduce that (see Figure 4.2)

lim
h→0+

Φλ,h(h) =
π

2
√

2λ
, lim

h→+∞
Φλ,h(h) =

π

2
√

λ
, (4.16)

lim
h→0−

Φλ,h(h) = − π

2
√

2λ
, lim

h→−1+
Φλ,h(h) = 0. (4.17)

2λ

π

√

2 2λ

π

√

2 2λ

π

√

h

Φλ,h
(h)

Figure 4.2: Graph of Φλ,h(h)

To state the main result we need some notation, which we take from [8, 23]. For k ∈ N,
k ≥ 1, we consider

S := {(w, λ) ∈ W : (w, λ) is a solution to (4.1)}
S+

k := {(w, λ) ∈ S : w has k nodes in ]0, R[, w(0) > 0} ,

S−
k := {(w, λ) ∈ S : w has k nodes in ]0, R[, w(0) < 0} .

We also consider the two eigenvalue problems:

ẅ +
ẇ
ρ
= −µw, ẇ(0) = ẇ(R) = 0. (4.18)
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v̈ +
v̇
ρ
= −νv, v̇(0) = 0, v(R) = 0. (4.19)

It is clear that w ̸= 0 and µ ̸= 0 solve (4.18) if and only if, for some integer k ≥ 1,

µ = µk :=
(yk

R

)2
(4.20)

where yk denotes the k-th nontrivial zero of J′0 and J0 is the first Bessel function, and

w = αwk, α ∈ R, wk(ρ) := J0

(yk

R
ρ
)

. (4.21)

For the sake of completeness we can agree that µ0 = 0 and w0(ρ) = J0(0). In the same way
v ̸= 0 and ν solve (4.19) if and only if, for some integer k ≥ 1:

ν = νk :=
( zk

R

)2
(4.22)

where zk is the k-th zero of J0 and

v = αvk, α ∈ R, vk(ρ) := J0

( zk

R
ρ
)

. (4.23)

Notice that νk < µk < νk+1 for all k.

Theorem 4.3. Let µk > 0 be an eigenvalue for (4.18). Then S+
k is a connected set and

• (0, µk/2) ∈ S+
k ;

• 0 < inf
{

λ ∈ R : ∃w ∈ E with (w, λ) ∈ S+
k

}
;

• sup
{

λ ∈ R : ∃w ∈ E with (w, λ) ∈ S+
k

}
< +∞;

• S+
k is unbounded and contains a sequence (wn, λn) such that ∥wn∥E → ∞ and

lim
n→∞

λn =

{
µk/2 if k is even,

ν(k+1)/2 if k is odd.
(4.24)

Figure 4.3 somehow illustrates Theorem (4.3).

λ h h+1
ν

λ

λ      /22h+1λ   /22h

Figure 4.3: Bifurcation diagram

The proof of (4.3) will be obtained from some preliminary statements.
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Remark 4.4. If (w, λ) ∈ S+ ( resp. (w, λ) ∈ S+), and 0 = ρ0 < ρ1, . . . , ρk < ρk+1=R, ρ1, . . . , ρk
being the nodal points of w, then

ρi+1 − ρi ≥ (≤ )
π

4
√

λ
for i even (resp. for i odd). (4.25)

This is easily seen using the right hand sides of the inequalities (4.7), (4.12), and (4.16).

Lemma 4.5. For any integer k there esist two constants λk and λk such that

(w, λ) ∈ S+
k ∪ S−

k ⇒ 0 < λk ≤ λ ≤ λk < +∞. (4.26)

Proof. Take any subinterval [r1, r2] as in cases (A)–(D) and consider the first eigenvalue µ̄ =

µ̄(r1, r2) for the mixed type boundary condition{
−(ρẇ)′ = µw on ]r1, r2[

ẇ(r1) = 0, w(r2) = 0 (resp. w(r1) = 0, ẇ(r2) = 0)

in cases (A), (C) (resp. cases (C), (D)). We can choose an eigenfunction ē corresponding to µ̄

so that zē > 0 in ]r1, r2[. Multiplying (4.1) by ē and integrating over [r1, r2] yields

µ̄
∫ r2

r1

ρzē dρ = λ
∫ r2

r1

ρzē
(

1 +
1

1 +
√

λz

)
dρ.

This implies:

λ
∫ r2

r1

ρzē dρ ≤ µ̄
∫ r2

r1

ρzē dρ ≤ 2λ
∫ r2

r1

ρzē dρ

which gives µ̄
2 ≤ λ ≤ µ̄. Now since ]r1, r2[⊂]0, R[ we have µ̄ ≥ µ̄[0, R]. On the other side

since w has k nodal points we can choose r1, r2 such that r2 − r1 ≥ R/k, which implies
µ̄ ≤ supb−a=R/k µ̄(a, b) < +∞. This proves (4.26).

Lemma 4.6. Let (wn, λn) be a sequence in S+
k . Then we can consider 0 < ρ1,n < · · · < ρk,n < R to

be the nodes of wn and set ρ0,n := 0, ρk+1,n := R; in ths way wn(ρ) > 0 on ]ρ1, ρi+1[ if i is even and
wn(ρ) < 0 on ]ρ1, ρi+1[ if i is odd. The following facts are equivalent:

(a) lim
n→∞

sup
ρ∈[0,R]

wn(ρ) = +∞;

(b) lim
n→∞

inf
ρ∈[0,R]

(1 + λnwn(ρ)) = 0;

(c) lim
n→∞

sup
ρ∈[ρi,n,ρi+1,n]

wn(ρ) = +∞ if i is even;

(d) lim
n→∞

inf
ρ∈[ρi,n,ρi+1,n]

(1 + λnwn(ρ)) = 0 if i is odd;

(e) lim
n→∞

ρ1+1,n − ρi,n = 0 if i is odd;

Moreover, if any of the above holds, then (4.24) holds.

Proof. We can assume, passing to a subsequence that λn → λ̂ ∈ [λk, λk]. First notice that for
all i even (corresponding to w > 0) we have

ρi+1,n − ρi,n ≥ π

4
√

λk
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as we can infer from (4.7) or (4.14) and the behaviour of Φλ,h(h) in (4.16).
Let

hi,n := max
ρi,n≤ρi+1,n

w(ρ) for i even, hi,n := min
ρi,n≤ρi+1,n

w(ρ) for i odd.

Then for any i even:

hi,n → +∞ ⇔ Φλn,hi,n(hi,n) →
π

2
√

λ̂
⇔ ẇ(ρi,n) → +∞ ⇔ ẇ(ρi+1,n) → −∞.

This can be deduced from (4.16), (4.8), and (4.15). In the same way, using (4.17), (4.10), and
(4.13) we get that, for i odd:

1 +
√

λnhi,n → 0 ⇔ Φλn,hi,n(hi,n) → 0 ⇔ ẇ(ρi,n) → −∞ ⇔ ẇ(ρi+1,n) → +∞.

Now we prove our claims. Let ī ∈ {0, . . . , k} with ī even (resp. odd) and suppose that
hī,n → +∞ (resp. 1+

√
λnhī,n → 0). Then Fλn(hī,n) → +∞ (resp. Fλn(hī,n) → −∞) and by (4.8),

(4.15) ( (4.10), (4.13) ) we get that

ẇn(ρī,n) → +∞, ẇn(ρī+1,n) → −∞ (ẇn(ρī,n) → −∞, ẇn(ρī+1,n) → +∞)

which in turn implies

Fλn(hī−1,n) → −∞ ( resp. + ∞), Fλn(hī+1,n) → −∞ ( resp. + ∞)

(with the obvious exceptions when ī − 1 < 0 or ī + 1 > k). So we get

1 +
√

λnhī−1,n → 0 (hī−1,n → +∞), 1 +
√

λnhī+1,n → 0 (hī+1,n → +∞).

This shows that the property |Fλ(hi,n)| → +∞ “propagates” from the i-th interval to the
previous and to the next one. From this it is easy to deduce that (a)–(d) are all equivalent. To
prove that they are equivalent to (e) just use (4.7), (4.9), (4.12), (4.14), depending on the case,
noticing that ρ1,n ≥ π

4πλk
, as from (4.25) (this would not be possible if we were considering

S−
k ).

Finally suppose that (wn, λn) verifies any of (a)–(e). Then ∥wn∥∞ → +∞. Let ŵn := wn
∥wn∥∞

.
We can suppose that ŵn ⇀ ŵ in E and that

ρ1,n → ρ1, ρ2j−1,n → ρj, ρ2j,n → ρj 1 ≤ j ≤ k/2, ρk,n → R if k is odd,

where 0 = ρ0 < ρ1 < · · · < ρh < ρh + 1 = R and h = ⌊k/2⌋ (so ρ1 = R when k = 1). It is not
difficult to prove that ŵ(ρ) > 0 in ]ρi, ρi+1[ if i = 0, . . . , h, ŵ(ρ1) = · · · = ŵ(ρh) = 0, ŵ′(0) = 0
and ŵ′(R) = 0 is k is even while ŵ(R) = 0 is k is odd. Moreover for any i = 0, . . . , h:

−(ρŵ′)′ = λ̂ŵ on ]ρi, ρi+1[

Now we can rearrange ŵ defining w̃ := ∑h
j=0(−1)jαjŵ1[ρj,ρj+1], where α1 = 1 and αjŵ′

−(ρj) =

αj+1ŵ′
+(ρj), j = 1, . . . , h. In this way (λ̂, w̃) is an eigenvalue – eigenfunction pair relative for

problem (4.21) if k is even and of (4.23) if k is odd. Since w̃ has h = k/2 nodal points for k
even and h + 1 = (k + 1)/2 if k is odd, then (4.24) holds.

Proof of Theorem 4.3. If ε ∈ ]0, 1[ we set

Oε :=
{
(w, λ) ∈ E : ε < λ < ε−1, 1 +

√
λw(ρ) > ε, w(ρ) < ε−1 ∀ρ ∈ [0, R]

}
.
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Clearly Oε is an open set with Oε ⊂ W . Moreover, (µk/2, 0) ∈ Oε if ε is sufficiently small.
Define h̃λ,ε as in (2.4) with s0 = ε and let h̃λ(s) := h̃1(

√
λs). Using [23] we get there that there

exists a pair (wε, λε) in ∂Oε, with wε having k nodal points, which solves Problem (4.1) with
h̃ε,λ := h̃ε(λ, ·) instead of hλ. Since (w, λ) ∈ ∂Oε ⇒ h̃ε(w, λ) = hλ(w), we get that (wε, λε) ∈
S+

k . For ε small we have ε < λk ≤ λk < ε−1 so we get wε ∈ ∂
{

1 +
√

λεw > ε, w < ε−1} i.e.
there exists a point ρε ∈ [0, R] such that

either 1 +
√

λεwε(ρε) = ε or wε(ρε) = ε−1.

We can find a sequence εn → 0 such that the corresponding (wn, λn) := (wεn , λεn) verify one
of the above properties for all n ∈ N. If the first one holds for all n, then (wn, λn) verifies (b)
of Lemma (4.6); in the second case (wn, λn) verifies (a) of Lemma (4.6). Then by Lemma (4.6)
∥wn∥∞ → ∞ and (4.24) holds. This proves the theorem.

Remark 4.7. As a consequence of Theorem (4.3) we get that for any h ≥ 1 integer and any λ

strictly between λh and λ2h/2 there exists u such that (u, λ) solves Problem (1.2). The same is
true for all λ strictly between νh and λ2h−1/2.

Remark 4.8. The above proof fails if we follow the bifurcation branch (wρ, λρ) with wρ(0) < 0.
In this case it seems possible that the branch tends to a point (λ̃, w̃) where

√
λ̃w̃(0) = −1 (but√

λ̃w̃(0) > −1 for ρ > 0). This phenomenon, if true, would be worth studying.

Remark 4.9. The computations of this section show that, if Ω is the ball, then there are no
solutions for the Dirichlet problem. It is indeed impossible to construct a (nontrivial) solution
(w, λ) for (4.1) with w(R) = 0.
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