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Abstract. In this paper, we investigate the bifurcation results of the fractional Kirchhoff–
Schrödinger–Poisson system{

M([u]2s )(−∆)su + V(x)u + ϕ(x)u = λg(x)|u|p−1u + |u|2∗s −2u in R3,
(−∆)tϕ(x) = u2 in R3,

where s, t ∈ (0, 1) with 2t+ 4s > 3 and the potential function V is a continuous function.
We show that the existence of components of (weak) solutions of the above equation
associated with the first eigenvalue λ1 of the problem

(−∆)su + V(x)u = λg(x)u in R3.

The main feature of this paper is the inclusion of a potentially degenerate Kirchhoff
model, combined with the critical nonlinearity.
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1 Introduction and main results

In this paper, we investigate the bifurcation result of the fractional Kirchhoff–Schrödinger–
Poisson system{

M([u]2s )(−∆)su + V(x)u + ϕu = λg(x)|u|p−1u + |u|2∗s −2u, in R3,

(−∆)tϕ = u2 in R3,
(P)

where s, t ∈ (0, 1) with 2t + 4s > 3, λ ∈ R, p ∈ (0, 1), g(x) ∈ L
6

5−p (R3) ∩ L
3
2 (R3) is a weight

function, the non-local coefficient M : R+
0 → R+ defined by M(t) = a + bt, where a, b ≥ 0,

and the Gagliardo semi-norm

[u]s =
(∫

R3
|(−∆)

s
2 u|2dx

)1/2

.
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Here, we assume that (−∆)s is the fractional Laplacian which, up to a normalization constant,
is denoted as

(−∆)su(x) = 2 lim
ε→0+

∫
R3\Bε(x)

u(x)− u(y)
|x − y|3+2s dy, x ∈ R3,

for every u ∈ C∞
0 (R3), where Bε(x) is the ball of R3 centered at x ∈ R3 with radius ε > 0.

The Kirchhoff–Schrödinger–Poisson (KSP) system, including (P) as a special model, de-
scribes the interaction of a quantum particle with an electromagnetic field. The (KSP) system
consisting of a Schrödinger equation coupled with a Poisson equation and a Kirchhoff function
has been studied extensively in various settings, such as Euclidean spaces, fractional spaces,
and Heisenberg groups, due to its strong applications in physics. Some of the main topics
of interest are the existence, multiplicity, and asymptotic behavior as well as the qualitative
properties of the (weak) solutions such as regularity, symmetry, and concentration. For more
information and references, one can consult the following papers [2, 6, 8–11, 23].

The fractional (KSP) system is a generalization of the (KSP) system that involves fractional
derivatives of order s in (0, 1). The fractional part of the system introduces new challenges
and difficulties involving fractional derivatives and nonlocal and nonlinear properties. Various
methods and techniques have been developed to deal with these problems, such as variational
methods, the Nehari manifold, Ekeland variational principle, the concentration-compactness
principle, and the mountain pass theorem. We refer the readers to [12, 16, 22, 23]. Benci and
Fortunato in [3] first introduced the Schrödinger–Poisson system{

−∆u + V(x)u + ϕu = f (x, u), in R3,

−∆ϕ = u2, in R3,

to describe solitary waves with an electronic field. More recently, the authors in [16] used
variational methods to obtain nonnegative solutions for an Schrödinger–Choquard–Kirchhoff
type fractional p-Laplacian

(
a + b∥u∥p(ξ−1)

s

)
[(−∆)s

pu + V(x)|u|p−2u] = λ f (x, u) +
(∫

RN

|u|p∗ν,s

|x − y|µ dy
)
|u|p∗ν,s−2u in RN ,

where the nonlinearity f satisfies super-linear or sub-linear growth conditions and the param-
eter λ is large or small enough. In particular, it can be seen as a special case of the fractional
Kirchhoff–Schrödinger–Poisson system.

On the other hand, bifurcation analysis is an important method of mathematics that studies
how the qualitative behavior of solutions changes as a parameter varies, and moreover, a
bifurcation point may correspond to the appearance or disappearance of the solutions or a
change in their stability or symmetry. For instance, He, in [7], studied the nonhomogeneous
semi-linear fractional Schrödinger equation with critical growth{

(−∆)su + u = u2∗s −1 + λ( f (x, u) + h(x)), x ∈ RN ,

u ∈ Hs(RN), u(x) > 0 x ∈ RN ,

where s ∈ (0, 1), N > 4s and λ > 0 is a parameter. They showed that there exists a positive
bifurcation value of the parameter such that the problem has exactly two positive solutions
for smaller values, no positive solutions for larger values, and a unique solution at the bi-
furcation value. Furthermore, many recent works investigate the bifurcation results for the
fractional Kirchhoff or Schrödinger or Poisson equation under different assumptions on the
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potential functions and the non-linearities. Very recently, for p ∈ (1, 2) and λ is small, Ruiz
[19] demonstrated the existence of a branch of positive radial solutions to the problem{

−∆u + u + λϕu = up
+

−∆ϕ = u2, lim|x|→+∞ ϕ(x) = 0.

After that, in [24], Xu, Qin, and Chen established bifurcation results for positive solutions by
using the local and global bifurcation techniques, a priori bounds for elliptic equation, and the
properties of the principal eigenvalues to the Kirchhoff-type problem involving sign-changing
weight functions {

−(a(x) + b(x)∥u∥2)∆u = λm(x)u + h(x)up in Ω,

u = 0 on ∂Ω.

In [14], the bifurcation results and the regularity for the (weak) solutions of the Schrödinger–
Poisson system {

−∆u + l(x)ϕu = λa(x)|u|p−1u + f (λ, x, u), in R3,

−∆ϕ = l(x)u2, in R3

are proved, where a, l are weight functions and f satisfies the subcritical and critical growth
condition, respectively.

Motivated by the above works, especially by [19], this paper is dedicated to investigating
bifurcation results to the (weak) solutions of the (KSP) system (P), while overcoming the
challenges due to the lack of compactness in critical case as well as the degenerate nature of
the Kirchhoff coefficient. To our knowledge, no such general results are provided for (P).

More precisely, we put the hypotheses in the following:

(V1) V ∈ C(R3) satisfies infx∈R3 V(x) ≥ V0 > 0, where V0 > 0 is a constant;

(V2) meas{x ∈ R3 : −∞ < V(x) ≤ ξ} < +∞ for any ξ ∈ R;

(M1)
′ M ∈ C(R+

0 ) satisfies that for any τ > 0, there exists κ = κ(τ) > 0, such that M(t) ≥ τ

for all t ≥ τ;

(g1) g ∈ L6/(5−p)(R3) ∩ L3/2(R3) ∩ L∞(R3) and g(x) ≥ 0 a.e. in R3.

It is worth stressing that the degenerate case of Kirchhoff nonlinearity is included in the
assumption of (M1)

′.

Before stating our main results, let us introduce some notations. Firstly, thanks to the
Fourier transform, the fractional Sobolev space Hs(R3) is defined by

Hs(R3) =

{
u ∈ L2(R3) :

∫
R3
(|ξ|2s + 1)|û|2dξ < ∞

}
,

which is equipped with the standard norm and inter product

∥u∥Hs =

(∫
R3
(|ξ|2s + 1)|û|2dξ

)1/2

, ⟨u, v⟩ =
∫

R3
(|ξ|2s + 1)ûv̂dξ.

In fact, Plancherel’s theorem in [5] guarantees that ∥u∥2 = ∥û∥2 and ∥|ξ|sû∥2 = ∥(−∆)
s
2 u∥2,

and then

∥u∥Hs =

(∫
R3

(
|(−∆)

s
2 u|2 + |u|2

)
dx

)1/2

, ⟨u, v⟩ =
∫

R3

(
(−∆)

s
2 u(−∆)

s
2 v + uv

)
dx.
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Furthermore, Proposition 3.4 and Proposition 3.6 in [5] imply that

∥(−∆)
s
2 u∥2

2 =
∫

R3
|ξ|2s|û(ξ)|2dξ =

1
C(s)

∫∫
R3×R3

|u(x)− u(y)|2
|x − y|3+2s dxdy.

By virtue of [5, Theorem 6.5], the embedding Hs(R3) ↪→ Lp(R3), with p ∈ [2, 2∗s ], is continu-
ous, where 2∗s is the fractional critical Sobolev exponent, defined as 2∗s = 6/(3− 2s). Moreover,
let Ds(R3) = {u ∈ L2∗s (R3) :

∫
R3 |(−∆)

s
2 u|2dx < ∞} be the completion of C∞

0 (R3) with respect
to the norm [u]s. The continuous fractional Sobolev embedding Ds(R3) ↪→ L2∗s (R3) yields that
there exists a best Sobolev constant

S∗ = inf
u∈Ds(R(3)\{0}

∫
R(3 |(−∆)

s
2 u|2dx

(
∫

R3 |u|2∗s dx)2/2∗ ,

so that

∥u∥2∗s ≤ c[u]s, (1.1)

where c = S−1/2
∗ . In this paper, the main solutions spaces E is the subspace of Hs(R3),

considered as

E =

{
u ∈ Hs(R3) : ∥u∥ =

(∫
R3

(
|(−∆)

s
2 u|2 + V(x)|u|2

)
dx

)1/2

< ∞

}
.

Obviously, E is a uniformly convex Banach space, see for instance [16].
Now, we state the main results of this paper in the following theorems.

Theorem 1.1. Suppose that s, p ∈ (0, 1) and the hypotheses (V1)–(V2), (M1)
′ and (g1) hold, equation

(P) has the unique bifurcation point (0, 0), and there exists an unbounded component C of positive weak
solutions emanating from (0, 0).

Notation:

• → and ⇀ denote the strong convergence and the weak convergence, respectively.

• Lp(R3), 1 ≤ p ≤ +∞, denotes a Lebesgue space, and the norm in Lp(R3) is denoted by
∥ · ∥p.

• C, Ci are various positive constants.

2 Preliminaries

In this section, as preparation for proving the main results, we intend to introduce some
fundamental notations, definitions and properties which are essential to the fractional setting.

Let s, t ∈ (0, 1), with 2t + 4s > 3. Then, it follows that the embedding Hs(R3) ↪→ L
12

3+2t (R3)

is continuous, due to the fact that 12
3+2t ≤

6
3−2s = 2∗s . For any u ∈ Ht(R3), we define the linear

functional Iu : Dt(R3) → R by

Iu(v) =
∫

R3
u2vdx, for any v ∈ Dt(R3).
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Obviously, from the continuous embedding Hs(R3) ↪→ L
12

3+2t (R3) in the above, there exists
C1 > 0, such that

|Iu(v)| ≤
(∫

R3
|u2| 6

3+2t dx
) 3+2t

6
(∫

R3
|v| 6

3−2t dx
) 3−2t

6

≤ cS−1/2
∗ ∥u∥2

Ht [v]t = c0∥u∥2
Ht [v]t, (2.1)

by (1.1) and the Hölder inequality, where c0 = cS−1/2
∗ . Hence, according to the Lax–Milgram

theorem, for any u ∈ Ht(R3), there exists a unique ϕt
u ∈ Dt(R3) satisfying∫

R3
u2vdx =

∫
R3
(−∆)

t
2 ϕt

u(−∆)
t
2 vdx, for any v ∈ Dt(R3), (2.2)

which concludes ϕt
u is the (weak) solution of (−∆)tϕt

u = u2 in R3. Consequently, ϕt
u can be

represented as

ϕt
u = ct

∫
R3

u2(y)
|x − y|3−2t dy = ct

1
|x|3−2t ∗ u2, x ∈ R3,

where ct = Γ(3 − 2t)/(π3/222tΓ(t)) is the t-Riesz potential. Together with (2.1), taking ϕt
u as a

test function of (2.2), we deduce that

[ϕt
u]

2
t =

∫
R3

ϕt
uu2dx ≤ c0∥u∥2

Ht [ϕt
u]t,

∫
R3

ϕt
uu2dx ≤ c2

0∥u∥4
Ht . (2.3)

Now, substituting ϕt
u in problem (P), it follows that the fractional Kirchhoff–Schrödinger–

Poisson equation

M([u]2s )(−∆)su + V(x)u + ϕt
uu = λg(x)|u|p−1u + |u|2s

∗−2u in R3.

Definition 2.1. We call that u ∈ Hs(R3) is a (weak) solution of problem (P), if for any v ∈ E,
there holds∫

R3

(
M([u]2s )(−∆)

s
2 u(−∆)

s
2 v + V(x)uv + ϕt

uuv
)
dx = λ

∫
R3

g(x)|u|p−1uvdx +
∫

R3
|u|2s

∗−2uvdx.

Furthermore, if there exist sequences (λn)n ⊂ R and nontrivial (weak) solutions (un)n ⊂ E
of problem (P), such that (λn, un)n → (λ, 0) as n → ∞, then (λ, 0) is a bifurcation point of
problem (P).

For more information on bifurcation, see, for instance [18]. Along this paper, let (Ds(R3))∗

be the dual space of Ds(R3) and for each u ∈ Ds(R3), let a functional L : Ds(R3) → (Ds(R3))∗

be the weak formulation, defined by

⟨L(u), v⟩ =
∫

R3
(−∆)

s
2 u(−∆)

s
2 vdx, for any v ∈ E.

Note that, by using the Hölder inequality,

|⟨L(u), v⟩| ≤ [u]s[v]s, ⟨L(u), u⟩ = [u]2s . (2.4)

A simple observation of (2.4) yields that L is a bounded linear operator in Ds(R3). Moreover,
write for brevity,

⟨u, v⟩V =
∫

R3
V(x)uvdx, ∥u∥V =

(∫
R3

V(x)|u|2dx
)1/2

, for any u, v ∈ E.

Of course, arguing as (2.4), it follows that

|⟨u, v⟩V | ≤ ∥u∥V∥v∥V , ⟨u, u⟩V = ∥u∥2
V .

Now, we are in the position to state some useful lemmas.
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Lemma 2.2 ([13, Proposition 1.3]). If X is uniformly convex and (2.4) holds, then L is of type (S),
i.e. every sequence (uj)j ∈ X such that

uj ⇀ u, ⟨L(uj), uj − u⟩ → 0

has a subsequence that converges strongly to u in X.

Lemma 2.3 ([21, Lemma 2.3]). For any u ∈ Hs(R3), the function ϕt
u defined in (2.2) satisfies the

next properties.

(i1) ϕt
u is continuous with respect to u.

(i2) ϕt
u ≥ 0 in R3 and ϕt

ξu = ξ2ϕu for any ξ > 0.

(i3) If un ⇀ u in E and un → u in Lp(R3), with p ∈ [2, 2∗s ), as n → ∞, then for any v ∈ E∫
R3

ϕt
un
(x)un(x)v(x)dx =

∫
R3

ϕt
u(x)u(x)v(x)dx + o(1),

and ∫
R3

ϕt
un
(x)u2

ndx →
∫

R3
ϕt

u(x)u(x)2dx, as n → ∞.

Lemma 2.4 ([15, Lemma 1.1]). Assume that s ∈ (0, 1) and (V1)–(V2) hold. If p ∈ [2, 2∗s ], then the
embeddings

E ↪→ Hs(R3) ↪→ Lp(R3)

are continuous, with min{1, V0}[u]s ≤ ∥u∥, for all u ∈ E. Particularly, there exists a positive constant
Cq, such that

∥u∥q ≤ Cq∥u∥ for all u ∈ E.

If q ∈ [2, 2∗s ), the embedding E ↪→ Lq(R3) is compact. Furthermore, if q ∈ [1, 2∗s ), then the embedding
E ↪→ Lq(BR) is compact for any R > 0.

Furthermore, to prove the main results, we need the following embedding theorem due to
Lemma 2.1 in [4].

Lemma 2.5. Let s ∈ (0, 1) and w ∈ L3/2(R3) ∩ L∞(R3). Then the embedding

Ds(R3) ↪→ L2(R3, wdx)

is continuous and compact, and ∥u∥2,w ≤ Cw[u]s, for all u ∈ Ds(R3), with Cw = S−1/2
∗ ∥w∥1/2

3/2 > 0.

3 The subcritical case

In this section, we shall demonstrate the bifurcation results of the fundamental problem

M([u]2s )(−∆)su + V(x)u + ϕt
uu = λg(x)|u|p−1u in R3, (3.1)

which is of significance in substantiating the proof of the main result. To this aim, let us
consider the property of the first eigenvalue λ1(h) of the problem

(−∆)su + V(x)u = λh(x)u, (3.2)

where h ∈ L3/2(R3) ∩ L∞(R3) is a strictly positive function.
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Lemma 3.1. The eigenvalue problem (3.2) has the first eigenpair (λ1(h), u1), where

0 < λ1(h) = min
v∈E\{0}

∥v∥2

∥v∥2
2,h

= min
v∈E\{0}

∫
R3(|(−∆)

s
2 v|2 + V(x)|v|2)dx∫

R3 h(x)|v|2dx
,

and the first eigenfunction u1 has one sign. Furthermore, λ1 is decreasing map with respect
to h, i.e. if 0 < h1 ≤ h2 ∈ L3/2(R3) ∩ L∞(R3), then λ1(h1) ≥ λ1(h2).

Proof. Let (vk)k ⊂ E \ {0} be a minimizing sequence of λ1(h) in Calculus of Variations. It can
be normalized so that

∫
R3 h(x)|vk|2dx = 1, and

λ1(h) = lim
k→∞

(∫
R3

|(−∆)
s
2 vk|2dx +

∫
R3

V(x)|vk|2dx
)

. (3.3)

Moreover, the fact that [|v|]s ≤ [v]s for any v ∈ E guarantees that (|vk|)k is also a minimizing
sequence, then we can further assume that vk is positive. Since ∥vk∥2 is a real convergent
sequence in (3.3), we have

0 ≤ ∥vk∥2 ≤ λ1 + 1.

Consequently, the sequence (vk)k is bounded in E. The reflexivity of E yields the existence of
0 ≤ v̂ ∈ E such that vk ⇀ v̂ in E and vk → v̂ a.e. in R3, up a subsequence if necessary. Thanks
to Lemma 2.5, we obtain that∫

R3
h|vk|2dx →

∫
R3

h|v̂|2dx as k → ∞. (3.4)

Moreover, by the weak lower semi-continuity of the norm ∥ · ∥ and by (3.4), it follows that

0 ≤ ∥v̂∥ ≤ lim inf
k→∞

∥vk∥.

Thus, λ1 = ∥v̂∥2 and v̂ is a critical point of ψ(v) = ∥v∥2/∥v∥2
2,h, i.e. for any v ∈ E∫

R3

(
(−∆)

s
2 v̂ (−∆)

s
2 v + V(x)v̂v

)
dx

∫
R3

h(x)|v̂|2dx

−
∫

R3

(
|(−∆)

s
2 v̂|2 + V(x)|v̂|2

)
dx

∫
R3

h(x)v̂vdx = 0.

In conclusion, v̂ is the first eigenfunction corresponding to λ1, provided that û ̸≡ 0.
Clearly, the definition of λ1 implies at once that λ1(h1) ≥ λ1(h2).

Proposition 3.2. Let P = {v ∈ E∗ : v ≥ 0} and let f (x) ∈ P. If (M1)
′ and (V1)–(V2) holds, then

equation
M([u]2s )(−∆)su + V(x)u = f (x) in R3 (3.5)

has a unique weak solution u in E. Furthermore, the operator K : E∗ → E, defined by K( f ) = u, where
u is the unique weak solution of (3.5), is continuous.

Proof. Of course, if f ≡ 0, then u = 0 is a unique (weak) solution of equation (3.5). Next, put
f ̸≡ 0 and set R = [u]2s ≥ 0. Then, the problem (3.5) becomes

M(R)(−∆)su + V(x)u = f (x) in R3. (3.6)

Problem (3.6) has a variational structure and J : E → R, denoted as

J(u) =
1
2

M(R)[u]2s +
∫

R3
V(x)|u|2dx − ⟨ f , u⟩ , for all u ∈ E,
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where ⟨·, ⟩ is the duality of E, is well defined and of class C1(E). It is easily deduced that
the critical point of J(u), defined by uR, is a (weak) solution of (3.1). We first claim that J is
coercive, bounded below, and sequentially weakly lower semi-continuous in E. Indeed, by
Lemma 2.4 and (M1)

′, the Hölder inequality implies that

J(u) ≥ 1
2

M(R)[u]2s +
1
2

∫
R3

V(x)u2dx − ∥ f ∥E∗∥u∥

≥ 1
2

min{κ, V0}∥u∥2 − C f ∥u∥.

Consequently, J(u) → ∞ as ∥u∥ → ∞ and so J is coercive in E. Now, for any minimizing
sequence (un)n in E, with J(un) → infu∈E J(u) as n → ∞, the coerciveness of J guarantees that
there exists K > 0, such that ∥un∥ ≤ K. Thus, for all n, it follows from the Hölder inequality
that

|J(un)| ≤ max
{

1,
1
2

M(R)
}
∥un∥2 + C f ∥un∥ ≤ max

{
1,

1
2

M(R)
}

K2 + C f K,

which infers that

inf
u∈E

J(un) ≥ −max
{

1,
1
2

M(R)
}

K2 − C f K.

Hence, J is bounded below. Moreover, if vn ⇀ v in E, in view of the weakly lower semi-
continuity of ∥ · ∥,

J(v) ≤ lim inf
n→∞

(
1
2

M(R)[vn]
2
s +

∫
R3

V(x)|vn|2dx − ⟨ f , vn⟩
)

,

We thus deduce that J is weakly lower semi-continuous. Consequently, it guarantees the
existence of the unique global minimum uR for the functional J in E, and moreover, uR is
obviously a (weak) solution of equation (3.6).

Next, let us turn to imply that uR is also a (weak) solution of problem (3.5). Let Rj → R
in R+ and let (uRj)j be (weak) solutions of (3.5) with R replaced by Rj. Once again, by (M1)

′,
the Hölder inequality and Lemma 2.4, we have

min{κ, V0}∥uRj∥
2 ≤ M(Rj)[uRj ]

2
s + ∥uRj∥

2
V = ⟨ f , uRj⟩ ≤ C f ∥uRj∥. (3.7)

Thus, {uRj} is bounded in E. The reflexivity of E, Lemmas 2.4 and 2.5 yield that, there exists
u ∈ E, such that up to sequences, as j → ∞,

(a) uRj ⇀ u in E; (b) uRj → u in L2(R3, wdx); (c) uRj → u in Lq(R3) with q ∈ [2, 2∗s ).
(3.8)

Recalling that Rj → R and M ∈ C(R3) in the hypothesis (M1)
′, one has

M(R)
∫

R3
(−∆)

s
2 u(−∆)

s
2 vdx +

∫
R3

V(x)uvdx

= lim
j→∞

∫
R3

(
M(Rj)(−∆)

s
2 uRj(−∆)

s
2 v + V(x)uRj v

)
dx

= ⟨ f , v⟩ for any v ∈ E,



Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in R3 9

and so u is also a weak solution of (3.6). Moreover, taking the test function v = uR − u in the
weak form of (3.6) and applying the Hölder inequality, we deduce that

0 = M(R) ⟨L(u)− L(uR), u − uR⟩+ ⟨u − uR, u − uR⟩V

= M(R)
(
[u]2s − ⟨L(u), uR⟩ − ⟨L(uR), u⟩+ [uR]

2
s
)
+ ∥u∥2

V − ⟨u, uR⟩ − ⟨uR, u⟩+ ∥uR∥2
V

≥ M(R)
(
[u]2s − 2[u]s[uR]s + [uR]

2
s
)
+ ∥u∥2

V − 2∥u∥V∥uR∥V + ∥uR∥2
V

= M(R)([u]s − [uR]s)
2 + (∥u∥V − ∥uR∥V)

2 ≥ 0.

(3.9)

We thus have [u]2s = [uR]
2
s and ∥u∥V = ∥uR∥V . Consequently,

⟨ f , u − uR⟩ = M(R) ⟨L(u)− L(uR), u − uR⟩+ ⟨u − uR, u − uR⟩V = 0,

and so u = uR a.e. in R3 due to the assumption that f ̸≡ 0. Hence,

u = uR in E, (3.10)

and uRj ⇀ uR in E due to (3.8)-(a). Now, we claim that

uRj → uR in E. (3.11)

From (3.8),

M(Rj)
〈

L(uRj), uRj − uR

〉
= ⟨ f , uRj − uR⟩ −

∫
R3

V(x)uRj(uRj − uR)dx → 0, as j → ∞.

Combining with (2.4) and the fact that Ds(R3) is a uniformly space, uRj → uR in Ds(R3) by
applying Lemma 2.2, and moreover uRj → uR in E by using (3.8)–(b). Therefore, the claim
holds and the (weak) solution uR of (3.6) is continuous with respect to R.

Define h : R → R by

h(R) =
1

M(R)
⟨ f , uR⟩ − ∥uR∥2

V .

Note that, according to the continuity of mappings R 7→ 1
M(R) by (M1) and R 7→ uR, h(R) is

also a continuous mapping. Observe that h(0) > 0. In fact, we first claim that u0, with R = 0,
is not a constant. Otherwise, ∥u0∥V ≤ Cd[u0]s = 0 for some Cd > 0, due to Lemma 2.4, which
implies in particular that u0 = 0 a.e. in R3. Moreover, since u0 is the (weak) solution of the
problem

M(0)(−∆)su0 + V(x)u0 = f

and f ̸≡ 0, there is a contradiction with u0 = 0 a.e. in R3. For such u0,

h(0) =
1

M(0)
⟨ f , u0⟩ − ∥u0∥2

V = [u0]
2
s > 0.

Similarly, by using the same argument of (3.7) that uR is bounded in E, there exists a positive
constant C, such that

|h(R)| =
∣∣∣∣ 1

M(R)
⟨ f , uR⟩ − ∥uR∥2

V

∣∣∣∣ ≤ 1
κ

C f ∥uR∥+ ∥uR∥2
V ≤ C f ,κ∥uR∥+ ∥uR∥2 ≤ C.

Now, denote h1(R) : R → R as h1 = h(R)− R. Combining all facts in the above, there exists
R1 > C f , such that

h1(0) = h(0) > 0 and h1(R1) = h(R1)− R1 < 0.
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The intermediate value theorem yields at once the existence of zero-point for h1. In other
words, there exists R > 0, such that

R = h(R) =
1

M(R)
⟨ f , uR⟩ − ∥uR∥2

V = [uR]
2
s .

Consequently, uR is a weak solution of (3.1).
Consider the uniqueness of the (weak) solution of (3.1). Assume at first that there are

distinct (weak) solutions u1, u2 ∈ E of (3.1). Let v = u1 − u2 be the test function for the weak
form of (3.1), which follows that

(a + b[u1]
2
s ) ⟨L(u1), u1 − u2⟩+ ⟨u1, u1 − u2⟩V =

∫
R3

f (u1 − u2)dx

and

(a + b[u2]
2
s ) ⟨L(u2), u1 − u2⟩+ ⟨u2, u1 − u2⟩V =

∫
R3

f (u1 − u2)dx

being u1 and u2 are the (weak) solutions of (3.1), where a, b are the constant given in the
definition of Kirchhoff function M. As a consequence,

a ⟨L(u1)− L(u2), u1 − u2⟩+ bJ1(u1, u2) + ⟨u1 − u2, u1 − u2⟩V = 0, (3.12)

where
J1(u1, u2) = [u1]

2
s ([u1]

2
s − ⟨L(u1), u2⟩) + [u2]

2
s ([u2]

2
s − ⟨L(u2), u1⟩).

By virtue of the Hölder inequality,

J1(u1, u2) ≥ [u1]
2
s ([u1]

2
s − [u1]s[u2]s) + [u2]

2
s ([u2]

2
s − [u2]s[u1]s)

≥ ([u1]s − [u2]s)([u1]
3
s − [u2]

3
s ) ≥ 0.

Then, clearly, by using the same argument of (3.9), from (3.12), [u1]s = [u2]s and ∥u1∥V =

∥u2∥V . Similar to (3.10), it can be concluded that u1 = u2 in E.
Finally, it remains to prove that the operator K is continuous. Let ( f j)j ⊂ E∗, f ∈ E∗ satisfy

f j → f strongly in E∗ and uj, u ∈ E be the (weak) solutions of (3.1) corresponding to f j and
f , respectively. We only need to prove that uj → u in E. Arguing as in the proof of (3.7) and
(3.11), we conclude that uj ⇀ u in E and uj → u a.e. in Lq(R3), with q ∈ [2, 2∗s ), up to a
sequence if necessary. Consequently,

M(uj)
〈

L(uj), uj − u
〉
= ⟨ f j, uj − u⟩ − ⟨uj, uj − u⟩V

= ⟨ f j − f , uj⟩+ ⟨ f , uj − u⟩ − ⟨uj, uj − u⟩V

→ 0, as j → ∞,

which yields that uj → u in E by Lemma 2.2. This completes the proof.

We next prove the bifurcation results of (3.1). For any fixed λ, first denote the operator
Nλ : E → E∗ pointwise for all u, v ∈ E as

⟨Nλ(u), v⟩ =
∫

R3
[λg(x)|u|p−1u − ϕt

uu]vdx,
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where ⟨·, ⟩ is the duality of E. We assert that Nλ(u) is a compact operator. Suppose that (uj)j
is a bounded sequence in E. Lemma 2.4 yields that there exist a subsequence of (uj)j (still
defined by (uj)j) and u ∈ E, such that for any R > 0, as j → ∞,

(a1) uj ⇀ u in E (a2) uj → u in Lq(R3), with q ∈ [2, 2∗s ) (a3) uj → u a.e. in R3.
(3.13)

By virtue of Lemma 2.3–(i3), obviously it follows that

sup
∥v∥≤1

∫
R3

(
ϕt

uj
uj − ϕt

uu
)
vdx → 0, as j → ∞.

Further, for all R > 0,

sup
∥v∥≤1

∣∣∣∣∫
R3

g(x)(|uj|p−1uj − |u|p−1u)dx
∣∣∣∣ (3.14)

≤ sup
∥v∥≤1

∣∣∣∣∫BR

g(x)(|uj|p−1uj − |u|p−1u)dx
∣∣∣∣+ sup

∥v∥≤1

∣∣∣∣∫
R3\BR

g(x)(|uj|p−1uj − |u|p−1u)dx
∣∣∣∣ .

Since g ∈ L6/(5−p)(R3), for any ε > 0, there is a constant R > 0 so large that

sup
∥v∥≤1

∫
R3\BR

g(x)(|uj|p−1uj − |u|p−1u)vdx

≤ sup
∥v∥≤1

(∫
R3\BR

|g(x)|
6

5−p dx
) 5−p

6
(∫

R3\BR

(|uj|p + |u|p)
6
p dx

) p
6

∥v∥6

≤ sup
∥v∥≤1

∥g∥
L

6
5−p (R3\BR)

2
6
p−1(∥uj∥

p
6 + ∥u∥p

6)∥v∥6

≤ 2
6
p−1cp+1∥g∥

L
6

5−p (R3\BR)
(∥uj∥p + ∥u∥p) sup

∥v∥≤1
∥v∥

≤ ε/2.

On the other hand, note that for all R > 0, the embedding E ↪→ Lq(BR), with q ∈ [1, 2∗s ), is
compact by using Lemma 2.4. Hence, take a subsequence (ujk)k ⊂ (uj)j, such that ujk → u in
Lq(BRε) for all q ∈ [1, 2∗s ), then up to a further subsequence, still denoted by (ujk)k, we have
that ujk → u a.e. in BRε . Thus, g(x)|ujk |p+1 → g(x)|u|p+1 a.e. in BRε . Furthermore, for each
measurable subset BE ⊂ BRε , with the help of (1.1), Lemma 2.4 and the Hölder inequality, we
have ∫

BE

g(x)|ujk |
p+1dx ≤ ∥g∥

L
6

5−p (BE)
∥ujk∥

p+1
6 ≤ (cC)p+1∥g∥

L
6

5−p (BE)
,

being (uj)j is bounded in E. Therefore, (g(x)|ujk |p+1)k is integrable and uniformly bounded
in L1(BRε), since g ∈ L6/(5−p)(R3) by the assumption. The Vitali convergence theorem shows
that

lim
k→∞

∫
BRε

g(x)|ujk |
p+1dx =

∫
BRε

g(x)|u|p+1dx, (3.15)

and so g(x)|uj|p+1 → g(x)|u|p+1 in L1(BRε), since the sequence (ujk)k is arbitrary. Therefore,

sup
∥v∥≤1

∣∣∣∣∫BR

g(x)(|uj|p−1uj − |u|p−1u)vdx
∣∣∣∣ → 0, as j → ∞,
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and further (3.14) hold. Together with Proposition 3.2, we deduce that the operator K ◦ Nλ :
E → E is compact. For the fixed λ, let Kλ : E → E, defined by

Kλ = I − K ◦ Nλ,

where I is the identity operator. Note that the zeros of Kλ are exactly the (weak) solutions of
the problem (3.1).

Having completed all necessary preparations, now, we are ready to show Theorem 3.3.

Theorem 3.3. Let s, p ∈ (0, 1). If (V1)–(V2), (M1)
′ and (g1) hold, equation (3.1) has the unique

bifurcation point (0, 0), and there exists an unbounded component C0 of (weak) solutions emanating
from (0, 0).

Proof. We first let λ < 0. For a fixed λ, consider the operator H1(r, ·) : E → E as follows

H1(r, u) = Nλ(r(λg(x)|u|p−1u − ϕt
uu)), r ∈ [0, 1].

We claim that there exists δ1 > 0, such that

u = H1(r, u), for any u ∈ Bδ1 , u ̸≡ 0 and r ∈ [0, 1]. (3.16)

Conversely, if there exists sequences (un)n and (rn)n, with ∥un∥ → 0, un ̸≡ 0 and rn ∈ [0, 1],
such that un = H1(rn, un). In other words, it follows that∫

R3
(M([un]

2
s )|(−∆)

s
2 un|2 + V(x)u2

n + rnϕt
un

u2
n)dx = rn

∫
R3

λg(x)|un|p+1dx ≤ 0 (3.17)

by the definition of λ. Thanks to (M1) and (V1), we get M([un]2s )[un]2s + ∥un∥2
V ≥ 0, and so

∥un∥ = ([un]2s + ∥un∥2
V)

1/2 = 0 by Lemma 2.3–(i2). Of course, this is a contradiction with the
assumption that un ̸≡ 0 in E and the claim is achieved. Therefore, we can choose ε ∈ (0, δ1),
such that

deg(Kλ, Bε, 0) = deg(I − H1(1, ·), Bε, 0) = deg(I − H1(0, ·), Bε, 0) = deg(I, Bε, 0) = 1 (3.18)

by applying the homotopy invariance of H1.
On the other hand, let λ > 0 and let ψ ∈ E, with ψ > 0. For this fixed λ and for any

r ∈ [0, 1], denote H2(r, ·) : E → E as

H2(r, u) = Nλ(λg(x)|u|p−1u − ϕt
uu + rψ).

We claim that there exists δ2 > 0, such that u ̸= H2(r, u) for any u ∈ Bδ2 \ {0} and for any
r ∈ [0, 1]. Let us argue by contradiction that if there exists a sequence (vj)j ⊂ E, with vj > 0
and ∥vj∥ → 0, as j → ∞, such that for any rj ∈ [0, 1],

vj = H2(rj, vj), (3.19)

which yields at once that

M([vj]
2
s )(−∆)svj + V(x)vj + ϕt

vj
vj = λg(x)|vj|p−1vj + rjψ(x). (3.20)

Moreover, there exists a positive constant C0, such that ∥vj∥ ≤ C0 and [vj]s ≤ ∥vj∥ ≤ C0, being
∥vj∥ → 0 as j → ∞. Furthermore, up to sequence,

vj → 0 a.e. in R3 (3.21)
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by Lemma 2.4. Consequently, M([vj]
2
s ) ≤ max{1, a + bC0} := C′

0, and then

λ1(g(x)(max{1, M([vj]
2
s )})−1) ≤ λ1((C′

0)
−1g(x)).

For any ε > 0, taking the test function as a first eigenfunction w1 > 0, by virtue of (1.1) and
the Hölder inequality, since g ∈ L6/(5−p)(R3) by the assumption (g1) and vj is bounded in E,
there exists Rε > 0 so large that for all j∫

R3\BRε

g(x)|vj|pw1dx ≤ ∥g∥
L

6
5−p (R3\BRε )

∥vj∥
p
6∥w1∥6

≤ cp+1∥g∥
L

6
5−p (R3\BRε )

∥vj∥p∥w1∥ ≤ ε/2.
(3.22)

Thus, arguing as the proof of (3.15),∫
BRε

g(x)|vj|pw1dx = o(1) as j → ∞.

Similarly, according to the assumption (g2), it is easily to see that g(x)|vj|w1 → 0 in L1(BRε)

as j → ∞ and∫
R3\BRε

g(x)vjw1dx ≤ ∥g∥
L

3
2 (R3\BRε )

∥vj∥6∥w1∥6 ≤ c2∥g∥
L

3
2 (R3\BRε )

∥vj∥∥w1∥ ≤ ε, (3.23)

being g ∈ L3/2(R3) by the assumption. In conclusion, from (3.21), (3.22) and (3.23), there is Rε

so large that as j → ∞

λ
∫

R3
g(x)|vj|pw1dx − λ1((C′

0)
−1g(x))

∫
R3

g(x)vjw1dx −
∫

R3
ϕvj vjw1dx

= λ
∫

BRε

g(x)|vj|pw1dx + λ
∫

R3\BRε

g(x)|vj|pw1dx − λ1((C′
0)

−1g(x))
∫

BRε

g(x)vjw1dx

− λ1((C′
0)

−1g(x))
∫

R3\BRε

g(x)|vj|w1dx−C∥vj∥3∥w1∥

≥ λ
∫

BRε

g(x)|vj|pw1dx − λ1((C′
0)

−1g(x))
∫

BRε

g(x)|vj|w1dx − Cε > 0.

(3.24)

Since ψ > 0, (3.20) and (3.24) yield that as n → ∞, we estimate

λ1(g(x)(max{1, M([vj]
2
s )})−1)

∫
R3

g(x)vjw1dx

= max{M([vj]
2
s ), 1}

(∫
R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫
R3

V(x)vjw1dx
)

≥ M([vj]
2
s )

∫
R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫
R3

V(x)vjw1dx

= λ
∫

R3

(
g(x)|vj|p−1vjw1 + rjψ(x)w1 − ϕt

vj
vjw1

)
dx

> λ1((C′
0)

−1g(x))
∫

R3
g(x)vjw1dx,

and so {
λ1(g(x)max{1, M([vj]

2
s )}−1)− λ1((C′

0)
−1g(x))

} ∫
R3

g(x)vjw1dx > 0.

Since
∫

R3 g(x)vjw1dx > 0, we have λ1(g(x)max{1, M([vj]
2
s )}−1) > λ1((C′

0)
−1g(x)). This is an

obvious absurdum, and we proved the claim.
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Hence, choosing ε ∈ (0, δ2), we can find the homotopy invariance of H2, i.e.

deg(Kλ, Bε, 0) = deg(I − H2(0, ·), Bε, 0) = deg(I − H2(1, ·), Bε, 0) = 0. (3.25)

It follows from (3.18) and (3.25) that (0, 0) is a bifurcation point of (P).
Now, it is sufficient to prove the existence of the unbounded component of (weak) solutions

of (3.1). It is important to note that while the classical global bifurcation theorem [17, Theorem
1.3] is relevant to our argument, we cannot apply it directly because the operator Kλ lacks
the differentiability at u = 0 and of odd-multiplicity eigenvalue. However, by modifying
the global bifurcation theorem in Proposition 3.5 of [1] and replacing these conditions with
the topological degree proofs for (3.18) and (3.25), we can derive an efficient version of [17,
Theorem 1.3] for the assertion below.

For λ0 ̸= 0, we claim that (λ0, 0) is an isolated (weak) solution of (3.1). Set λ < 0. Similar
to the analysis of (3.17), there are no nontrivial (weak) solutions of equation (3.1). Let λ > 0.
Assume that there exists a sequence of (weak) solutions (λn, un)n ⊂ R × E of (3.1), such that
λn → λ0 and ∥un∥ → 0, as n → ∞. Hence, arguing as (3.24), for any ε > 0, there exists
N = N(ε) > 0, such that for any n ≥ N(ε),

λ1(g(x)(max{1, M([vj]
2
s )})−1)

∫
R3

g(x)vjw1dx

≥ M([vj]
2
s )

∫
R3
(−∆)

s
2 vj(−∆)

s
2 w1dx +

∫
R3

V(x)vjw1dx

≥ (λ0 − ε)
∫

R3
g(x)|vj|p−1vjw1dx −

∫
R3

ϕt
vj

vjw1dx

> λ1((C′
0)

−1g(x))
∫

R3
g(x)vjw1dx,

which yields an absurdum λ1(g(x)(max{1, M([vj]
2
s )})−1) > λ1((C′

0)
−1g(x)). Therefore, (0, 0)

is a unique bifurcation point of equation (3.1).
Furthermore, if C0 is bounded in R × E, by [17, Lemma 1.2] there is a bounded open set

O ⊂ R× E such that (0, 0) ∈ O and O contains nontrivial solution other than those in Bε ⊂ E,
with ε > 0 sufficiently small.

Now, we can argue as (1.11) of [17] to conclude that the existence of ε > 0 and values λ

and λ, such that −ε < λ < 0 < λ < ε and i(Kλ, 0) = i(Kλ, 0). Therefore, owing to (3.18) and
(3.25), we have

1 = i(Kλ, 0) = i(Kλ, 0) = 0,

which is an obvious contradiction. Then, C0 is an unbounded component.

4 Main result

To determine the bifurcation results of problem (P), for any fixed λ, we define pointwise for
u, v ∈ E, Tλ : E → E∗ by

⟨Tλ(u), v⟩ =
∫

R3

{
λg(x)|u|p−1u + |u|2∗s −2u − ϕt

uu
}

vdx.

Suppose that (un)n ⊂ E is a bounded sequence in E. Then up to a subsequence, (3.13) also
holds for some u ∈ E by the reflexivity of E. Recalling the compactness result for the operator
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Nλ, as shown in section 3, it remains to prove that for any v ∈ E,∫
R3
(|un|2

∗
s −2un − |u|2∗s −2u)vdx → 0 as n → ∞. (4.1)

Since |un|2
∗
s −2un ∈ L(2∗s )′(R3), v ∈ E and E ⊂ L2∗s (R3), the definition of weak convergence

yields at once that (4.1) is achieved. In conclusion, the operator K ◦ Tλ is also compact using
Proposition 3.2.

Proof of Theorem 1.1. Let Hλ : E → E be defined as Hλ(u) = K ◦ Tλ(u), where K is the operator
introduced by Proposition 3.2. Clearly, Theorem 3.3 guarantees the existence of the positive
constants ε and δ, such that

deg(Kλ, Bδ, 0) =

{
1, λ ∈ (−ε, 0),

0, λ ∈ (0, ε).

We claim that for any λ, with 0 < λ < ε, there exist δ1, such that for any r ∈ [0, 1] and for the
operator, defined by

⟨Tr
λ(u), v⟩ =

∫
R3

{
λg(x)|u|p−1u − ϕt

uu + r|u|2∗s −2u
}

vdx,

the problem

u − K ◦ Tr
λ(u) = 0 (4.2)

has no (weak) solutions with ∥u∥ = δ1. Otherwise, if there exists a sequence of nontrivial
(weak) solutions (un)n of (4.2), with ∥un∥ → 0 and un > 0, then it yields that

M([un]
2
s )[un]

2
s + ∥un∥2

V +
∫

R3
ϕt

un
u2

ndx =
∫

R3

{
λg(x)|un|p + r|un|2

∗
s

}
dx.

Thanks to (3.24), taking the test function as the first eigenvalue w1, we have

λ1(g(x)(max{1, M([un]
2
s )})−1)

∫
R3

g(x)unw1dx

= M([un]
2
s )

∫
R3
(−∆)

s
2 un(−∆)

s
2 w1dx +

∫
R3

V(x)unw1dx

=
∫

R3

(
λg(x)|un|p−1unw1 − ϕt

un
unw1 + |un|2

∗
s −1w1

)
dx

> λ1((C′
0)

−1g(x))
∫

R3
g(x)unw1dx,

which implies an absurdum that λ1(g(x)(max{1, M([un]2s )})−1) > λ1((C′
0)

−1g(x)). The claim
holds. Hence, the homotopy invariance of the topological degree shows that for any λ ∈ (0, ε)

and R ∈ (0, δ1)

deg(I − Hλ, BR, 0) = deg(Kλ, BR, 0) = 0. (4.3)

Fix λ < 0. Applying the same argument of (3.24), it follows that∫
R3

{
λg(x)|u|p+1 + |u|2∗s

}
dx ≤ 0.
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Now similar to the analysis of (3.17), there are no nontrivial (weak) solutions of (4.2). Conse-
quently, there exist ε > 0 and δ > 0, with ε ≤ ε1 and δ ≤ δ1, such that for any λ ≤ ε and for
any R ≤ δ

deg(I − Hλ, BR, 0) = deg(Kλ, BR, 0) = 1. (4.4)

By utilizing (4.3) and (4.4), we get (0, 0) is a bifurcation point of equation (P). Moreover, simi-
lar to the argument in Theorem 3.3, we imply that the existence of an unbounded component
C of weak solutions of (P).
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