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Abstract. We study the number of rational limit cycles of the Abel equation x′ =
A(t)x3 + B(t)x2, where A(t) and B(t) are real trigonometric polynomials. We show
that this number is at most the degree of A(t) plus one.
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1 Introduction

The Abel differential equation

x′ = A(t)x3 + B(t)x2 + C(t)x,

where A(t), B(t) and C(t) are trigonometric polynomials has been studied by many authors,
either for its relation to higher degree phenomena (see e.g. [11]), for applications to real-world
models (see e.g. [2]), or for its own intrinsic interest (see e.g. [7]).

In this paper we consider Abel differential equations without linear term, that is,

x′ = A(t)x3 + B(t)x2, (1.1)

with A(t) and B(t) being real trigonometric polynomials.
Among the main problems related to this equation, we could name the Smale–Pugh [16]

problem, which is considered as a particular case of the 16th Hilbert problem. The problem
consists in bounding the number of limit cycles of (1.1), that is, the number of isolated periodic
solutions in the set of periodic solutions of the equation. In connection with this problem, Lins
Neto [11] proved that there is no upper bound on the number of limit cycles of (1.1).

Another important problem often mentioned in the literature is the Poincaré center-focus
problem applied to this setting. Trivially, x(t) = 0 is a solution of the equation. The problem
asks when the equation 1.1 has a center at x(t) = 0, i.e., all solutions in a neighborhood of the
solution x(t) = 0 are closed. This problem for (1.1) was proposed by Briskin, Françoise, and
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Yondim [4, 5]. There are some progresses in solving this problem, for example, it has been
proved that the composition condition determine certain parametric centers when the coeffi-
cients are polynomials [13], but the problem is open for trigonometric coefficients. Moreover,
it is conjectured that the converse is true when A(t) and B(t) are polynomials, with some
relevant evidences that support it. For more more details, the reader may refer to [7, 10].

When faced with the Smale–Pugh problem, one of the most common strategies for obtain-
ing upper bounds on the number of limit cycles is to impose some additional restrictions on
A(t) and B(t). For example, it has been shown that if A(t) ̸= 0 or B(t) ̸= 0 does not change
sign, or if there exist α, β ∈ R such that αA(t) + βB(t) ̸= 0 does not change sign, then the
equation has at most three limit cycles [1, 8]. See [7] for more information.

Another strategy is to focus on the problem for limit cycles of a certain form or with
certain properties that may be of particular interest. An example of such a result is that the
generalized Abel equation with polynomial coefficients and degree n has at most n polynomial
limit cycles, see [9].

Also, the number of rational solutions of (1.1) when A(t), B(t) are polynomials has been
profusely studied. For instance, in [15] the authors obtain upper bounds on the number
of rational periodic solutions of (1.1) under certain conditions on the degrees of A(t), B(t),
and in [3], a general, non-optimal upper bound has been obtained. It has been also studied
for A(t), B(t) trigonometric polynomials, in [17]. Note that the rational solutions are not
necessarily limit cycles, as they may be part of a centre.

In this paper we obtain an upper bound on the number of rational limit cycles of the
equation (1.1), i.e., limit cycles of the form x(t) = Q(t)/P(t), where P(t) and Q(t) are real
trigonometric polynomials and P(t) ̸= 0 for all t ∈ R. Recall that a real trigonometric polyno-
mial of degree n is an expression of the form

n

∑
k=0

ak cos(kt) + bk sin(kt), ak, bk ∈ R

with an · bn ̸= 0. As usual, we write R[cos(t), sin(t)] for the ring of real trigonometric polyno-
mials.

Using this notation, our main result is as follows.

Theorem 1.1. Let A(t), B(t) ∈ R[cos(t), sin(t)]. If the degree of A(t) is odd or less than twice the
degree of B(t), then (1.1) has at most two non-trivial rational limit cycles. Otherwise, the number of
non-trivial rational limit cycles of equation (1.1) is at most the degree of A(t) plus one.

To prove this result, we consider each rational limit cycle x(t) = Q(t)/P(t) as an invariant
trigonometric algebraic curve of degree one in x with real trigonometric coefficients (Propo-
sition 2.2), that is, an invariant curve of (1.1) of the form Q(t)− P(t)x = 0, where P(t) and
Q(t) are real trigonometric polynomials and P(t) ̸= 0 for all t ∈ R. Therefore, to bound the
number of limit rational cycles, we bound the number of invariant algebraic curves of degree
one in x with real trigonometric coefficients of (1.1) such that (1.1) has no center at the origin.
In particular, to prove the second part of Theorem 1.1, we bound the maximum number of
invariant curves of this type such that (1.1) does not have a Darboux first integral.

The study of invariant curves of degree one in x is interesting in itself, regardless of
whether they correspond to rational limit cycles or not. Therefore, we include a method
to parameterize the Abel equations 1.1 that have at least two non-trivial invariant algebraic
curves of degree one in x with real trigonometric coefficients.
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The structure of the paper is as follows. In the first section we characterize the invariant
algebraic curves of degree one in x with real trigonometric coefficients such that the equation
(1.1) has and we show some of their properties. Then we prove the first part of Theorem 1.1
and give the parameterization mentioned above. In the second section, we apply Darboux’s
integrability theory to this situation, which allows us to complete the proof of the main result
of the paper.

Due to the fact that R[cos(t), sin(t)] is not a unique factorization domain, some necessary
facts and results about factorization in these rings are collected in Appendix A.

2 Real trigonometric invariant algebraic curves of degree one in x

Consider the Abel equation (1.1), set g(t, x) := A(t)x3 + B(t)x2 and denote the associated
vector field by X , that is,

X =
∂

∂t
+ g

∂

∂x
.

Fixed f ∈ C1, the curve f (t, x) = 0 is said to be an invariant curve of (1.1) if there exists
K ∈ C0, called the cofactor of f (t, x), such that

(X f ) (t, x) =
(

∂ f
∂t

+ g
∂ f
∂x

)
(t, x) = K(t, x) f (t, x).

Note that f0(t, x) := x = 0 is always an invariant curve of (1.1) with the cofactor K0(t, x) =
A(t)x2 + B(t)x.

If f (t, x) = 0 is invariant and x(t) is a solution of (1.1), then, for any t0 in the domain of
the solution,

f (t, x(t)) = f (t0, x(t0)) exp
(∫ t

t0

K(s, x(s))ds
)

.

Therefore, if f (t0, x(t0)) = 0, then f (t, x(t)) = 0 for all t. Consequently f (t, x) = 0 consists of
trajectories of solutions of the equation.

From now on, unless otherwise stated, A(t) and B(t) are real trigonometric polynomials,
that is, A(t), B(t) ∈ R[cos(t), sin(t)].

The first objective of this section is to characterize the invariant algebraic curves f (t, x) = 0
of (1.1) such that f (t, x) = Q(t)− P(t)x ∈ R[cos(t), sin(t)][x] with P(t) ̸= 0, for all t ∈ R.

Let P(t) and Q(t) be real trigonometric polynomials with P(t) ̸= 0, for all t ∈ R. If R(t) ∈
R[cos(t), sin(t)] is a common factor of P(t) and Q(t), meaning that there exist factorizations of
P(t) and Q(t) in which R(t) appears (see Appendix A for details), we have that Q(t)− P(t)x =

0 is an invariant curve of (1.1) if and only if Q(t)/R(t) − (P(t)/R(t))x = 0 is an invariant
curve of (1.1). Thus, in what follows, we always assume that P(t) and Q(t) have no common
factors, that is, Q(t) − P(t)x is irreducible in R[cos(t), sin(t)][x] and, by Corollary A.4, in
C[cos(t), sin(t)][x].

Remark 2.1. To simplify the exposition from now on, we simply say invariant curves of (1.1)
to refer to invariant curves of (1.1) of the form Q(t)− P(t)x = 0, where P(t) ̸= 0, for all t ∈ R,
and Q(t)− P(t)x is irreducible.

The following result establishes the relationship between rational limit cycles x(t) =

Q(t)/P(t) and invariant curves of (1.1).
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Proposition 2.2. Let P(t) and Q(t) be real trigonometric polynomials. If P(t) ̸= 0 for all t ∈ R, then
x(t) = Q(t)/P(t) is a solution of (1.1) if and only if Q(t)− P(t)x = 0 is an invariant curve of (1.1).

Proof. Since R[cos(t), sin(t)] is a domain (see [14, Theorem 3.1]) its field of fractions, Σ, is
well-defined. Thus, we can perform the Euclidean division of (X f )(t, x) = Q′(t)− P′(t)x −
P(t)

(
A(t)x3 + B(t)x2

)
by f (t, x) := Q(t) − P(t)x in Σ[x], so that there exist unique K(t, x)

and Z(t, x) ∈ Σ[x] such that

(X f )(t, x) = K(t, x)(Q(t)− P(t)x) + Z(t).

Concretely,

Z(t) = P(t)

((
Q(t)
P(t)

)′
− A(t)

(
Q(t)
P(t)

)3

− B(t)
(

Q(t)
P(t)

)2
)

and

K(t, x) = A(t)x2 +

(
A(t)

(
Q(t)
P(t)

)
+ B(t)

)
x

+ A(t)
(

Q(t)
P(t)

)2

+ B(t)
(

Q(t)
P(t)

)
+

P′(t)
P(t)

.

Note that K(t, x) ∈ C0 because P(t) ̸= 0 for all t ∈ R. Therefore, we conclude that the
necessary and sufficient condition for Q(t) − P(t)x = 0 to be an invariant curve of (1.1) is
Z(t) = 0, which, given the expression of Z(t), is equivalent to x(t) = Q(t)/P(t) being a
solution of (1.1).

Now, our approach is as follows: instead of directly bounding the number of rational limit
cycles of (1.1), we bound the number of invariant curves of degree one in x such that (1.1)
has not a center. According to Proposition 2.2, this will be an upper bound on the number of
rational limit cycles.

Next we give a condition so that Q(t)− P(t)x = 0 is an invariant curve of (1.1). But first
we need a lemma.

Lemma 2.3. Let P(t) and Q(t) be real trigonometric polynomials with P(t) ̸= 0 for all t ∈ R. If
Q(t)− P(t)x = 0 is an invariant curve of (1.1), then the corresponding cofactor is a polynomial in x
with real trigonometric polynomial coefficients.

Proof. Let f (t, x) := Q(t)− P(t)x. Arguing as in the proof of Proposition 2.2, we obtain that
there exists K̃(t, x) ∈ R[cos(t), sin(t)][x] such that P(t)2(X f )(t, x) = K̃(t, x) f (t, x).

By Corollary A.4, f (t, x) is irreducible in C[cos(t), sin(t)][x]. Moreover, as C[cos(t), sin(t)]
is an Euclidean domain (see [14, Theorem 2.1]), it is an unique factorization domain and
therefore C[cos(t), sin(t)][x] is also an unique factorization domain. Thus, we have that P(t)2

or (X f )(t, x) are divisible by f (t, x) which necessarily implies that there exists H(t, x) ∈
C[cos(t), sin(t)][x] such that (X f )(t, x) = H(t, x) f (t, x) for degree reasons.

Finally, since both (X f )(t, x) and f (t, x) are polynomials in x with real trigonometric poly-
nomial coefficients, we conclude that H(t, x) is also a polynomial in x with real trigonometric
polynomial coefficients.

The next result gives the condition for Q(t)− P(t)x = 0 to be an invariant curve of (1.1).
This result is proved in [12] for the polynomial case. Moreover, since rational solutions are
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equivalent to the invariant curves of degree one in x, as mentioned in the introduction, the
following result can also be obtained from those of [17] for the trigonometric case. Here, we
provide a simplified proof.

Proposition 2.4. The curve Q(t)− P(t)x = 0 is an invariant curve of (1.1) if and only if Q(t) =

c ∈ R and there exists a trigonometric polynomial R(t) such that

A(t) = (P(t)/c)R(t), B(t) = −P′(t)/c − R(t).

In this case, the corresponding cofactor is equal to A(t)x2 − (P′(t)/c)x.

Proof. Let f (t, x) := Q(t) + P(t)x = 0 be an invariant curve of (1.1). Arguing as in the proof
of Proposition 2.2 and taking advantage of the fact that x(t) = Q(t)/P(t) is a solution of (1.1),
we have that the corresponding cofactor can be written as

K(t, x) = A(t)x2 −
(

P(t)
Q(t)

)′
x +

Q′(t)
Q(t)

.

Since, by Lemma 2.3, K(t, x) ∈ R[cos(t), sin(t)][x], we have in particular that Q′(t) is equal
to K0(t)Q(t) for some K0(t) ∈ R[cos(t), sin(t)]. Comparing degrees, either Q(t) = 0 or K0 is
constant. In the latter case,

|Q(t)| = e
∫

K0dt.

Thus we conclude that K0 = 0, and Q(t) = c ∈ R. Note that, in this case, K(t, x) = A(t)x2 −
(P′(t)/c)x.

Finally, noting that

−P′(t)
c

= A(t)
(

c
P(t)

)
+ B(t)

we conclude that B(t) = −P′(t)/c − R(t) where R(t) = cA(t)/P(t) ∈ R[cos(t), sin(t)].
The converse follows by direct checking.

As mentioned in the proof of Proposition 2.4, the curve c − P(t)x = 0 is an invariant curve
of the equation (1.1) if and only if

−P′(t)
c

= A(t)
(

c
P(t)

)
+ B(t).

Without loss of generality, we can assume c = 1, so that

P(t)P′(t) + P(t)B(t) + A(t) = 0. (2.1)

Note that if equation (1.1) has an invariant curve of the form 1− Kx = 0 with K a non-zero
constant, then the Abel equation becomes the separated variable equation x′ = B(t)x2(−Kx +

1) with constant solutions 0 and 1/K. If
∫ 2π

0 B(t) dt ̸= 0 these constant solutions are the
unique limit cycles, while if

∫ 2π
0 B(t) dt = 0 every bounded solution is periodic, so it has no

limit cycles. Hence, we consider only the case deg(P) ≥ 1.
We will say that an invariant curve 1 − P(t)x = 0 has degree n if deg(P) = n. Next we

prove that the sum of the degrees of two invariant curves is the degree of A.

Proposition 2.5. If 1 − P1(t)x = 0 and 1 − P2(t)x = 0 are two different invariant curves of
(1.1), then deg(P1) + deg(P2) = deg(A). Consequently, if deg(P1) = deg(P2), then deg(P1) =

deg(P2) = deg(A)/2.
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Proof. By Proposition 2.4, there exist trigonometric polynomials R1(t) and R2(t) such that
P1(t)R1(t) = A(t) = P2(t)R2(t) and −P′

1(t)− R1(t) = B(t) = −P′
2(t)− R2(t). Thus,

P1(t)(P′
2(t) + R2(t)− P′

1(t)) = A(t) = P2(t)R2(t).

Therefore

P1(t)(P2(t)− P1(t))′ = P1(t)(P′
2(t)− P′

1(t)) = R2(t)(P2(t)− P1(t)).

Now, since deg(P2(t)− P1(t)) = deg((P2(t)− P1(t))′), we conclude that deg(P1) = deg(R2) =

deg(A)− deg(P2), from which our claim follows.

The following example shows that (1.1) can have two limit cycles of different degrees.

Example 2.6. Let P1(t) = 2(cos(t)+ 2)(sin(t)+ 2) and P2(t) = (cos(t)+ 2)(sin(t)+ 2)(sin(t)+
4). By Proposition 2.4, we have that 1 − Pi(t)x, i = 1, 2 are invariant curves of (1.1) for

A(t) = (cos(t) + 2)(sin(t) + 2)(sin(t) + 4)(3 cos(2t) + 8 cos(t)− 4 sin(t) + 1)

and

B(t) = −3/4 sin(3t)− 9 cos(2t)− 2 sin(2t)− 20 cos(t) + 49/4 sin(t)− 1.

Note that 5 = deg(A) = deg(P1) + deg(P2) = 2 + 3. Moreover, since
∫ 2π

0 B(t) dt = −2π ̸= 0,
(1.1) does not have a center (see, for instance, [1, Lemma 7]), so the solutions x(t) = 1/P1(t)
and x(t) = 1/P2(t) are limit cycles.

Remember that x(t) = 0 is always an invariant curve of (1.1). It corresponds to the case
Q(t) = 0 and we call it a trivial invariant curve.

Corollary 2.7. If equation (1.1) has three or more non-trivial invariant curves, then they all have
degree deg(A)/2.

Proof. Suppose that equation (1.1) has three invariant curves 1 − P1(t)x = 0, 1 − P2(t)x = 0
and 1 − P3(t)x = 0. Then, by Proposition 2.5, deg(P1) + deg(P2) = deg(P1) + deg(P3) =

deg(P2) + deg(P3) = deg(A), which implies deg(P1) = deg(P2) = deg(P3) = deg(A)/2.

Now, it is easy to give two conditions for equation (1.1) to have at most two non-trivial
invariant curves, which proves the first part of the main theorem (Theorem 1.1).

Corollary 2.8. If deg(A) is odd or if deg(B) > deg(A)/2, then (1.1) has has at most two non-trivial
invariant curves.

Proof. If deg(A) is odd the claim follows directly from Corollary 2.7.
So, suppose that deg(A) is even and deg(B) > deg(A)/2. If 1 − P(t)x = 0 is an in-

variant curve of (1.1), then by Proposition 2.4 there exists R(t) ∈ R[cos(t), sin(t)] such that
A(t) = P(t)R(t) and B(t) = −P′(t)− R(t), then deg(B) ≤ max{deg(P) = deg(P′), deg(A)−
deg(P)}. Thus if deg(P) = deg(A)/2, then deg(B) ≤ deg(A)/2, contradicting the hypoth-
esis. This fact, together with Proposition 2.5 and Corollary 2.7, completes the proof of the
claim.

We can now write this last result in terms of rational limit cycles.
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Corollary 2.9. If deg(A) is odd or if deg(B) > deg(A)/2, then (1.1) has has at most two non-trivial
rational limit cycles.

In [3] a parameterization is given for all cases of equations x′ = A(t)x3 + B(t)x2, with
A(t), B(t) ∈ C[t] which have at least two non-trivial polynomial polynomial invariant curves.
Before we finish proving the main result of the paper in the next section, let us see that a
similar parametrization of the rational limit cycles can be obtained in this case.

Proposition 2.10. Equation (1.1) has two different non-trivial invariant curves if and only if there exist
G(t), Ĝ(t), S1(t) ∈ R[cos(t), sin(t)] and k ∈ R \ {0}, such that G(t), S1(t), S1(t) + kĜ(t) ̸= 0 for
all t ∈ R, every irreducible factor of Ĝ(t) divides G(t), and the functions A, B satisfy

A(t) = G(t)S1(t)(S1(t) + kĜ(t))

(
G′(t) +

G(t)Ĝ′(t)
Ĝ(t)

)
,

B(t) = −(G(t)S1(t))′ − (S1(t) + kĜ(t))

(
G′(t) +

G(t)Ĝ′(t)
Ĝ(t)

)
,

Furthermore, in this case the two different invariant curves are

1 − G(t)S1(t)x = 0 and 1 − G(t)(S1(t) + kĜ(t))x = 0.

Proof. Assume 1 − P1(t)x = 0, 1 − P2(t)x = 0 are two different non-trivial invariant curves
of (1.1). Recall that by Remark 2.1, P1(t) ̸= 0 and P2(t) ̸= 0, for all t ∈ R, so they have
unique decomposition (see Corollary A.2). Thus there exists their greatest common divisor.
Set G(t) := gcd(P1(t), P2(t)), S1(t) := P1(t)/G(t) and S2(t) := P2(t)/G(t). Moreover, since,
by Proposition 2.4, P1(t) and P2(t) divide A(t), there exists S(t) ∈ R[cos(t), sin(t)] such that

A(t) = G(t)S1(t)S2(t)S(t)

and, by Proposition 2.4,

B(t) = −(G(t)S1(t))′ − S2(t)S(t) = −(G(t)S2(t))′ − S1(t)S(t).

Thus, (
G(t)(S2(t)− S1(t))

)′
= (S2(t)− S1(t))S(t).

Let Ĝ(t) be the product of all the factors of S2(t) − S1(t) that divide G(t); note that Ĝ(t)
is well-defined by Proposition A.1 because G(t) ̸= 0 for all t ∈ R. Set H(t) := (S2(t) −
S1(t))/Ĝ(t).H(t) does not necessarily have a unique decomposition; however, by construction,
no irreducible factor of H(t) (in any of its factorizations) can divide G(t). Now, from

G′(t)H(t)Ĝ(t) + G(t)(H(t)Ĝ(t))′ = (G(t)(S2(t)− S1(t)))

= (S2(t)− S1(t))S(t)

= H(t)Ĝ(t)S(t),

it follows that G(t)H′(t)Ĝ(t) + G(t)H(t)Ĝ′(t) = H(t)Ĝ(t)(S(t)− G′(t)). So,

G(t)H′(t)Ĝ(t) = H(t)
(

Ĝ(t)(S(t)− G′(t))− G(t)Ĝ′(t)
)

. (2.2)

Therefore, since G(t)Ĝ(t) have no real zeros and no common irreducible factors with H(t), by
Corollary A.3, G(t)Ĝ(t) divides R(t) := Ĝ(t)(S(t)− G′(t))− G(t)Ĝ′(t). Moreover, noticing
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that deg(R(t)) ≤ deg(Ĝ(t)G′(t)) = deg(Ĝ(t)G(t)), we have that R(t)/(G(t)Ĝ(t)) = k0 ∈
R[cos(t), sin(t)]. Therefore, H′(t) = H(t)R(t)/(Ĝ(t)G(t)) = H(t)k0 and we conclude that
H(t) = k, for some k ∈ R, and that S2(t) = S1(t) + kĜ(t). Now, since P1(t) ̸= P2(t), we have
that k ̸= 0. So, replacing H(t) by k in (2.2), we obtain that S(t) = G′(t) + (G(t)Ĝ′(t))/Ĝ(t) as
claimed.

Finally, since S1(t) ̸= S2(t), The opposite is deduced by direct verification using Proposi-
tion 2.4.

Example 2.11. In order to obtain Example 2.6, it suffices to apply Proposition 2.10 with G(t) =
(cos(t) + 2)(sin(t) + 2), Ĝ(t) = sin(t) + 2, S1(t) = sin(t) + 4, and k = −1.

3 Darboux first integrals and proof of the main result

In this section, we use Darboux integrability theory to bound the maximum number of invari-
ant curves that (1.1) can have without forcing the existence of a center.

We say that f (t, x), smooth enough and not identically constant, is a first integral of (1.1)
if X f = 0, that is, f (t, x) = 0 is an invariant curve of (1.1) with zero cofactor. Equivalently,
f (t, x(t)) = 0 is constant if x(t) is a solution of the equation.

We say that a first integral f of (1.1) is of Darboux type if

f (t, x) =
r

∏
i=0

fi(t, x)αi ,

where fi(t, x) = 0 are invariant curves of the equation and αi ∈ C.
First, we present Darboux’s general result that relates the existence of a first Darboux

integral with the linear dependence of the cofactors of the invariant curves. We have adapted
its statement to our situation

Theorem 3.1 (Darboux’s Theorem, [6]). Let f0(t, x) = 0, . . . , fr(t, x) = 0 be invariant curves
of (1.1) with cofactors K0(t, x), . . . , Kr(t, x), respectively. If there exist α0, . . . , αr ∈ C such that
∑r

i=0 αiKi(t, x) = 0 then f (t, x) = ∏r
i=0 fi(t, x)αi is a first integral of (1.1).

The following result is a direct application of Theorem 3.1 for the case where the invariant
curves f0(t, x) = 0, . . . , fr(t, x) = 0 are all non-trivial and have the form described in Remark
2.1.

Proposition 3.2. Let αi ∈ R, i = 1, . . . , r, and α0 := −∑r
i=1 αi. If 1 − Pi(t)x = 0, i = 1, . . . , r

are invariant curves of (1.1), then f (t, x) := xα0 ∏r
i=1(1 − Pi(t)x)αi is a first integral of (1.1) if and

only if
r

∑
i=1

αi
A(t)
Pi(t)

= 0. (3.1)

Proof. First, we recall that f0(t, x) = x = 0 is always an invariant curve of (1.1) with co-
factor K0(t, x) = A(t)x2 + B(t)x. Furthermore, by Proposition 2.4, we have the cofactor of
1 − Pi(t)x = 0 is Ki(t, x) = A(t)x2 − P′

i (t)x for each i = 1, . . . , r. Therefore,

(X f )(t, x) =

(
α0A(t)x2 + α0B(t)x +

r

∑
i=1

αi

(
A(t)x2 − P′

i (t)x
))

f (t, x)

= −
(

r

∑
i=1

αi

(
B(t) + P′

i (t)
)

x

)
f (t, x).
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Moreover, by Proposition 2.4, B(t) = −P′
i (t)−

A(t)
Pi(t)

, i = 1, . . . , r. So, we conclude that

(X f )(t, x) =

(
r

∑
i=1

αi
A(t)
Pi(t)

x

)
f (t, x)

Now, by the definition of first integral and Theorem 3.1, our claim follows.

Note that, as we have seen in the proof of the previous result, (3.1) is a necessary and
sufficient condition for the cofactors to be linearly dependent.

We can now complete the proof of the main result (Theorem 1.1).
Proof of Theorem 1.1. If (1.1) has less than three non-trivial rational limit cycles, then the
number of rational limit cycles is bounded by deg(A) + 1 because deg(A) ≥ 1. Thus, we
assume that (1.1) has r ≥ 3 non-trivial rational limit cycles, corresponding to the invariant
curves 1 − P1(t)x = 0, . . . , 1 − Pr(t)x = 0 of (1.1) by Proposition 2.2.

Since r ≥ 3, by Corollary 2.7 we know that deg(Pi) = deg(A)/2, i = 1, . . . , r, and con-
sequently deg(A/Pi) = deg(A)/2 for all i by Proposition 2.4. Moreover, by Proposition 3.2,
the trigonometric polynomials A/Pi, i = 1, . . . , r, are linearly independent. Otherwise, there
would be a Darboux first integral and thus a center.

Finally, since the R−vector space of trigonometric polynomials of degree deg(A)/2 has
dimension deg(A) + 1, we conclude that r ≤ deg(A) + 1.

A On factorization issues in the ring of real trigonometric polyno-
mials

It is well known that the ring of real trigonometric polynomials is not a unique factorization
domain. However, it is a Dedekind half-factorial domain ([14, Theorem 3.1]). Therefore, every
non-zero non-unit is a finite product of irreducible elements, and any two factorizations into
irreducibles of an element in R[cos(t), sin(t)] have the same number of irreducible factors.
This allows us to consider the irreducible factors of a given real trigonometric polynomial or
to use expressions such us “P(t) and Q(t) have no common irreducible factors”, regardless of
the fact that the greatest common divisor is not defined in half-factorial domains in general.

Recall that, given a non-zero real trigonometric polynomial

P(t) =
n

∑
k=0

a0 cos(kt) + b0 sin(kt), ak, bk ∈ R

the degree of P(t), deg(P), is the biggest k such that ak · bk ̸= 0. Note that deg(PQ) =

deg(P) + deg(Q) and, if deg(P) > 0, then deg(P′) = deg(P). In particular, P′ = 0 if and only
if P ∈ R.

Furthermore, since the irreducible elements of R[cos(t), sin(t)] are those of the form

a cos(t) + b sin(t) + c, a, b, c ∈ R, (a, b) ̸= (0, 0)

by [14, Theorem 3.4], we have that the degree of a non-zero non-unit element of the ring
R[cos(t), sin(t)] is the number of its irreducible factors.

Given z ∈ R[cos(t), sin(t)], in the following we write ⟨z⟩ for the principal ideal of the ring
R[cos(t), sin(t)] generated by z.

The irreducible factors of real trigonometric polynomials without real zeros are character-
ized by the following proposition.
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Proposition A.1. Let P(t) ∈ R[cos(t), sin(t)] be non-zero and non-unit. The following statements
are equivalent.

1. P(t) ̸= 0 for all t ∈ R.

2. Any irreducible factor of P(t) can be written (up to units) in the form a cos(t) + b sin(t) + c
where a, b, c ∈ R, (a, b) ̸= (0, 0) and c2 > a2 + b2.

3. If z is an irreducible factor of P(t), then ⟨z⟩ is a maximal ideal of R[cos(t), sin(t)].

4. Every maximal ideal of R[cos(t), sin(t)] containing ⟨P(t)⟩ is principal.

Proof. (1) ⇐⇒ (2). Let zi ∈ R[cos(t), sin(t)], i = 1, . . . , n, be irreducible elements such that
P = u z1 · · · zn for some u ∈ R. Obviously, P(t) ̸= 0 for all t ∈ R if and only if zi(t) ̸= 0 for
all t ∈ R and all i ∈ {1, . . . , n}. Since irreducible elements in R[cos(t), sin(t)] have the form
a cos(t) + b sin(t) + c with a, b, c ∈ R and (a, b) ̸= (0, 0), and a cos(t) + b sin(t) + c has no real
zeros if and only if c2 > a2 + b2, we are done.
(2) ⇐⇒ (3). Let z = a cos(t) + b sin(t) + c ∈ R[cos(t), sin(t)] with (a, b) ̸= (0, 0). Since, by
[14, Theorem 3.8], ⟨z⟩ is a maximal ideal if and only if c2 > a2 + b2, we have the desired
equivalence.
(3) =⇒ (4). Let m be a maximal ideal of R[cos(t), sin(t)] such that P(t) ∈ m. Since m is a
prime ideal, there exists an irreducible factor z of P(t) such that z ∈ m; equivalently, ⟨z⟩ ⊆ m.
From the maximality of ⟨z⟩ follows that m = ⟨z⟩.
(4) =⇒ (3). Let z be an irreducible factor of P(t) and let m be a maximal ideal of the ring
R[cos(t), sin(t)] containing ⟨z⟩. Since m is principal, there exists w ∈ R[cos(t), sin(t)] such
that m = ⟨w⟩; in particular, w divides z and the irreducibility of z implies ⟨z⟩ = m.

Corollary A.2. Let P(t) ∈ R[cos(t), sin(t)] be non-zero and non-unit. If P(t) ̸= 0 for all t ∈ R,
then P(t) has a unique factorization except for order of factors or product by units.

Proof. Let u z1 · · · zn = v w1 · · ·wn be two factorizations of P into irreducibles, zi, wi, i =

1, . . . , n, for some u, v ∈ R. Since, by Proposition A.1, ⟨w1⟩ is maximal and u z1 · · · zn =

P(t) ∈ ⟨w1⟩, we have that there exists j such that zj ∈ ⟨w1⟩. So it follows from the irreducibil-
ity of zj that zj = u1w1 for some u1 ∈ R. Now it is sufficient to repeat the same argument with
uu1 z1 · · · zj−1zj+1 · · · zn = v w2 · · ·wn, and so on, to get the desired result.

Clearly, the converse of the previous corollary is not true, since there are many real irre-
ducible trigonometric polynomials with real zeros.

Corollary A.3. Let P(t), H(t) and R(t) ∈ R[cos(t), sin(t)] be non-zero and non-units. If P(t) ̸= 0,
for every t ∈ R, P(t) = H(t)R(t) and no irreducible factor of P(t) divides H(t), then P(t) divides
R(t).

Proof. By Corollary A.2, there exist unique irreducible real trigonometric polynomials z1, . . . ,
zn such that P(t) = u z1 · · · zn for some u ∈ R. If z1 is an irreducible factor of P(t), then
H(t)R(t) = P(t) ∈ ⟨z1⟩. By Proposition A.1, ⟨z1⟩ is maximal. Therefore, H(t) ∈ ⟨z1⟩ or R(t) ∈
⟨z1⟩. However, since no irreducible factor of P(t) divides H(t), we conclude that R(t) ∈ ⟨z1⟩
and therefore R(t) = R̃(t)z1 for some R̃(t) ∈ R[cos(t), sin(t)]. Now, if we repeat the same
argument with P̃(t) = u z2 · · · zn, R̃(t) and z2, and so on, we get the desired result.

Now, it is convenient to recall that C[cos(t), sin(t)] is an Euclidean domain (see [14, Theo-
rem 2.1]. In particular, it is a unique factorization domain.
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Corollary A.4. Let P(t) and Q(t) ∈ R[cos(t), sin(t)] be non-zero and non-units. If P(t) ̸= 0, for
all t ∈ R, then P(t) and Q(t) are coprime in C[cos(t), sin(t)] if and only if they have no common
irreducible factors in R[cos(t), sin(t)].

Proof. If P(t) and Q(t) have common irreducible factors in R[cos(t), sin(t)], then they have
common irreducible factors in C[cos(t), sin(t)].

Conversely, let us suppose that P(t) and Q(t) have no common irreducible factors in
R[cos(t), sin(t)]. If z ∈ C[cos(t), sin(t)] is an irreducible factor of P(t) and Q(t), then P(t) and
Q(t) belong to ⟨z⟩ ∩ R[cos(t), sin(t)]. Thus there exists a maximal ideal m of R[cos(t), sin(t)]
such that P(t) ∈ m and Q(t) ∈ m. Since, by Proposition A.1, m is principal, we conclude that,
contrary to the hypothesis, P(t) y Q(t) have a real common factor.

Note that for the above corollary to hold, the condition P(t) ̸= 0, for all t ∈ R, is manda-
tory.

Example A.5. The trigonometric polynomials P(t) =
√

2 sin(t)− 1 and Q(t) = −
√

2 cos(t)+ 1
are irreducible in R[cos(t), sin(t)] and their respective factorizations in C[cos(t), sin(t)] are(

(i − 1) sin (t) + (i − 1) cos (t)−
√

2i
2

)(
i sin (t) + cos (t)− i√

2
− 1√

2

)
and

−
(
(i + 1) sin (t) + (i − 1) cos (t) +

√
2

2

)(
i sin (t) + cos (t)− i√

2
− 1√

2

)
.

Note that they both have the same last irreducible complex factor.
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