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Abstract. For each fixed integer N ≥ 2 let Ω ⊂ RN be an open, bounded and convex
set with smooth boundary. For each real number p ∈ (1, ∞) define

M(p; Ω) = inf
u∈W2,∞

C (Ω)\{0}

∫
Ω(exp(|∆u|p)− 1) dx∫
Ω(exp(|u|p)− 1) dx

,

where W2,∞
C (Ω) := ∩1<p<∞{u ∈ W2,p

0 (Ω) : ∆u ∈ L∞(Ω)}. We show that if the radius
of the largest ball which can be inscribed in Ω is strictly larger than a constant which
depends on N then M(p; Ω) vanishes while if the radius of the largest ball which can be
inscribed in Ω is strictly less than 1 then M(p; Ω) is a positive real number. Moreover,
in the latter case when p is large enough we can identify the value of M(p; Ω) as being
the principal frequency of the p-Bilaplacian on Ω with coupled Dirichlet–Neumann
boundary conditions.
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1 Introduction

1.1 Notations

For each integer N ≥ 1 we denote by RN the N-dimensional Euclidean space. Let | · | denote
the modulus on R and for each integer N ≥ 2 let | · |N denote the Euclidean norm on RN . For
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each open and bounded subset Ω of RN denote by RΩ the inradius of Ω (that is the radius of
the largest ball which can be inscribed in Ω). Finally, for each integer N ≥ 1 define

PN := {Ω ⊂ RN : Ω is an open, bounded, convex set with smooth boundary ∂Ω}.

1.2 Statement of the problem

For each Ω ∈ PN and each real number p ∈ (1, ∞) we define

M(p; Ω) := inf
u∈W2,∞

C (Ω)\{0}

∫
Ω
(exp(|∆u|p)− 1)dx∫

Ω
(exp(|u|p)− 1)dx

(1.1)

where W2,∞
C (Ω) := ∩1<p<∞{u ∈ W2,p

0 (Ω) : ∆u ∈ L∞(Ω)}. The goal of this paper is to
emphasize the following phenomena which appear in relation with the minimization problem
(1.1): if RΩ is large enough then M(p; Ω) = 0 for each p ∈ (1, ∞) while if RΩ is small enough
then M(p; Ω) > 0 for each p ∈ (1, ∞). Moreover, in the latter case we can identify the value
of M(p; Ω) for each p large enough as being equal with the following quantity

ΛC(p; Ω) := inf
u∈W2,p

0 (Ω)\{0}

∫
Ω
|∆u|pdx∫

Ω
|u|pdx

, (1.2)

(see Theorem 1.1 for the precise result on problem (1.1)). Regarding ΛC(p; Ω) we recall the
well-known fact that it represents the principal eigenvalue of the p-Bilaplacian with coupled
Dirichlet–Neumann boundary conditions (see, e.g., N. Katzourakis & E. Parini [5, relation
(1.6)]). In other words, ΛC(p; Ω) is the smallest real number Λ for which the following equa-
tion has a nontrivial solution {

∆2
pu = Λ|u|p−2u, in Ω,

u = |∇u|N = 0, on ∂Ω,
(1.3)

where ∆2
pu := ∆(|∆u|p−2∆u) stands for the p-Bilaplacian. At this point we consider impor-

tant to recall the fact that problem (1.3) with p = 2 represents the famous “clamped plate”
problem, which was initially studied by Lord J. W. S. Rayleigh in his famous book The Theory
of Sound (1877), and subsequently deeply investigated by G. Szegö (1950), G. Talenti (1981),
M. Ashbaugh & R. Benguria (1995) and N. Nadirashvili (1995) from an isoperimetric point of
view.

1.3 Motivation

For each Ω ∈ PN and each real number p ∈ (1, ∞) we recall the eigenvalue problem for the
p-Laplacian under homogeneous Dirichlet boundary conditions{

−∆pu = λ|u|p−2u, in Ω,

u = 0, on ∂Ω,
(1.4)

where λ is a real parameter and ∆pu := div(|∇u|p−2
N ∇u) is the p-Laplace operator. It is well-

known (see, e.g., P. Lindqvist [7]) that the first eigenvalue of problem (1.4) has the following
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variational characterization

λ1(p; Ω) := inf
u∈W1,p

0 (Ω)\{0}

∫
Ω
|∇u|pNdx∫

Ω
|u|pdx

.

Defining

Λ1(p; Ω) := inf
u∈X0(Ω)\{0}

∫
Ω
(exp(|∇u|pN)− 1) dx∫
Ω
(exp(|u|p)− 1) dx

, (1.5)

where X0(Ω) := W1,∞(Ω) ∩
(
∩1<p<∞ W1,p

0 (Ω)
)
, we recall that by [2, Theorem 2] (see also [1]

for similar results) we know that Λ1(p; Ω) = 0 if RΩ > 1 while Λ1(p; Ω) > 0 if RΩ ≤ 1.
Moreover, there exists a constant M ∈ [e−1, 1] such that if RΩ ≤ M we have Λ1(p; Ω) =

λ1(p; Ω), for all p ∈ (1, ∞). Furthermore, by [1, Theorem 2] we have that if RΩ < 1 then there
exists a constant P ∈ (1, ∞) such that Λ1(p; Ω) = λ1(p; Ω), for all p ∈ [P, ∞).

Motivated by these results regarding Λ1(p; Ω) and λ1(p; Ω) in this paper we show that we
can arrive to a similar conclusion in relation with M(p; Ω) and ΛC(p; Ω).

1.4 Main result

The main result of this paper is given by the following theorem.

Theorem 1.1. Assume N ≥ 2 is a given integer and let CN be the constant given by

CN :=


4

ln 2
, if N = 2,

2
2
N (N − 2)

1 − 2
2
N −1

, if N ≥ 3 .
(1.6)

Then for each Ω ∈ PN and each p ∈ (1, ∞) we have that M(p; Ω) > 0, if RΩ < 1 and M(p; Ω) = 0
if RΩ > C1/2

N . Moreover, if Ω ∈ PN with RΩ < 1 then there exists a constant P⋆ > 1 such that
M(p; Ω) = ΛC(p; Ω) for all p ∈ [P⋆, ∞).

Actually, a careful look at the proof of Theorem 1.1 (more precisely, observing the fact that
relation (3.1) holds true for a ball with the radius strictly smaller that C1/2

N ) shows that it can
be improved in the particular case when Ω is a ball, in the following sense.

Corollary 1.2. Assume N ≥ 2 is a given integer and let BR be a ball of radius R from RN centered
at the origin. Then for each p ∈ (1, ∞) we have that M(p; BR) > 0, if R < C1/2

N and M(p; BR) = 0
if R > C1/2

N . Moreover, if R < C1/2
N then there exists a constant P⋆ > 1 such that M(p; BR) =

ΛC(p; BR) for all p ∈ [P⋆, ∞).

Note that, unfortunately, our proof of Theorem 1.1 cannot fill the gap which occurs when
RΩ ∈ [1, C1/2

N ]. In the case of Corollary 1.2 this gap reduces to an uncovered case when
R = C1/2

N .

The rest of the paper comprises two more sections offering the following pieces of infor-
mation: in Section 2 we recall the asymptotic behaviour of ΛC(p; Ω)1/p, as p → ∞, and we
give a lower bound for ΛC(p; Ω); Section 3 is devoted to the proof of the main result.
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2 Auxiliary results on ΛC(p; Ω)

2.1 The asymptotic behaviour of ΛC(p; Ω)1/p, as p → ∞

Define

ΛC
∞(Ω) := inf

u∈W2,∞
C (Ω)\{0}

∥∆u∥L∞(Ω)

∥u∥L∞(Ω)
. (2.1)

By [5, Theorem 1.1] we know that

lim
p→∞

ΛC(p; Ω)1/p = ΛC
∞(Ω) . (2.2)

Note that in general an explicit expression of ΛC
∞(Ω) is not available in the literature but when

Ω = BR, where BR stands for a ball of radius R from RN centered at the origin, we have (by
[5, Proposition 3.5]) that ΛC

∞(BR) = CN R−2, where CN is given by relation (1.6). Moreover,
by [5, Proposition 3.5] we have that the minimizer realising the infimum in the definition of
ΛC

∞(BR) is the positive, radially symmetric function u0(x) := w1
( x

R

)
with w1 being the solution

of the problem {
−∆w1(x) = f (x), for x ∈ B1,

w1(x) = 0, for x ∈ ∂B1,

where

f (x) :=

{
1, if |x|N ≤ 2−

1
N ,

−1, if 2−
1
N < |x|N < 1 .

Actually, by [5, Lemma 3.3]) we know that for N = 2 we have

w1(x) =


ln 2

4
− |x|22

4
, for |x|2 ≤ 2−

1
2 ,

|x|22
4

− ln(|x|2)
2

− 1
4

, for 2−
1
2 < |x|2 < 1,

while for N ≥ 3 we have

w1(x) =


2−

2
N

N
− 1

2N
− 1

N(N − 2)
+

21− 2
N

N(N − 2)
− |x|2N

2N
, for |x|N ≤ 2−

1
N ,

|x|2N
2N

+
|x|2−N

N
N(N − 2)

− 1
2N

− 1
N(N − 2)

, for 2−
1
N < |x|N < 1 .

Consequently, we have that the function u0 : BR → R, given by u0(x) := w1
( x

R

)
, has the

following expressions:
• if N = 2 then

u0(x) =


ln 2

4
− |x|22

4R2 , for |x|2 ≤ 2−
1
2 R,

|x|22
4R2 − ln(|x|2)− ln(R)

2
− 1

4
, for 2−

1
2 R < |x|2 < R.

• if N ≥ 3 then

u0(x) =


1 − 2

2
N −1

2
2
N (N − 2)

− |x|2N
2NR2 , for |x|N ≤ 2−

1
N R,

|x|2N
2NR2 +

|x|2−N
N

N(N − 2)R2−N − 1
2N

− 1
N(N − 2)

, for 2−
1
N R < |x|N < R.
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Remark 2.1. Simple computations show that when N = 2 the function u0 satisfies ∥u0∥L∞(BR)=
ln 2

4 and ∥∆u0∥L∞(BR) = R−2. Similarly, when N ≥ 3 the function u0 verifies ∥u0∥L∞(BR) =

1−2
2
N −1

2
2
N (N−2)

and ∥∆u0∥L∞(BR) = R−2. Consequently, in both cases u0 is a minimizer for ΛC
∞(BR)

with ∥u0∥L∞(BR) = C−1
N , where CN is given by relation (1.6).

2.2 A lower bound for ΛC(p; Ω)

The goal of this section is to prove the following result:

Proposition 2.2. Let N ≥ 2 be an integer and Ω ∈ PN be a set. Then we have

ΛC(p; Ω) ≥ p−1R−2p
Ω , ∀ p ∈ (1, ∞) .

The main ingredient in proving Proposition 2.2 is a Hardy-type inequality due to E. Miti-
dieri [8, Corollary 2.2]. We recall this inequality below.

Theorem 2.3. If Ω ⊂ RN is a bounded domain with smooth boundary and ϕ : Ω → (0, ∞) is a
superharmonic function such that ϕ ∈ C2(Ω) and it satisfies −∆ϕ ≥ a|∇ϕ|2Nϕ−1, in Ω, for some
constant a > 0 then for each real number p ∈ (1, ∞) the following inequality holds true

(p − 1)a + p
p2

∫
Ω
|∆ϕ||u|pdx ≤

∫
Ω

ϕp|∆ϕ|1−p|∆u|pdx, ∀ u ∈ C∞
0 (Ω) . (2.3)

2.2.1 Proof of Proposition 2.2.

For each Ω ∈ PN let v be the unique function satisfying{
−∆v = 1, in Ω,

v = 0, on ∂Ω.

In particular, we have that v ∈ C2(Ω). Letting M2(Ω) := maxx∈Ω v(x), we have by [4, Theorem
1.2 with p = q = 2] that

M2(Ω) ≤ R2
Ω

2
.

On the other hand, by [4, Theorem 3.2] (with p = 2 and F being the Euclidean norm on RN)
we know that

2−1|∇v(x)|2N + v(x) ≤ M2(Ω), ∀ x ∈ Ω .

Thus, defining ϕ : Ω → (0, ∞) by

ϕ(x) := v(x) + M2(Ω), ∀ x ∈ Ω ,

we have that ϕ ∈ C2(Ω) and since −∆ϕ(x) = −∆v(x) = 1 for all x ∈ Ω, by the above estimate
we deduce that

2−1ϕ−1(x)|∇ϕ(x)|2N ≤ −∆ϕ(x), ∀ x ∈ Ω .

In other words, ϕ given above satisfies the hypothesis from Theorem 2.3 with a = 2−1 and,
consequently, the following inequality holds true

3p − 1
2p2

∫
Ω
|u|p dx ≤

∫
Ω
(v + M2(Ω))p|∆u|p dx, ∀ u ∈ C∞

0 (Ω) . (2.4)

Since v(x) ≤ M2(Ω) ≤ 2−1R2
Ω for each x ∈ Ω inequality (2.4) implies the conclusion of

Proposition 2.2.
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3 Proof of the main result

We start by establishing three lemmas which will be helpful in the proof of our main result.

Lemma 3.1. Assume N ≥ 2 is an integer. For each Ω ∈ PN and each p ∈ (1, ∞) we have M(p; Ω) ≤
ΛC(p; Ω).

Proof. Assume p ∈ (1, ∞) is arbitrary but fixed. Taking into account relation (1.1) for any
u ∈ C∞

0 (Ω) \ {0} ⊂ W2,∞
C (Ω) \ {0} and t ∈ (0, 1) we have

M(p; Ω) ≤

∫
Ω
(exp(|∆(tu)|p)− 1)dx∫
Ω
(exp(|tu|p)− 1)dx

=

∫
Ω
|∆u|pdx +

∞

∑
k=2

t(k−1)p
∫

Ω

|∆u|kp

k!
dx

∫
Ω
|u|pdx +

∞

∑
k=2

t(k−1)p
∫

Ω

|u|kp

k!
dx

.

Letting t → 0+ in the above inequality we get

M(p; Ω) ≤

∫
Ω
|∆u|p dx∫

Ω
|u|p dx

, ∀ u ∈ C∞
0 (Ω) \ {0} .

Since C∞
0 (Ω) is dense in W2,p

0 (Ω) and ΛC(p; Ω) is defined by relation (1.2) we deduce that the
conclusion of Lemma 3.1 holds true.

Lemma 3.2. Assume N ≥ 2 is an integer. For each Ω ∈ PN and each p ∈ (1, ∞) we have M(p; Ω) ≥
infk∈N\{0} ΛC(kp; Ω).

Proof. Assume p ∈ (1, ∞) is arbitrary but fixed. Using the definition of ΛC(p; Ω) given by
relation (1.2) we deduce that for each u ∈ W2,∞

C (Ω) \ {0} (which, in particular, ensures that
u ∈ W2,q

0 (Ω) \ {0} for any q > 1), we have

∫
Ω
(exp(|∆u|p)− 1) dx∫

Ω
(exp(|u|p)− 1) dx

≥

∞

∑
k=1

ΛC(kp; Ω)

k!

∫
Ω
|u|kp dx

∞

∑
k=1

1
k!

∫
Ω
|u|kp dx

≥ inf
k∈N\{0}

ΛC(kp; Ω) .

Passing above to the infimum over all u ∈ W2,∞
C (Ω) \ {0}, we arrive at the conclusion of

Lemma 3.2.

Lemma 3.3. Assume that Ω ∈ PN satisfies ΛC
∞(Ω) > 1. Define

O := {p ∈ (1, ∞) : ΛC(p; Ω) ≤ ΛC(kp; Ω), ∀ k ≥ 1} .

Then there exists an integer L ≥ 1 such that (L, ∞) ⊂ O.

Proof. The proof of this lemma follows the ideas used in the proof of Step 5 from the proof of
Theorem 2 in [1, p. 10]. We recall it just for the reader’s convenience.

We argue by contradiction. Indeed, assume that for each integer m ≥ 1 there exists a real
number pm ≥ m and an integer km ≥ 2 such that ΛC(pm; Ω) > ΛC(km pm; Ω). Since ΛC

∞(Ω) > 1
it follows that ΛC

∞(Ω)−
√

ΛC
∞(Ω) > 0. Let us now fix ε ∈ (0, ΛC

∞(Ω)−
√

ΛC
∞(Ω)). It is clear
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that (ΛC
∞(Ω)− ε)2 > ΛC

∞(Ω). On the other hand, by (2.2), limq→∞
q
√

ΛC(q; Ω) = ΛC
∞(Ω), and

thus there exists a positive integer Aε such that 1 < ΛC
∞(Ω)− ε < q

√
ΛC(q; Ω), for all q ≥ Aε.

Then,

(ΛC
∞(Ω)− ε)2pm ≤ (ΛC

∞(Ω)− ε)km pm < ΛC(km pm; Ω) < ΛC(pm; Ω), ∀ m > Aε .

Hence, using again (2.2), we conclude that

(ΛC
∞(Ω)− ε)2 ≤ lim

m→∞
pm
√

ΛC(pm; Ω) = ΛC
∞(Ω) ,

which is a contradiction. The proof of Lemma 3.3 is complete.

Proof of Theorem 1.1.

• Step 1. We show that M(p; Ω) = 0, for each Ω ∈ PN with RΩ > C1/2
N and each p ∈ (1, ∞).

Assume that p ∈ (1, ∞) is arbitrary but fixed. Firstly, note that for each Ω ∈ PN we may
assume without loss of generality, by a translation of the domain, that 0 ∈ Ω is exactly the
center of the largest ball which can be inscribed in Ω, in other words BRΩ ⊂ Ω. Next, let u0

be a minimizer for ΛC
∞(BRΩ) with ∥u0∥L∞(BRΩ ) = C−1

N , where CN is given by relation (1.6), and

∥∆u0∥L∞(BRΩ ) = R−2
Ω (see Remark 2.1 for details). Then we can define U0 : Ω → R by

U0(x) :=

{
u0(x), if x ∈ BRΩ ,

0, if x ∈ Ω \ BRΩ .

Since u0 ∈ W2,∞
C (BRΩ) it follows that u0 ∈ W2,q

0 (BRΩ) for each q ∈ (1, ∞) and by [6, Lemma
5.2.5 & Theorem 5.4.4 & Section 5.5] we deduce that U0 ∈ W2,q

0 (Ω) for each q ∈ (1, ∞). It
follows that, actually, we have nU0 ∈ W2,∞

C (Ω) \ {0}, for each positive integer n. Testing
with nU0 in the definition of M(p; Ω), and taking into account that |∆U0(x)| ≤ R−2

Ω , for a.a.
x ∈ BRΩ , we get

M(p; Ω) ≤

∫
Ω
[exp(|∆(nU0(x))|p)− 1] dx∫
Ω
[exp(|nU0(x)|p)− 1] dx

≤

∫
BRΩ

[exp(|nR−2
Ω |p)− 1] dx∫

BRΩ

[exp(np|u0(x)|p)− 1] dx
.

On the other hand, we recall that by Remark 2.1 we know that ∥u0∥L∞(BRΩ ) = C−1
N , where

CN is given by relation (1.6). We deduce that if we assume RΩ > C1/2
N , then letting ϵ0 > 0 be

such that ϵ0 + R−2
Ω < C−1

N , we get that there exists a subset ω ⊂ BRΩ with |ω| > 0 such that
|u0(x)| > ϵ0 + R−2

Ω , for all x ∈ ω. It follows that, for each positive integer n we have

M(p; Ω) ≤
|BRΩ |[exp(|nR−2

Ω |p)− 1]∫
ω
[exp(np|u0(x)|p)− 1] dx

≤
|BRΩ |[exp(|nR−2

Ω |p)− 1]

|ω|
[
exp

[
np

(
ϵ0 + R−2

Ω

)p]
− 1

] .

Letting n → ∞ we find M(p; Ω) = 0.

• Step 2. We show that M(p; Ω) > 0, for each Ω ∈ PN with RΩ < 1 and each p ∈ (1, ∞).
Moreover, there exists P⋆ > 1 such that M(p; Ω) = ΛC(p; Ω) for all p ≥ P⋆.

Let Ω ∈ PN with RΩ < 1 and p ∈ (1, ∞) be arbitrary but fixed. By Proposition 2.2 we
know that

ΛC(q; Ω) ≥ q−1R−2q
Ω , ∀ q ∈ (1, ∞) .
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That fact and relation (2.2) yield

ΛC
∞(Ω) = lim

q→∞
ΛC(q; Ω)1/q ≥ lim

q→∞

q
√

q−1R−2q
Ω = R−2

Ω > 1 . (3.1)

Since ΛC
∞(Ω) > 1 the hypothesis of Lemma 3.3 is fulfilled. Let L ≥ 1 be the smallest integer

number for which Lemma 3.3 holds true. It follows that

ΛC(q; Ω) ≤ ΛC(kq; Ω), ∀ k ≥ 1, ∀ q > L .

Taking k0 :=
[
Lp−1]+ 2 we get k0 p > L and consequently, by the above inequality we find

that
ΛC(k0 p; Ω) ≤ ΛC(kp; Ω) ,

for each integer k ≥ k0. Thus,

ΛC(k0 p; Ω) ≤ inf
k≥k0

ΛC(kp; Ω) .

On the other hand, by Lemma 3.2 we know that

M(p; Ω) ≥ inf
k∈N\{0}

ΛC(kp; Ω) .

All the above pieces of information imply that

M(p; Ω) ≥ inf
k∈{1,2,...,k0}

ΛC(kp; Ω) > 0 .

Finally, if we assume, in addition, that p > L then similar arguments as above yield
M(p; Ω) ≥ ΛC(p; Ω). On the other hand, by Lemma 3.1 we have M(p; Ω) ≤ ΛC(p; Ω), and,
consequently, we conclude that M(p; Ω) = ΛC(p; Ω), for all p ≥ P⋆ := L + 1. The proof of
Theorem 1.1 is now complete.
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