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Abstract. The blow-up method proves its effectiveness to characterize the integrability
of the resonant saddles giving the necessary conditions to have formal integrability and
the sufficiency doing the resolution of the associated recurrence differential equation
using induction. In this work we apply the blow-up method to monodromic singulari-
ties in order to solve the center-focus problem. The case of nondegenerate monodromic
singularities is straightforward since any real nondegenerate monodromy singularity
can be embedded into a complex system with a resonant saddle. Here we apply the
method to nilpotent and degenerate monodromic singularities solving the center prob-
lem when the center conditions are algebraic.
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1 Introduction

The center-focus problem for systems of differential equations is one of the main unsolved
problems in the qualitative theory of differential systems in the plane [23, 26]. For the non-
degenerate monodromic singularities the center-focus problem is closely connected with in-
tegrability problem, see for instance references [37, 39]. The center-focus problem consists of
providing the necessary and sufficient conditions under which a monodromic singularity has
a neighborhood filled with periodic orbits. If the monodromic singularity is a non-degenerate
singular point, i.e., its linear part has two purely imaginary eigenvalues, then the real differ-
ential system can be embedded in the complex plane and the singular point it transformed to
a 1 : −1 resonant saddle singular point, see [15, 16, 29, 30].

Indeed, the 1 : −1 resonance can be generalized into a p : −q resonance known as a p : −q
resonant singular point of a polynomial vector field in C2, see [19, 44].
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The characterization of the analytic integrability of several families of differential systems
with a resonant saddle is studied in several works, see for instance [17–19, 28–30, 44] and
references therein.

In order to find the necessary conditions of analytic integrability of a p : −q resonant
singular point there exist different algorithms. One of them is based on the transformation of
the original system to its normal form through a series of invertible changes of variables [2].
Another algorithm propose directly the formal first integral, see [41,44]. Recently the blow-up
method has been introduced to compute the necessary conditions, see [16].

Once the necessary conditions are obtained the second step is to prove their sufficiency.
There is no general algorithm that works for all differential systems in order to prove the
sufficiency. The sufficiency is guaranteed if, for instance, the system is Hamiltonian or time-
reversible. Recall that a time-reversible system is invariant by certain symmetry. The existence
of an explicit first integral well-defined in a neighborhood of the singular point guarantees
also the existence of a center in a monodromic singular point. This first integral can be
found through the knowledge of an integrating factor. The connections between integrating
factors an analytic first integrals have been studied by different authors, see [8, 13, 31, 41]
and references therein. Finally ad hoc methods to prove the sufficiency are used for some
particular families, see for instance [12, 13, 19, 32, 34–36, 40, 44]. All these different algorithms
to prove the sufficiency have been useless for certain differential systems. However, in [15]
the blow-up method is used to prove the sufficiency doing the resolution of the associated
recurrence differential equation using induction and all the open problems of previous works
have been solved.

We remark that for an isolated singularity the existence of a formal first integral implies
the existence of an analytic first integral, see [10, 41]. Consequently, to prove the sufficiency is
sufficient to prove the existence of a formal first integral. In [3] the formal integrability was
studied through the existence of invariant analytic (sometimes algebraic) curves.

In this paper we use the blow-up method to approach the center-focus problem for nilpo-
tent and degenerate monodromic singularities, also when there exists no formal integral. This
method that was successfully applied for resonant saddles and nondegenerate monodromic
singularities, is used here to determine necessary conditions. Also, it is also possible to prove
the sufficiency when the center is formally integrable. We solve open cases and cases previ-
ously studied with very difficult techniques.

2 Blow-up method for monodromic non-degenerate singular points

A monodromic non-degenerate singular point at the origin of a differential system on R2

takes the form
u̇ = v + P(u, v), v̇ = −u + Q(u, v), (2.1)

where P(u, v) and Q(u, v) are real analytic functions without constant and linear terms. Such
singular point is a center, if and only if, the system has a first integral of the form

Φ(u, v) = u2 + v2 + ∑
k+l≥3

ϕklukvl . (2.2)

analytically defined around it, see [37, 39]. Therefore, the center-focus problem reduces to the
case of proving the existence of such analytic first integral. From this result straightforward
emerge a method to determine the first necessary conditions to have a center, which consists in
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proposing a power series of the form (2.2). However the unique general method that enables
us to prove the sufficiency for this first necessary conditions is to use the method developed
in [15] solving the recurrence differential equation associated to the problem using induction.

The first step to apply the method is to complexify system (2.1) defining the complex
variable x = u + iv and system (2.1) becomes the equation ẋ = ix + R(x, x̄). Considering also
its complex conjugate equation we have the system

ẋ = ix + R(x, x̄), ˙̄x = −ix̄ + R̄(x, x̄).

If we define y := x̄ as a new variable and R̄ as a new function we obtain a complex system
which is after the change of time idt = dT written as

ẋ = x + G(x, y), ẏ = −y + H(x, y). (2.3)

The power series (2.2) is now transformed into

Ψ(x, y) = xy + ∑
i+j>2

ψijxiyj,

verifying that XΨ = ∑i=1 v2i+1(xy)2i+2, where X is the vector field associated to system (2.3)
and v2i+1 are polynomials in the parameters of the system. We note that if all the polynomials
v2i+1 vanish then the power series Ψ(x, y) is first integral of system (2.3). The singular point
at the origin of system (2.3) is 1 : −1 resonant saddle singular point and the values v2i+1 are
the so-called saddle constants, see [41, 44].

When the 1 : −1 resonant saddle singular point at the origin is generalized into the p : −q
resonant saddle singular point at the origin then the differential system is of the form

ẋ = p x + F1(x, y), ẏ = −q y + F2(x, y), (2.4)

where F1 and F2 are analytic functions without constant and linear terms with p, q ∈ Z and
p, q > 0, see [14, 33, 44]. In this case a p : −q resonant saddle singular point is called a reso-
nant center, if an only if, there exists a meromorphic first integral Ψ = xqyp + ∑i+j>p+q ψijxiyj

around it. We recall here that if Ψ(x, y) ∈ C[[x, y]], i.e, is a formal first integral in a neighbor-
hood of the singularity, then there also exists an analytic first integral.

The blow-up method to detect formal integrability for a resonant singular point works
as follows. We perform the blow-up (x, y) → (x, z) = (x, y/x) to system (2.4) which has a
resonant singular point at the origin. So that the origin is replaced by the line x = 0, which
contains two singular points that correspond to the separatrices of the resonant point at the
origin of system (2.4). These two singular points are a (p + q) : −p resonant saddle and a
(p + q) : −q resonant saddle that we call p1 and p2, respectively. The method is based on the
following result.

Theorem 2.1. The p : −q resonant singular point at the origin of system (2.4) is analytically inte-
grable if, and only if, either p1 or p2 is orbitally analytically linearizable.

The proof is based on the fact that if the p : −q resonant singular has an analytic first
integral Ψ(x, y) then both points p1 or p2 have also a well-defined analytic first integral given
by Ψ(x, zx). The sufficiency follows from Lemma 1 of [19] using the normal orbital form of the
p : −q resonant system (2.4) and the first integral of such normal orbital form. From Theorem
2.1 we deduce that the necessary conditions of integrability for the p : −q resonant singular
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point generate the same ideal that the necessary integrability conditions of the singular points
p1 or p2.

Hence we apply the blow-up z = y/x and system (2.4) is transformed into the system

ż = −(p + q)z + xF (x, z), ẋ = p x + x2G(x, z), (2.5)

where F (0, 0) = 0 and x = 0 is an invariant line of the new system. Next we propose the
power series H̃ = ∑∞

i≥1 fi(z)xi, where fi(z) are arbitrary functions of z (in the case of formal
integrability these functions must be polynomials). Let X̄ be the vector field associated to
system (2.5). The lower terms of equation X̄ H̃ = 0 give the differential equation for f1(z)
given by p f1(z)− (p + q)z f ′1(z) = 0 whose solution is f1(z) = c1zp/(p+q). Taking into account
that f1(z) must be a polynomial we take c1 = 0 and consequently f1(z) = 0. The power
two of terms give the differential equation 2p f2(z) − (p + q)z f ′2(z) = 0 and its solution is
f2(z) = c2z(2p)/(p+q). Consequently, either (2p)/(p + q) ∈ N or we take c2 = 0. Taking
into account that p, q ∈ Z with p, q > 0 it always exists fk0 such that (k0 p)/(p + q) ∈ N (or
(k0q)/(p + q) ∈ N for saddle point p2). Finally, for each power of x of the equation X̄ H̃ = 0
we get the differential equation

k p fk(z)− (p + q) z fk
′(z) + gk(z) = 0, (2.6)

where gk(z) depends on some previous functions fi(z) for i = k0, . . . , k − 1. The solution of
differential equation (2.6) is given by

fk(z) = ck z
kp

p+q + z
kp

p+q

∫ z−1− kp
p+q

p + q
gk(z) dz, (2.7)

where ck is an arbitrary constant. From (2.7) it is easy to see that functions fk in (2.7) are
always polynomials except when appear logarithmic terms. If the origin is not a resonant
center, always exists a value kr such that for k ≥ kr the functions fi(z) for i ≥ kr can have
logarithmic terms. In fact, the logarithmic term appears when there is a term s−1 in the
integral of (2.7). This is the case when

−1 − kr p
p + q

+ mk = −1,

where mk is the degree of the polynomial gk(s). So, we have kr = mk(p+ q)/p. The coefficients
of these logarithmic terms are the saddle constants of the original system (2.4).

Vanishing a certain number of saddle constants and checking that some of the next ones
are zero we can apply the following procedure. First we apply the induction method to prove
that the solution fk of recursive equation (2.6) is always a polynomial to assure that system
(2.5) has a formal first integral. Second, to prove the sufficiency of the original system (2.4)
we can apply the following result.

Theorem 2.2. Assume that system (2.5) has a formal first integral H̃(x, z). If the function H̃ =

H̃(x, y/x) is well-defined at the origin of system (2.4) then this system is analytic integrable in a
neighborhood of the origin.

The idea of the method is to study the connected singular points at infinity and if they
are formally integrable and the first integral can be extended up to the origin then the origin
is also formally integrable. The reason of why the coordinates (x, z = y/x) are better than
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the original coordinates (x, y) is double. First because doing the blow-up we introduce x as a
invariant curve of the new differential system and then we can propose an expansion passing
through the origin in powers of x with coefficients as functions of z. The second is because the
in the new variables (x, z) the coefficients functions of z are polynomials with perhaps some
logarithmic terms, see [3]. This does not happens in the original variables, where the system
may not have any invariant curve and if it does then the coefficient of the expansion do not
have to be polynomial.

In this work we apply the same method to nilpotent and degenerate monodromic singu-
larities in order to solve the center-focus problem. For degenerate monodromic singularities
there is no general method to approach the center-focus problem. The method shows that the
formal integrability of the points at infinity is intimately linked with the center problem at
the origin even though the center at the origin is not formally integrable. The method deter-
mine center conditions for monodromic singularities which are algebraically solvable. In the
following sections we solve several non trivial examples. The method can also be applied to
systems that are not formally integrable at the monodromic singular point giving information
for studying the center-focus problem.

3 Nilpotent monodromic singularities

In this section we consider different systems with a nilpotent singularity, and we study, using
the blow-up method, the center-focus problem of such systems.

Proposition 3.1. The nilpotent real cubic differential system

ẋ = y + Ax2y + Bxy2 + Cy3, ẏ = −x3 + Px2y + Kxy2 + Ly3. (3.1)

is a center if and only if P = B + 3L = (A + K)L = 0.

Proof. In [9] was solved the center-focus problem of the nilpotent cubic system (3.1) construct-
ing a Liapunov function and using different methods to prove the sufficiency. Indeed it is
well-known that all the centers are analytically (hence formally) integrable, see [7]. Later in
[22,27] the center-focus problem of such system is also solved using the fact that all the nilpo-
tent centers are limit of non-degenerate centers. Here, we apply the blow-up method to solve
it. Hence, applying the blow-up transformation

(x, y) → (z, y) = (x/y, y) (3.2)

system (3.1) becomes

ż = 1 + Cy2 + By2z − Ly2z + Ay2z2 − Ky2z2 − Py2z3 + y2z4,

ẏ = y3(L + Kz + Pz2 − z3),
(3.3)

which has a regular point at the origin. Therefore system (3.3) is analytic integrable at the
origin and the recursive differential equation do not generate logarithmic terms. Next, we
propose the power series

H(z, y) =
∞

∑
k=2

fk(z)yk. (3.4)
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We impose that Ḣ = ż∂H/∂z + ẏ∂H/∂y = 0 and equating to zero each coefficient of power of
y we obtain the following recursive differential equation for the functions fk

(k − 1)(L + Kz + Pz2 − z3) fk−1 + (C + Bz − Lz + Az2 − Kz2 − Pz3 + z4) f ′k−1 + f ′k+1 = 0. (3.5)

Solving for the first values of k we can take fk = 0 for all k odd and for k even we find f2 = c2,
where c2 is an arbitrary integration constant that we can take c2 = 1, then we have

f4 =
1
6
(−12Lz − 6Kz2 − 4Pz3 + 3z4) + c4,

f6 =
1

630
(P6(z)− 60Pz7) + c6.

In order to have a polynomial in the original variables (x, y) we must to take P = 0. Then f8

is a polynomial of degree 9 of the form

f8 =
1

83160
(

P8(z)− 3696(B + 3L)z9)+ c8.

In this case we have to take B + 3L = 0. Taking B = −3L then f10 is a polynomial of degree
15 given by

f10 =
1

83160
(

P10(z)− 5896800(A + K)Lz11)+ c10.

If (A+K)L = 0 we have checked that some of the next fk for k even are all of degree at most k.
Now, we assume that fs have degree s for s = 2, 4, . . . , k − 1 and solving the recursive equation
(3.5) we obtain

fk+1(z) =−
∫
(k − 1)(L + Kz − z3) fk−1 + (C − 4Lz + (A − K)z2 + z4) f ′k−1 (3.6)

where it is easy to see that the higher terms cancel, that is, if we introduce fk−1(z) = C0 +C1z+
· · · + Ck−1zk−1 in (3.6) we get a polynomial for fk+1 of degree at most k + 1. Consequently,
we have proven the sufficiency since we have a formal first integral at the origin that in the
original variables (x, y) is also formal for all the center cases. Here the blow-up method gives
straightforward the necessary conditions and the sufficiency for all cases and in a unified
method for all the center cases.

Proposition 3.2. Consider the nilpotent differential system

ẋ = Ax3 + By, ẏ = Cx5 + Dx2y, (3.7)

where the unique monodromic condition is (D − 3A)2 + 12BC < 0. It has a center at the origin if and
only if 3A + D = 0.

Proof. The monodromic and center-focus problem of system (3.7) has been solved in [1]. In-
deed, system (3.7) is a (1, 3)-quasihomogeneous system and consequently, V(x, y) = Cx6 −
3Ax3y + Dx3y − 3By2 is an inverse integrating factor of (3.7). In fact such (p, q)-quasihomo-
geneous systems of degree r has a unique center condition given by∫ Fr(φ)

Gr(φ)
dφ = 0 (3.8)
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where

Gr(φ) = p Qp+r(cos φ, sin φ) cos φ − q Pq+r(cos φ, sin φ) sin φ,

Fr(φ) = Pp+r(cos φ, sin φ) cos φ + Qq+r(cos φ, sin φ) sin φ.

using the weighted polar blow-up (x, y) → (ρ, φ) given by x = rp cos φ, y = rq sin φ. Never-
theless, the computation of condition (3.8) is very demanding and sometimes impossible, see
[23,24]. However applying the blow-up method we compute the center condition in a straight-
forward way. We proceed in a similar way as in the previous example. After transformation
(3.2) system (3.9) becomes

ż = B + Ay2z3 − Dy2z3 − Cy4z6,

ẏ = y3z2(D + Cy2z3).
(3.9)

Since B ̸= 0 by the monodromic condition we have that the origin of system (3.9) is also a
regular point. Therefore system (3.9) has an analytic first integral around its origin. Hence, we
look for a power series of the form (3.4). We compute Ḣ = ż∂H/∂z + ẏ∂H/∂y for system (3.9)
and equating to zero the coefficients of the same power of y yields the following recurrence
differential equation

(k − 4)Cz5 fk−4 + (k − 2)Dz2 fk−2 − Cz6 f ′k−4 + (Az3 − Dz3) f ′k−2 + B f ′k = 0.

We take fk = 0 for k odd and for k even we can take f2(z) = 1 and

f4(z) =
1

3B
(−2Dz3) + c4,

f6(z) =
1

9B2 (−3BC + 3AD + D2)z6 + c6,

f8(z) =
1

27B3 (P8(z)− 2(3A + D)(AD − BC)z9) + c8,

where P8 is a polynomial of at most degree 8. In order to have a polynomial in the original
variables (x, y) we must to take (3A + D)(AD − BC) = 0. So we impose 3A + D = 0 because
the other one is not compatible with the monodromic condition. In this case f10 takes the form

f10(z) =
1

3B2 (24ABc8z3 + 36A2c6z6 − 3BCc6z6 − 4ACc4z9 + 3B2c10).

We can take all c4 = c6 = c8 = c10 = 0 and then f10(z) = 0 and also take fk = 0 for all k ≥ 10.
Next we define

H = f2

( x
y

)
y2 + f4

( x
y

)
y4 + f6

( x
y

)
y6 + f8

( x
y

)
y8

= y2 +
2A
B

x3y − C
3B

x6,

which is a polynomial first integral of system (3.7) and therefore it has a center at the ori-
gin. Here the computation of the necessary condition is straightforward unlike other known
methods and our method also gives directly the sufficiency.

Proposition 3.3. The nilpotent differential system

ẋ = y + x2, ẏ = −x3 + cx4, (3.10)

has not any analytic first integral at the origin and it has a center at the origin if and only if c = 0.
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Proof. First we apply the blow-up transformation (3.2) and system (3.10) becomes

ż = 1 + yz2 + y2z4 − cy3z5, ẏ = y3z3(−1 + cyz), (3.11)

We propose a power series of the form (3.4) and impose that Ḣ = ż∂H/∂z + ẏ∂H/∂y = 0 for
system (3.11) and we get the following recurrence differential equation

(k − 3)cz4 fk−3 − (k − 2)z3 fk−2 − cz5 f ′k−3 + z4 f ′k−2 + z2 f ′k−1 + f ′k = 0

and we can, as in previous case, take f2(z) = 1, and f3(z) = c3,

f4(z) =
1
2

z4 + c4, f5(z) =
1

60
(45c3z4 − 24cz5 − 20z6) + c5.

However, it is not possible to get a polynomial from f5 in the original variables (x, y). There-
fore the analytic first integral at infinity cannot be extended to the origin of system (3.10). This
also implies system (3.10) has not an analytic first integral at the origin. Next we propose a
power series of the form

V(z, y) =
∞

∑
k=1

vk(z)yk. (3.12)

and we impose that this V satisfies the equation

ż∂V/∂z + ẏ∂V/∂y − (∂ż/∂z + ∂ẏ/∂y)V = 0, (3.13)

which is the equation of the inverse integrating factor. As an inverse integrating factor is
not coordinates free (as happens for a first integral) and it is affected by the Jacobian of the
transformation when we come back to the original coordinates. In this case the recurrence
differential equation is

6cz4vk−3 − 7z3vk−2 − 2zvk−1 − cz5v′k−3 + z4v′k−2 + z2v′k−1 + v′k = 0.

Without loss of generality we now take v1 = 1. Then v2 = z2 + c2, and

v3(z) =
1
2
(2c2z2 + z4) + c3,

v4(z) =
1

20
(20c3z2 + 15c2z4 − 8cz5) + c4,

v5(z) = 5
1

420
(420c4z2 + 420c3z4 − 252c c2z5 + 35c2z6 + 12cz7) + c5.

Taking into account that the inverse integrating factor for system (3.10) is obtained multiplying
the power series (3.12) by the Jacobian of the transformation, we have to take c = 0 in a
polynomial v5 to ensure that V is polynomial in the original variables (x, y). Then

v6 =
1

10080
(10080c5z2 + 12600c4z4 + 1680c3z6 + 525c2z8) + c6.

Choosing c2 = c3 = c4 = c5 = c6 = 0 then v6 = 0 and we can choose vk = 0 for all k ≥ 5.
Consequently,

V = v1

( x
y

)
y + v2

( x
y

)
y2 + v3

( x
y

)
y3 + v4

( x
y

)
y4 = y + x2 +

x4

2y
.
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The inverse integrating factor of system (3.10) is obtained multiplying V by the Jacobian of
the transformation

V = yV = y2 + x2y +
x4

2
.

For a general monodromic nilpotent singularity the existence of an inverse integrating factor in
a neighborhood of singularity does not guarantees the existence of a center at this singularity,
but for the nilpotent monodromic singularities with leading term (y,−x3) this is true, see the
result in [6, 20]. System (3.10) with c = 0 was studied in [11], where it was proved that there
exists no analytic first integral. Consequently, here we have used the blow–up method to find
an inverse integrating factor of system (3.10) which gives the condition c = 0 implying that
system (3.10) has a center at the origin if and only if c = 0.

Proposition 3.4. Consider the nilpotent differential system

ẋ = y + ax2 + 5xy2, ẏ = −2x3 + 3xy2 − 4y3, (3.14)

where a ∈ R. The first necessary condition of system (3.14) to have a center is −98+ 47a2 + 20a4 = 0.
Moreover system (3.14) always has a focus at the origin.

Proof. System (3.14) has a monodromic singular point at the origin if and only if |a| < 2, see
[27]. Applying the blow-up transformation (3.2) system (3.14) takes the form

ż = 1 + 9y2z + ayz2 − 3y2z2 + 2y2z4, ẏ = −y3(4 − 3z + 2z3). (3.15)

We propose directly a power series of the form (3.12) and we impose that this V satisfies the
equation (3.13). Recall that the transformation to the original variables (x, y) will be affected
by the Jacobian of the transformation. In this case the recurrence differential equation is(

3(k − 3)z − (4k − 11)− 2(k − 1)z3)vk−2 − 2azvk−1 +
(
9z − 3z2 + 2z4)v′k−2 + az2v′k−1 + v′k = 0

and we can, as above, take v1(z) = 1, and v2(z) = az2 + c2, v3(z) = z + ac2z2 + z4 + c3

v4(z) = 5c2z − 3
2

c2z2 + ac3z2 − 4az3 +
3
4

az4 +
3
2

c2z4 + c4,

v5(z) =
1

60
(P5(z) + 60z6 − 15a2z6 + 10ac2z6) + c5,

v6(z) =
1

1680
(P7(z)− 525az8 + 210a3z8 + 630c2z8 − 140a2c2z8) + c6,

where Pi(z) are determined polynomials of degree i. Taking into account that in the original
variable the inverse integrating factor is V = yV the coefficient in the term with z8 in v6 must
be zero. Then, we have −525a + 210a3 + 630c2 − 140a2c2 = 0 which yields

c2 =
3(2a3 − 5a)
2(2a2 − 9)

,

if 2a2 − 9 ̸= 0. Recall that if 2a2 − 9 = 0 this is not a monodromic case. Next, v7 has the form

v7(z) =
P8(z) + (14112 − 9904a2 − 1376a4 + 640a6)z9

1680(2a2 − 9)
+ c7,
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where P8(z) is a determined polynomial of degree 8. The coefficient of the term with mono-
mial z9 must vanish, so,

16(−9 + 2a2)(−98 + 47a2 + 20a4) = 0.

The unique real roots of this polynomial satisfying the monodromic condition |a| < 2 are
a = ±1.153741. This last numerical value was obtained by Varin in [42] using the Bautin
method after doing a generalized polar blow-up. The method developed in [42, 43] is not
useful to compute the algebraic condition −98 + 47a2 + 20a4 = 0. Moreover, with our method
we can distinguish between a center and a focus. If we compute more terms of the power series
V the powers in z that must be zero have not a common root. Therefore, the origin of system
(3.14) is always a focus. The algebraic necessary center condition −98 + 47a2 + 20a4 = 0 was
also obtained in [27] using a more involved method based in the result that all the nilpotent
centers are limit of non-degenerate centers. The fact that, under monodromy the origin of
(3.14) is always a focus was also derived in Proposition 26 of [21]. Here we also use that
the existence of a formal inverse integrating factor defined around a nilpotent monodromic
singularity with leading term (−y, x3) is a necessary and sufficient condition to have a center
at the singularity, see [6, 20].

4 Degenerate monodromic singularities

In this section we consider different systems with a degenerate singularity, and using the
blow–up method we study the center-focus problem. The examples proposed here show the
narrow relation between the center problem and the existence of a first integral for the singular
points at infinity. The necessary conditions founded by the method do not always correspond
to trivial cases of centers.

Proposition 4.1. Consider the differential system

ẋ = x2y + ax5 + y5, ẏ = −xy2 − x5 + bx4y, (4.1)

where a, b ∈ R. System (4.1) has a center at the origin if and only if 5a + b = 0.

Proof. In [5] it is proved that the origin of system (4.1) is always monodromic. Moreover,
system (4.1) has characteristic directions because the homogeneous polynomial xqn(x, y) −
ypn(x, y), where pn and qn are the lower homogeneous terms of system (4.1), has real roots.
When the singular point has characteristic directions it is not possible to apply the Bautin
method in order to solve the center-focus problem, see [25].

After applying the blow-up transformation (3.2) system (4.1) takes the form

ż = y2 + 2z2 + ay2z5 − by2z5 + y2z6

ẏ = − yz(1 − by2z3 + y2z4).
(4.2)

Now, we look for a power series of the form (3.4) and we compute Ḣ = (∂H/∂z)ż+ (∂H/∂y)ẏ
for system (4.2). We obtain the following recursive differential equation

(k − 2)z4(b − z) fk−2 − kz fk + (1 + az5 − bz5 + z6) f ′k−2 + 2z2 f ′k = 0
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Solving for the first values of k we can take fk = 0 for all k odd and for k even we find f2 = 0,
f4 = z2 + c4 where c4 is an arbitrary integration constant, and

f6 =
1
6
(2 − 3az5 − 3bz5 + 2z6) + c6,

f8 = − 1
80

z3(100a + 20b − 240bc6 − 25a2z5 − 30abz5

− 5b2z5 + 20az6 + 4bz6 − 80zc8 − 240c6z log z),

where c6 and c8 are arbitrary constants. Since f8 must be a polynomial we have to impose
c6 = 0 and since it must be a polynomial in the original variables (x, y) we have to impose
that the terms in z9 vanish, that is, 5a + b = 0. Under this restrictions we have that

f10 = c8z2
(

2
3
+ 4az5 +

2
3

z6
)
+ c10z5.

Then taking c8 = c10 = 0 we get f10 = 0 and we can choose fk = 0 for all k ≥ 10. Consequently

H = f4

( x
y

)
y4 + f6

( x
y

)
y6 + f8

( x
y

)
y8 =

x6

3
+ 2ax5y + x2y2 +

y6

3
,

which is a polynomial first integral of system (4.1). Therefore, when 5a + b = 0 system
(4.1) has a center at the origin. It remains to see that if 5a + b ̸= 0 then system (4.1) has a
focus at the origin. From [5, Theorem 2.3] is derived the geometric criteria for proving that
if 5a + b ̸= 0 then system (4.1) has a focus at the origin, see Proposition 3.19 in [5]. Here
our blow-up method gives straightforward the necessary condition while for applying the
geometric criteria the necessary condition is needed.

Proposition 4.2. Consider the differential system

ẋ = x2y + ax3 + y5, ẏ = −xy2 + bx2y − x3, (4.3)

where a, b ∈ R. System (4.3) has a center at the origin if and only if 3a + b = 0.

Proof. The origin of system (4.3) is monodromic if and only if, (a− b)2− 8 < 0, see [5]. System
(4.3) has also characteristic directions. Applying the blow-up (3.2) system (4.3) takes the form

ż = y2 + 2z2 + az3 − bz3 + z4

ẏ = − yz(1 − bz + z2),
(4.4)

after a scaling of time. Now, we compute Ḣ = (∂H/∂z)ż+(∂H/∂y)ẏ for system (4.4) where H
is a power series of the form (3.4) and we obtain the following recursive differential equation

−5z(1 − bz + z2) fk + f ′k−2 + (2z2 + az3 − bz3 + z4) f ′k = 0.

Doing the computations of the first fk we must to take f2 = f3 = 0 in order to be polynomials
and

f4 = c4e
−

2(3a+b) arctan

(
a−b+2z√
8−(a−b)2

)
√

8−(a−b)2 z2(2 + z(a − b + z)).

where in order to have a polynomial we have to take 3a + b = 0 and without loss of generality
c4 = 1.
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Next we must to take f5 = 0 and f6 = (2+ 3z3(2+ 4az + z2)3/2c6)/3, and taking c6 = 0 we
have f6 = 2/3. Next, f7 = 0 and f8 = c8z4(2 + 4az + z2)2. Then taking c8 = 0 we obtain f8 = 0
and we can choose fk = 0 for all k ≥ 8. Consequently

H = f4

( x
y

)
y4 + f6

( x
y

)
y6 + f8

( x
y

)
y8 = x4 + 4ax3y + 2x2y2 +

2y6

3
,

which is a polynomial first integral of system (4.3). Finally to see that for 3a + b ̸= 0 we have
a focus at the origin, we use also the geometric criteria developed from [5, Theorem 2.3]. In
Proposition 3.16 [5] is that system (4.3) has a focus if 3a + b ̸= 0. As in the example before the
blow-up method gives the necessary condition directly.

Proposition 4.3. Consider the degenerate differential system

ẋ = cx2y + f xy2 + dy3, ẏ = c̃xy2 + f y3 + ax5. (4.5)

If the origin of system (4.5) is monodromic then it is a center if, and only if, f = 0.

Proof. In [38] Medvedeva studied the stability problem of the origin of system(4.5). The first
non zero focal value of system (4.5) was given in [38] through a complicate and involved
method using several blow-up transformations. The monodromy problem for system (4.5)
was solved in [5] where the following result was given.

Lemma 4.4. The origin of system (4.5) is monodromic if and only if one of the following conditions
holds:

a) d a < 0, (c̃ − c)(c̃ − 2c) > 0 and d(c̃ − c) < 0

b) d a < 0, c̃ − c = 0 and cd > 0.

c) d a < 0, c̃ − 2c = 0 and ca > 0.

Applying the blow-up transformation (3.2) to system (4.5), the new differential system
takes the form

ż = d + cz2 − c̃z2 − ay2z6,

ẏ = y (c̃z + ay2z5 + f )
(4.6)

with the change of time dτ = y2dt. From the monodromic condition we know that d ̸= 0.
System (4.6) has a regular point at the origin and consequently, an analytic first integral around
the origin and the recursive differential equation do not generate logarithmic terms. Then the
question is if this analytic first integral at infinity can be extended to the origin of the original
system (4.5). In this case the recursive differential equation is

(k − 2)az5 fk−2 + k(c̃z + f ) fk − az6 f ′k−2 + (d + cz2 − c̃z2) f ′k = 0.

Then if fi = 0 for i = 1, . . . , k − 2 we have that the value of fk is

fk = cke−
k f arctan

(√
c−c̃ z√

d

)
√

c−c̃
√

d (d + (c − c̃)z2)
− k c̃

2(c−c̃) .

In order to have a well defined function in the original variables (x, y) we have to impose
f = 0. Moreover, under the monodromic condition system (4.5) has a center at the origin
since it is invariant with respect to the symmetry (x, y, t) → (−x, y,−t).
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To finish the proof we see that if f ̸= 0 then system (4.5) has a focus at the origin. We
apply the geometrical criteria developed in [5, Theorem 2.3]. Consider the vector field

Xc = (cx2y + dy3)
∂

∂x
+ (c̃xy2 + ax5)

∂

∂y
,

which has a center at the origin. Let X the vector field associated to system (4.5). Then we
compute that

X ∧Xc = f y2(ax6(c̃ − c)x2y2 − dy4)

which is semi-definite under the monodromic conditions of Lemma 4.4 and by Theorem 2.3
of [5] if f ̸= 0 system (4.5) has a focus at the origin.

Finally we consider the differential system

ẋ = y3 + 2ax3y + 2x(αx4 + βxy2),

ẏ = − x5 − 3ax2y2 + 3y(αx4 + βxy2),
(4.7)

where α, β, a ∈ R. In [4] it was proven that system (4.7) with αβ ̸= 0 is not orbitally
reversible nor formally integrable. Moreover there are values of (α, β, a) with a ̸= 0 and with
the monodromic condition |a| < 1/

√
6 such that the origin of system (4.7) is a center. In fact

the center condition is not algebraic in the parameters. In [23] it was also identified the center
condition using the existence of an inverse integrating factor. Therefore the center problem is
not algebraically solvable. As we will see, if we apply the blow-up method proposing a power
series verifying the first integral equation we only find the algebraically solvable centers. So
we will propose a power series satisfying the inverse integrating equation. Applying the
blow-up (3.2) to system (4.7), the new differential system takes the form

ż = 1 + 5ayz3 + y2z6 − y2z5α − yz2β

ẏ = − y2z(3az + yz4 − 3yz3α − 3β),
(4.8)

after the scaling of time dτ = y2dt. Looking for a power series of the form (3.4) and computing
the equation that satisfies a first integral we get only the center condition α = β = 0 (the
reader can follow the steps seeing the previous examples). Therefore the analytic first integral
at infinity cannot always be extended to the origin of system (4.7). Next, we propose a power
series of the form

F (z, y) = yk2
∞

∑
k=0

vk(z)yk, (4.9)

where k2 ∈ Q and we impose that it satisfies the equation of certain inverse integrating factor
ż∂F/∂z+ ẏ∂F/∂y = k1(∂ż/∂z+ ∂ẏ/∂y)F , where k1 ∈ R. The recurrence differential equation
is

(−(k − 2)z5 − 3k1z5 − k2z5 + 3(k − 2)z4α − 4k1z4α + 3k2z4α)vk−2

+ (−3(k − 1)az2 − 9ak1z2 − 3ak2z2 + 3(k − 1)zβ − 4k1zβ + 3k2zβ)vk−1

+ (z6 − z5α)v′k−2 + (5az3 − z2β)v′k−1 + v′k = 0
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and we can take v0(z) = 1, and

v1(z) = 3ak1z3 + ak2z3 + 2k1z2β − 3
2

k2z2β + c1,

v2(z) =
1
6

k2z6 +
1
2

a2(9k2
1 + 6k1(k2 − 2) + (k2 − 4)k2)z6 − 3

5
k2z5α

− 3
2

c1z2β − 3
2

c1k2z2β + 2k2
1z4β2 +

3
8

k2z4β2 +
9
8

k2
2z4β2

+
1

10
az3
(

10 c1(1 + 3k1 + k2)

+ (60k2
1 + 3(7 − 5k2)k2 − k1(28 + 25k2))z2β

)
+

1
10

k1(5z6 + 8z5α + 20c1z2β − 5(1 + 6k2)z4β2) + c2.

We do not write here the value of v3(z) due to its length. Now, choosing the values of k1,
k2, c1, c2 and c3 we impose that v3(z) = 0. One solution is k1 = 12/13 and k2 = 16/13 and
c1 = c2 = c3 = 0 which implies vk = 0 for all k ≥ 3. Consequently,

F = yk2
(

v0

( x
y

)
+ v1

( x
y

)
y + v2

( x
y

)
y2
)
=

2x6 + 12ax3y2 + 3y4

3y36/13 .

The inverse integrating factor for system (3.10) is obtained by multiplying V = F 13
12 by the

Jacobian of the transformation and the change of time made, i.e.

V = y3V = y3F 13
12 =

(
y2 + x2y +

x4

2

) 13
12

.

For a degenerate singular point the existence of an inverse integrating factor defined around
the singular point does not guarantee the existence of a center at the singular point. In fact
for system (4.7) an extra nonalgebraic condition in the parameters is needed, see [4, 23].
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[17] B. Ferčec, J Giné, Y. Liu, V. G. Romanovski, Integrability conditions for Lotka–
Volterra planar complex quartic systems having homogeneous nonlinearities, Acta Appl.
Math. 124(2013), 107–122. https://doi.org/10.1007/s10440-012-9772-5; MR3029242;
Zbl 1280.34034
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