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1 Introduction

The system of difference equations is the subject of numerous publications, and it is impossible
to analyse all of them in detail. In this article we develop constructive methods of analysis of
linear and weakly nonlinear boundary-value problems for difference equations, which occupy
a central place in the qualitative theory of dynamical systems. We consider such problems
that the operator of the linear part of the equation does not have an inverse. Such problems
include the so called critical (or resonance) problems (when the considered problem can have
non unique solution and not for any right-hand sides). We use the well-known technique
of generalised inverse operators [4] and the notion of a strong generalised solution of an
operator equation developed in [20]. In such way, one can prove the existence of solutions
of different types for the system of operator equations in the Hilbert spaces. There exist
three possible types of solutions: classical solutions, strong generalised solutions, and strong
pseudo solutions [32]. For the analysis of a weakly nonlinear system, we develop the well-
known Lyapunov–Schmidt method. This approach gives possibility to investigate a lot of
problems in difference equations and mathematical biology from a single point of view.
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2 Statement of the problem

Consider the following boundary-value problem

x(n + 1, ε) = a(n)x(n, ε) + b(n)y(n, ε) + εZ1(x(n, ε), y(n, ε), n, ε) + f1(n); (2.1)

y(n + 1, ε) = c(n)x(n, ε) + d(n)y(n, ε) + εZ2(x(n, ε), y(n, ε), n, ε) + f2(n); (2.2)

l
(

x(·, ε)

y(·, ε)

)
= α, (2.3)

where operators {a(n), b(n), c(n), d(n) ∈ L(H), n ∈ J ⊂ Z}, L(H) is the space of linear and
bounded operators which acts from H into itself, vector-functions f1(n), f2(n) ∈ l∞(J,H),

l∞(J,H) =
{

f : J → H, ∥ f ∥l∞ = supn∈J ∥ f (n)∥H < ∞
}

,

Z1, Z2 are smooth nonlinearities; a linear and bounded operator l translates solutions of (2.1),
(2.2) into the Hilbert space H1, α is an element of the space H1, α ∈ H1 (instead of l∞(J,H)

we can consider another functional space T (J,L(H))).
We find solutions of the boundary-value problem (2.1)–(2.3) which for ε = 0 turns in one

of solutions of generating boundary-value problem

x0(n + 1) = a(n)x0(n) + b(n)y0(n) + f1(n); (2.4)

y0(n + 1) = c(n)x0(n) + d(n)y0(n) + f2(n); (2.5)

l
(

x0(·)
y0(·)

)
= α. (2.6)

3 Results

3.1 Linear case

Consider the following vector z0(n) = (x0(n), y0(n)), sequence of operator matrices

An =

(
a(n) b(n)
c(n) d(n)

)
,

and sequence of vector–functions f (n) = ( f1(n), f2(n)). Then we can rewrite the generating
boundary-value problem (2.4)–(2.6) in the following form

z0(n + 1) = Anz0(n) + f (n), (3.1)

lz0(·) = α. (3.2)

Define an operator Φ(m, n) = Am+1Am...An+1, m > n, Φ(m, m) = I. The operator U(m) =

Φ(m, 0) is an evolution operator [6]. General solution z0(n) of (3.1) can be represented in the
following form

z0(n) = Φ(n, 0)z0 + g(n), (3.3)

where

g(n) =
n

∑
i=0

Φ(n, i) f (i).
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Remark 3.1. It should be noted that if the sequence of operator matrices An each has bounded
inverse A−1

n ∈ L(H), then general solution of (3.1) can be represented in the following form

z0(n) = U(n)z0 +
n

∑
i=0

U(n)U−1(i) f (i).

Substituting representation (3.3) in the boundary condition (3.2) we obtain the following
operator equation

Qz0 = h, (3.4)

where the operator Q and the element h have the following form

Q = lΦ(·, 0), Q : H → H1, h = α − lg(·).

According to the theory of generalised solutions which was represented in [2] and theory
of Moore–Penrose pseudo invertible operators [4] for the equation (3.4) we have the following
variants:

1) Suppose that R(Q) = R(Q) (R(Q) is the image of the operator Q). In this case we have
that the equation (3.4) is solvable if and only if the following condition is hold [4]:

PYh = 0, H1 = R(Q)⊕ Y. (3.5)

Here PY is an orthoprojector onto subspace Y. Under condition (3.5) the set of solutions of
(3.4) has the following form:

z0 = Q+h + PN(Q)c, ∀c ∈ H,

where Q+ is Moore–Penrose pseudo inverse [4,24,29] to the operator Q, PN(Q) is orthoprojector
onto the kernel of the operator Q.

2) Consider the case when R(Q) ̸= R(Q). In this case there is strong Moore–Penrose
pseudo inverse Q+

[2] to the operator Q (Q : H → H1 is extension of the operator Q onto
extended space H ⊂ H [2]). Condition of generalised solvability has the following form:

PYh = 0, H1 = R(Q)⊕ Y. (3.6)

Condition (3.6) guarantees only that h ∈ R(Q). Under condition (3.6) the set of strong gener-
alised solutions of the equation (3.4) has the following form:

z0 = Q+h + PN(Q)c, ∀c ∈ H. (3.7)

If h ∈ R(Q) then strong generalised solutions are classical.
3) Suppose that R(Q) ̸= R(Q) and h /∈ R(Q). It means that the following condition is hold

PYh ̸= 0. (3.8)

Under condition (3.8) the set of strong generalised quasisolutions [2,4] has the following form:

z0 = Q+h + PN(Q)c, ∀c ∈ H.

Using the notion presented above, we obtain the following theorem.
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Theorem 3.2. Boundary value problem (3.1), (3.2) is solvable.
a1) There are strong generalised solutions of (3.1), (3.2) if and only if

PY

{
α − l

·
∑
i=0

Φ(·, i) f (i)

}
= 0, (3.9)

if the element (α − l ∑·
i=0 Φ(·, i) f (i)) ∈ R(Q) then solutions are classical;

b1) under condition (3.9) the set of generalised solutions of the boundary-value problem (3.1), (3.2)
has the following form

z0(n, c) = G[ f , α](n) + PN(Q)c, ∀c ∈ H,

where the generalised Green operator has the form

G[ f , α](n) = Φ(n, 0)Q+

{
α − l

·
∑
i=0

Φ(·, i) f (i)

}
;

a2) There are strong quasisolutions of (3.1), (3.2) if and only if the following condition is hold

PY

{
α − l

·
∑
i=0

Φ(·, i) f (i)

}
̸= 0; (3.10)

b2) Under condition (3.10) the set of strong quasisolutions of the boundary-value problem (3.1),
(3.2) has the following form

z0(n, c) = G[ f , α](n) + PN(Q)c, ∀c ∈ H.

3.2 Nonlinear case

Consider the nonlinear boundary-value problem (2.1)–(2.3). Using the introduced notations
we can rewrite this problem in the following form

z(n + 1, ε) = Anz(n, ε) + εZ(z(n, ε), n, ε), (3.11)

lz(·, ε) = α. (3.12)

Theorem 3.3 (Necessary condition). Suppose that the boundary value problem (3.11), (3.12) has
solution z(n, ε) which for ε = 0 turns in one of solutions z0(n, c) with element c ∈ H (z(n, 0) =

z0(n, c))). Then c satisfies the following operator equation for generating elements

F(c) = PYl
·

∑
i=0

Φ(·, i)Z(z0(i, c), i, 0) (3.13)

= PYl
·

∑
i=0

Φ(·, i)Z(G[ f , α](i) + PN(Q)c, ·, 0) = 0. (3.14)

Proof. According to Theorem 3.3, the boundary value problem (3.11), (3.12) has solution if and
only if the following condition is true:

PY

{
α − l

·
∑
i=0

Φ(·, i)( f (i) + εZ(z(i, ε), i, ε))

}
= 0. (3.15)

From the condition (3.15) follows condition (3.13).
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Remark 3.4. It should be noted that theorem 3.2 is hold when the nonlinearities Z1, Z2 are
continuous in the neighborhood of generating solution z0(n, c0).

Now, we propose the following change of variables:

z(n, ε) = z0(n, c0) + u(n, ε),

where the element c0 satisfies the operator equation (3.13). Then we can rewrite the boundary
value problem (3.11), (3.12) in the following form

u(n + 1, ε) = Anu(n, ε) + ε{Z(z0(n, c0), n, 0) + Z′
u(z0(n, c0), n, 0)u(n, ε) +R(u(n, ε), n, ε)},

(3.16)
lu(·, ε) = 0. (3.17)

Here Z′
u is the Fréchet derivative,

R(0, 0, 0) = R′
u(0, 0, 0) = 0.

Boundary value problem (3.16), (3.17) has solutions if and only if the following condition is
true:

PYl
·

∑
i=0

Φ(·, i)(Z(z0(i, c0), i, 0) + Z′
u(z0(i, c0), i, 0)u(i, ε) +R(u(i, ε), i, ε)) = 0. (3.18)

Under this condition the set of solutions of boundary value problem (3.16), (3.17) has the
following form

u(n, ε) = PN(Q)c + u(n, ε), (3.19)

where

u(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)u(·, ε) +R(u(·, ε), ·, ε), 0](n). (3.20)

Substituting (3.19) in (3.18) we obtain the following operator equation

B0c = r, (3.21)

where the operator

B0 = −PYl
·

∑
i=0

Φ(·, i)Z′
u(z0(i, c0), i, 0)PN(Q),

r = PYl
·

∑
i=0

Φ(·, i)(Z′
u(z0(i, c0), i, 0)u(i, ε) +R(u(i, ε), i, ε)).

Condition PN(B∗
0 )

PY = 0 guarantees that equation (3.21) is solvable and has at least one gen-

eralized solution in the following form c = B+
0 r. For a small enough ε considered operator

system (3.19)–(3.21) has a contracting operator in the right-hand side and using contraction
mapping principle [2] we have the following assertion.

Theorem 3.5 (Sufficient condition). Suppose that the following condition is true: PN(B∗
0)

PY = 0.
(PN(B∗

0)
is an orthoprojector onto the kernel of adjoint to the operator B0). Then the boundary value

problem (3.11), (3.12) has generalised solutions which can be found with using of iterative processes:

uk+1(n, ε) = PN(Q)ck + uk(n, ε),



6 O. O. Pokutnyi

ck+1 = B+
0 PYl

·
∑
i=0

Φ(·, i)(Z′
u(z0(i, c0), i, 0)uk(i, ε) +R(uk(i, ε), i, ε)),

uk+1(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)uk(·, ε) +R(uk(·, ε), ·, ε), 0](n),

where

R(uk(n, ε), n, ε) = Z(z0(n, c0) + uk(n, ε), n, ε)− Z(z0(n, c0), n, 0)− Z′
u(z0(n, c0), n, 0)uk(n, ε),

u0 = c0 = y0 = 0.

4 Applications

It is well-known that systems like a Lotka–Volterra [34, 35] plays an important role in the
dynamics of population [26, 27] (mathematical biology). There exist many papers which are
dedicated to investigation of such problems in continuous and discrete cases (see for example
the recent works [1,5, 7, 9–19,21–23, 25, 28,30, 31,33]). As a rule such problems are regular. We
consider some examples of systems with different type of boundary conditions in the critical
case. We show that the operator which generates considering problem can be Fredholm. We
find bifurcation conditions of solutions with using of the equation for generating constants
[3]. It should be noted that the proposed method also works in the case of boundary-value
problems with fractional derivative [8].

4.1 Examples

4.1.1 Example 1

Consider the following periodic boundary-value problem in the finite dimensional case:

xi(n + 1, ε) = ai(n)xi(n, ε) + bi(n)yi(n, ε)

+ εg1
i (n)xi(n, ε)

(
1 −

t

∑
j=1

aij(n)yj(n, ε)

)
+ f i

1(n), (4.1)

yi(n + 1, ε) = ci(n)xi(n, ε) + di(n)yi(n, ε)

+ εg2
i (n)yi(n, ε)

(
1 −

t

∑
j=1

bij(n)xj(n, ε)

)
+ f i

2(n), (4.2)

xi(0, ε) = xi(m, ε), (4.3)

yi(0, ε) = yi(m, ε), i = 1, p. (4.4)

Here xi(n, ε), yi(n, ε), ai(n), bi(n), ci(n), di(n), g1
i (n), g2

i (n), aij(n), bij(n) ∈ R, i = 1, p, j = 1, t.
For ε = 0 we obtain the following generating boundary-value problem

x0
i (n + 1) = ai(n)x0

i (n) + bi(n)y0
i (n) + f i

1(n), (4.5)

y0
i (n + 1) = ci(n)x0

i (n) + di(n)y0
i (n) + f i

2(n), (4.6)

x0
i (0) = x0

i (m), (4.7)

y0
i (0) = y0

i (m). (4.8)

l
(

x0(·)
y0(·)

)
=

(
x0

i (m)− x0
i (0)

y0
i (m)− y0

i (0)

)
i=1,p

=

(
0
0

)
.

For the vector z0
i (n) = (x0

i (n), y0
i (n)) we can write the following assertion.
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Corollary 4.1. The boundary value problem (4.5)–(4.8) has periodic solutions if and only if

PYd

m

∑
k=0

Φ(m, k) f (k) = 0, (4.9)

where Q = Φ(m, 0)− I , d is a number of linearly independent columns of Q; under condition (4.9)
the set of solutions has the form

z0
i (n, cr) = (G[ f , 0])(n) + PQr cr, cr ∈ Rr, (4.10)

where the generalised Green’s operator (G[ f , 0])(n) has the following form

(G[ f , 0])(n) = −Φ(n, 0)Q+
m

∑
k=0

Φ(m, k) f (k),

r is a number of linearly independent rows of Q (PQr is an orthoprojector onto the kernel of matrix Q).

Remark 4.2. It should be noted that in the considered above case index of an operator S can
be calculated in the following way

indS = r − d,

where the operator S with boundary conditions has the following form

S
(

x0
i (n)

y0
i (n)

)
:=
(

x0
i (n + 1)− ai(n)x0

i (n)− bi(n)y0
i (n)

y0
i (n + 1)− ci(n)x0

i (n)− di(n)y0
i (n)

)
.

It means that the operator S is Fredholm [4].

For the nonlinear boundary value problem (4.1)–(4.4) we obtain the following assertions.

Corollary 4.3 (Necessary condition). If the boundary value problem (4.1)–(4.4) has solution, then
the element cr = c0

r satisfies the following equation for generating constants:

F(cr) = PYd

m

∑
i=0

Φ(m, i)Z(z0(i, cr), i, 0) = 0,

where

Z(z0(n, cr), n, 0) =

(
g1

i (n)x0
i (n, cr)(1 − ∑t

j=1 aij(n)y0
j (n, cr))

g2
i (n)y

0
i (n, cr)(1 − ∑t

j=1 bij(n)x0
j (n, cr))

)
.

Corollary 4.4 (Sufficient condition). Suppose that the following condition is true:

PN(B∗
0 )

PQ∗
d
= 0.

Then the boundary value problem (4.1)–(4.4) has generalized solutions which can be found using of
iterative processes:

uk+1(n, ε) = PN(Q)r ck + uk(n, ε),

ck+1 = B+
0 PN(Q∗)

m

∑
i=0

Φ(m, i)(Z′
u(z0(i, c0), i, 0)uk(i, ε) +R(uk(i, ε), i, ε)),

uk+1(n, ε) = εG[Z(z0(·, c0), ·, 0) + Z′
u(z0(·, c0), ·, 0)uk(·, ε) +R(uk(·, ε), ·, ε), 0](n),



8 O. O. Pokutnyi

where

R(uk(n, ε), n, ε) = Z(z0(n, c0) + uk(n, ε), n, ε)− Z(z0(n, c0), n, 0)− Z′
u(z0(n, c0), n, 0)uk(n, ε),

u0 = c0 = y0 = 0,

Z′
u(z0(n, c0), n, 0)uk(n, ε)

=

(
g1

i (n)x0
i (n, c0

r )(1 − ∑t
j=1 aij(n)u2

jk(n)) + g1
i (n)u

1
ik(n)(1 − ∑t

j=1 aij(n)y0
j (n, c0

r ))

g2
i (n)y

0
i (n, c0

r )(1 − ∑t
j=1 bij(n)u1

jk(n)) + g2
i (n)u

2
ik(n)(1 − ∑t

j=1 bij(n)x0
j (n, c0

r ))

)
.

4.1.2 Example 2

Suppose that ai(n) = bi(n) = ci(n) = g1
i (n) = g2

i (n) = aij(n) = bij(n) = 1, di(n) = 0. In this
case

An = A =

(
1 1
1 0

)
, n ∈ N.

Then for the linear boundary value problem (4.5)–(4.8) we obtain that the evolution operator
Φ(m, n) has the following form

Φ(m, n) = Am−n+1 =

(
Fm−n+2 Fm−n+1

Fm−n+1 Fm−n

)
.

Here F0 = 1, F1 = 1, Fn+2 = Fn + Fn+1, n ≥ 0 are Fibonacci numbers. In this case the matrix
Q is nondegenerate (Q+ = Q−1, PN(Q) = I, PY = I, I is an identity matrix) and we obtain the
following corollary.

Corollary 4.5. The boundary value problem (4.1)–(4.4) has periodic solution if and only if
m

∑
k=0

Am−k+1 f (k) =
m

∑
k=0

(
Fm−k+2 Fm−k+1
Fm−k+1 Fm−k

)(
f i
1(k)

f i
2(k)

)
= 0; (4.11)

under condition (4.11) the solution of the boundary value problem (4.1)–(4.4) has the form

z0
i (n) = (G[ f , 0])(n) = −An+1Q−1

m

∑
k=0

Am−k+1 f (k)

= − 1
∆(m)

m

∑
k=0

(
a11(n, m, k) f i

1(k) + a12(n, m, k) f i
2(k)

a21(n, m, k) f i
1(k) + a22(n, m, k) f i

2(k)

)
,

where

∆(m) = (Fm+2 − 1)(Fm − 1)− F2
m+1;

a11(n, m, k) = Fn+2(FmFm−k+2 − Fm+1Fm−k+1)− (Fn+2Fm−k+2 + Fn+1Fm−k+1)

+ Fn+1(Fm+2Fm−k+1 − Fm+1Fm−k+2);

a12(n, m, k) = Fn+2(FmFm−k+1 − Fm+1Fm−k)− (Fn+2Fm−k+1 + Fn+1Fm−k)

+ Fn+1(Fm+2Fm−k − Fm+1Fm−k+1);

a21(n, m, k) = Fn+1(FmFm−k+2 − Fm+1Fm−k+1)− (Fn+1Fm−k+2 + Fn+1Fm−k+1)

+ Fn(Fm+2Fm−k+1 − Fm+1Fm−k+2);

a22(n, m, k) = Fn+1(FmFm−k+1 − Fm+1Fm−k)− (Fn+2Fm−k+1 + Fn+1Fm−k)

+ Fn+1(Fm+2Fm−k − Fm+1Fm−k+1).
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In this case the necessary condition of solvability for the nonlinear boundary-value prob-
lem (4.1)–(4.4) has the form(

∑m
i=0 Fm−i+2x0

i (n)(1 − ∑n
j=1 y0

j (n)) + Fm−i+1y0
i (n)(1 − ∑n

j=1 x0
j (n))

∑m
i=0 Fm−i+1x0

i (n)(1 − ∑n
j=1 y0

j (n)) + Fm−iy0
i (n)(1 − ∑n

j=1 x0
j (n))

)
= 0.

Fréchet derivate Z′
u has the following form

Z′
u(z0(n), n, 0)uk(n, ε) =

(
x0

i (n)(1 − ∑n
j=1 u2

jk(n, ε)) + u1
ik(n, ε)(1 − ∑n

j=1 y0
j (n))

y0
i (n)(1 − ∑n

j=1 u1
jk(n, ε)) + u2

ik(n, ε)(1 − ∑n
j=1 x0

j (n))

)
.

4.1.3 Example 3

Consider the following boundary value problem

xi(n + 1, ε) = ai(n)xi(n, ε) + bi(n)yi(n, ε)

+ εg1
i (n)xi(n, ε)

(
1 −

n

∑
j=1

aij(n)yj(n, ε)

)
+ f i

1(n), (4.12)

yi(n + 1, ε) = ci(n)xi(n, ε) + di(n)yi(n, ε)

+ εg2
i (n)yi(n, ε)

(
1 −

n

∑
j=1

bij(n)xj(n, ε)

)
+ f i

2(n), (4.13)

with the following boundary conditions

l
(

xi(·, ε)

yi(·, ε)

)
=

(
∑

p1
k=0 xi(nk, ε)

∑
p2
l=0 yi(nl , ε)

)
i=1,p

=

(
α1

α2

)
. (4.14)

Here nk, k = 0, p1, nl , l = 0, p2 are finite sequences of integer numbers. In this case we obtain
the multi-point boundary-value problem.

4.1.4 Example 4

Suppose that xi(n), yi(n) ≥ 0 and boundary condition has the following form

l
(

xi(·, ε)

yi(·, ε)

)
=

(
∑

p
i=0 xi(0, ε)

∑
p
i=0 yi(0, ε)

)
=

(
1
1

)
. (4.15)

Such condition has practical meaning. It means the population distribution at the initial time
(the proportion of the population in species).

5 Conclusion

Proposed in the given article approach gives possibility to investigate a lot of biological prob-
lems.

Acknowledgements

The work was supported by the National Research Foundation of Ukraine (Project number
2020.20/0089).



10 O. O. Pokutnyi

References

[1] M. Bendahmane, R. Ruiz-Baier, T. Canrong, Turing pattern dynamics and adaptive
discretization for a superdiffusive Lotka–Volterra model, J. Math. Biol. 72(2016), No. 6,
1441–1465. https://doi.org/10.1007/s00285-015-0917-9; MR3483181; Zbl 1338.35041

[2] A. A. Boichuk, O. O. Pokutnyi, Perturbation theory of operator equations in the Fréchet
and Hilbert spaces, Ukrainian Math. J. 67(2016), 1327–1335. https://doi.org/10.1007/
s11253-016-1156-y; MR3473723; Zbl 1498.47111.

[3] O. Boichuk, O. Pokutnyi, V. Feruk, D. Bihun, Minimizing of the quadratic functional
on Hopfield networks, Electron. J. Qual. Theory Differ. Equ. 2021, No. 92, 1–21. https:
//doi.org/10.14232/ejqtde.2021.1.92, MR4389361; Zbl 1499.34131

[4] A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-
value problems, Berlin, De Gruyter, 2nd edition, 2016. MR3585692; Zbl 1083.47003

[5] D. S. Boukal, V. Krivan, Lyapunov functions for Lotka–Volterra predator–prey models
with optimal foraging behavior, J. Math. Biol. 39(1999), 493–517. https://doi.org/10.
1007/s002850050009; MR1731773; Zbl 0976.92021

[6] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissipative systems, AKTA,
Kharkiv, 1999. MR1788405; Zbl 1100.37047

[7] P. Cattiaux, S. Meleard, Competitive or weak cooperative stochastic Lotka–Volterra
systems conditioned on non extinction, J. Math. Biol. 60(2010), 797–829. https://doi.
org/10.1007/s00285-009-0285-4; MR2606515; Zbl 1202.92082

[8] J. Diblík, Bounded solutions to systems of fractional discrete equations, Adv. Nonlinear
Anal. 11(2022), 1614–1630, https://doi.org/10.1515/anona-2022-0260; MR4454154

[9] R. K. Dodd, Periodic orbits arising from Hopf bifurcations in a Volterra prey–predator
model, J. Math. Biol. 35(1997), 432–452. https://doi.org/10.1007/s002850050060;
MR1478592; Zbl 0866.92017

[10] V. M. Dubovik, A. G. Galperin, V. S. Richvitsky, S. K. Slepnyov, The conditions of
existence of first integrals and Hamiltonian structures of Lotka–Volterra systems, Phys.
Atomic Nuclei 63(2000), No. 4, 629–634. https://doi.org/10.1134/1.855678; MR1761370

[11] J. Fontbona, S. Meleard, Non local Lotka–Volterra system with cross-diffusion in
an heterogeneous medium, J. Math. Biol. 70(2013), 829–854. https://doi.org/10.1007/
s00285-014-0781-z; MR3306618; Zbl 1345.92117

[12] A. Hening, D. H. Nguyen, Stochastic Lotka–Volterra food chains, J. Math. Biol. 77(2018),
135–163. https://doi.org/10.1007/s00285-017-1192-8; MR3800804; Zbl 1392.92075

[13] J. Hofbauer, Evolutionary dynamics for bimatrix games: a Hamiltonian system?,
J. Math. Biol. 34(1996), 675–688. https://doi.org/10.1007/BF02409754; MR1393843;
Zbl 0845.92016

[14] J. Hofbauer, R. Kon, Y. Saito, Qualitative permanence of Lotka–Volterra equa-
tions, J. Math. Biol. 57(2008), 863–881. https://doi.org/10.1007/s00285-008-0192-0;
MR2439676; Zbl 1161.92343

https://doi.org/10.1007/s00285-015-0917-9
https://www.ams.org/mathscinet-getitem?mr=3483181
https://zbmath.org/?q=an:1338.35041
https://doi.org/10.1007/s11253-016-1156-y
https://doi.org/10.1007/s11253-016-1156-y
https://www.ams.org/mathscinet-getitem?mr=3473723
https://zbmath.org/?q=an:1498.47111
https://doi.org/10.14232/ejqtde.2021.1.92
https://doi.org/10.14232/ejqtde.2021.1.92
https://www.ams.org/mathscinet-getitem?mr=4389361
https://zbmath.org/?q=an:1499.34131
https://www.ams.org/mathscinet-getitem?mr=3585692
https://zbmath.org/?q=an:1083.47003
https://doi.org/10.1007/s002850050009
https://doi.org/10.1007/s002850050009
https://www.ams.org/mathscinet-getitem?mr=1731773
https://zbmath.org/?q=an:0976.92021
https://www.ams.org/mathscinet-getitem?mr=1788405
https://zbmath.org/?q=an:1100.37047
https://doi.org/10.1007/s00285-009-0285-4
https://doi.org/10.1007/s00285-009-0285-4
https://www.ams.org/mathscinet-getitem?mr=2606515
https://zbmath.org/?q=an:1202.92082
https://doi.org/10.1515/anona-2022-0260
https://www.ams.org/mathscinet-getitem?mr=4454154
https://doi.org/10.1007/s002850050060
https://www.ams.org/mathscinet-getitem?mr=1478592
https://zbmath.org/?q=an:0866.92017
https://doi.org/10.1134/1.855678
https://www.ams.org/mathscinet-getitem?mr=1761370
https://doi.org/10.1007/s00285-014-0781-z
https://doi.org/10.1007/s00285-014-0781-z
https://www.ams.org/mathscinet-getitem?mr=3306618
https://zbmath.org/?q=an:1345.92117
https://doi.org/10.1007/s00285-017-1192-8
https://www.ams.org/mathscinet-getitem?mr=3800804
https://zbmath.org/?q=an:1392.92075
https://doi.org/10.1007/BF02409754
https://www.ams.org/mathscinet-getitem?mr=1393843
https://zbmath.org/?q=an:0845.92016
https://doi.org/10.1007/s00285-008-0192-0
https://www.ams.org/mathscinet-getitem?mr=2439676
https://zbmath.org/?q=an:1161.92343


Complex dynamics of the system of nonlinear difference equations in the Hilbert space 11

[15] S.-B. Hsu, X.-Q. Zhao, A Lotka–Volterra competition model with seasonal succes-
sion, J. Math. Biol. 64(2012), 109–130. https://doi.org/10.1007/s00285-011-0408-6;
MR2864839; Zbl 1284.34054

[16] A. Kanae, I. Masashi, On m-step Fibonacci sequence in discrete Lotka–Volterra system,
J. Appl. Math. Comput. 38(2012), 429–442. https://doi.org/10.1007/s12190-011-0488-x;
MR2892318; Zbl 1346.11012

[17] R. Z. Khaminskii, F. C. Klebaner, R. Liptser, Some results on the Lotka–Volterra model
and its small random perturbations, Acta Appl. Math. 78(2003), 201–206. https://doi.
org/10.1023/A:1025737516835; MR2024025; Zbl 1044.34015

[18] Y.-H. Kim, S. Choo, A new approach to global stability of discrete Lotka–Volterra
predator-prey models, Discrete Dyn. Nat. Soc. 2015, Art. ID 674027, 11 pp. https:
//doi.org/10.1155/2015/674027; MR3356659; Zbl 1418.92103

[19] A. A. King, W. M. Schaffer, The rainbow bridge: Hamiltonian limits and resonance
in predator–prey dynamics, J. Math. Biol. 39(1999), 439–469. https://doi.org/10.1007/
s002850050174; MR1727242; Zbl 0986.92037

[20] D. A. Klyushin, S. I. Lyashko, D. A. Nomirovskii, V. V. Semenov, Yu. I. Petunin,
Generalized solutions of operator equations and extreme elements, Berlin, Springer, 2012.
https://doi.org/10.1007/978-1-4614-0619-8; MR2856305; Zbl 1240.47002

[21] X. Kong, H. Wu, F. Mei, Variational discretization for the planar Lotka–Volterra equations
in the Birkhoffian sense, Nonlinear Dyn. 84(2016), 733–742. https://doi.org/10.1007/
s11071-015-2522-2; Zbl 1354.65142

[22] W.-T. Li, Z.-C. Wang, Traveling fronts in diffusive and cooperative Lotka–Volterra sys-
tem with nonlocal delays, Z. Angew. Math. Phys. 58(2007), 571–591. https://doi.org/10.
1007/s00033-006-5125-4; MR2341686; Zbl 1130.35079

[23] R. Looijen, Holism and reduction in biology and ecology, Springer Science+Business Media,
Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9560-5

[24] E. H. Moore, On the reciprocal of the general algebraic matrix (abstract), Bull. Amer.
Math. Soc. 26(1920), 394–395.

[25] F. Mukhamedov, M. Saburov, On discrete Lotka–Volterra type models, Int. J. Mod. Phys.
Conference Series 9(2012), 341–346, https://doi.org/10.1142/S2010194512005405;

[26] J. D. Murray, Mathematical biology. I. An introduction, New York, Springer, 2002. https:
//doi.org/10.1007/b98868; MR1908418; Zbl 1006.92001

[27] J. D. Murray, Mathematical biology. II. Spatial models and biomedical applications, New York,
Springer, 2003. https://doi.org/10.1007/b98869 MR1952568; Zbl 1006.92002

[28] Y. Nakamura, T. Hashimoto, On the discretization of the three-dimensional Volterra
system, Phys. Lett. A 193(1994), 42–46. https://doi.org/10.1016/0375-9601(94)
00575-5; MR1296242; Zbl 0961.65500

[29] R. A. Penrose, Generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51(1955), 406–
413. https://doi.org/10.1017/S0305004100030401; MR0069793; Zbl 0065.24603

https://doi.org/10.1007/s00285-011-0408-6
https://www.ams.org/mathscinet-getitem?mr=2864839
https://zbmath.org/?q=an:1284.34054
https://doi.org/10.1007/s12190-011-0488-x
https://www.ams.org/mathscinet-getitem?mr=2892318
https://zbmath.org/?q=an:1346.11012
https://doi.org/10.1023/A:1025737516835
https://doi.org/10.1023/A:1025737516835
https://www.ams.org/mathscinet-getitem?mr=2024025
https://zbmath.org/?q=an:1044.34015
https://doi.org/10.1155/2015/674027
https://doi.org/10.1155/2015/674027
https://www.ams.org/mathscinet-getitem?mr=3356659
https://zbmath.org/?q=an:1418.92103
https://doi.org/10.1007/s002850050174
https://doi.org/10.1007/s002850050174
https://www.ams.org/mathscinet-getitem?mr=1727242
https://zbmath.org/?q=an:0986.92037
https://doi.org/10.1007/978-1-4614-0619-8
https://www.ams.org/mathscinet-getitem?mr=2856305
https://zbmath.org/?q=an:1240.47002
https://doi.org/10.1007/s11071-015-2522-2
https://doi.org/10.1007/s11071-015-2522-2
https://zbmath.org/?q=an:1354.65142
https://doi.org/10.1007/s00033-006-5125-4
https://doi.org/10.1007/s00033-006-5125-4
https://www.ams.org/mathscinet-getitem?mr=2341686
https://zbmath.org/?q=an:1130.35079
https://doi.org/10.1007/978-94-015-9560-5
https://doi.org/10.1142/S2010194512005405
https://doi.org/10.1007/b98868
https://doi.org/10.1007/b98868
https://www.ams.org/mathscinet-getitem?mr=1908418
https://zbmath.org/?q=an:1006.92001
https://doi.org/10.1007/b98869
https://www.ams.org/mathscinet-getitem?mr=1952568
https://zbmath.org/?q=an:1006.92002
https://doi.org/10.1016/0375-9601(94)00575-5
https://doi.org/10.1016/0375-9601(94)00575-5
https://www.ams.org/mathscinet-getitem?mr=1296242
https://zbmath.org/?q=an:0961.65500
https://doi.org/10.1017/S0305004100030401
https://www.ams.org/mathscinet-getitem?mr=0069793
https://zbmath.org/?q=an:0065.24603


12 O. O. Pokutnyi

[30] L.-I. W. Roeger, G. Lahodny Jr., Dynamically consistent discrete Lotka–Volterra com-
petition systems, J. Difference Equ. Appl. 19(2013), 191–200. https://doi.org/10.1080/
10236198.2011.621894; MR3021781; Zbl 1264.39006

[31] C. Tan, J. Cao., Periodicity and permanence of a discrete impulsive Lotka–Volterra
predator–prey model concerning integrated pest management, Discrete Dyn. Nat. Soc.
2013, Art. ID 767526, 10 pp. https://doi.org/10.1155/2013/767526; MR3145434;
Zbl 1417.92150

[32] A. N. Tikhonov, V. Y. Arsenin, Methods for solving ill-posed problems (in Russian), Moscow,
Nauka, 1979.

[33] S. Tsujimoto, Y. Nakamura, M. Iwasaki, The discrete Lotka–Volterra system com-
putes singular values, Inverse Problems 17(2001), No. 1, 53–58. https://doi.org/10.1088/
0266-5611/17/1/305; MR1818491; Zbl 0974.35110

[34] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Na-
ture 118(1926), 558–560. https://doi.org/10.1038/118558a0

[35] V. Volterra, Mathematical theory of the struggle for existence (in Russian), Translated from
the French by O. N. Bondarenko. Edited, and with an epilogue “Vito Volterra and modern
mathematical ecology” by Ju. M. Svirežev, Izdat. “Nauka”, Moscow, 1976.

https://doi.org/10.1080/10236198.2011.621894
https://doi.org/10.1080/10236198.2011.621894
https://www.ams.org/mathscinet-getitem?mr=3021781
https://zbmath.org/?q=an:1264.39006
https://doi.org/10.1155/2013/767526
https://www.ams.org/mathscinet-getitem?mr=3145434
https://zbmath.org/?q=an:1417.92150
https://doi.org/10.1088/0266-5611/17/1/305
https://doi.org/10.1088/0266-5611/17/1/305
https://www.ams.org/mathscinet-getitem?mr=1818491
https://zbmath.org/?q=an:0974.35110
https://doi.org/10.1038/118558a0

	Introduction
	Statement of the problem
	Results
	Linear case
	Nonlinear case

	Applications
	Examples
	Example 1
	Example 2
	Example 3
	Example 4


	Conclusion

