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Abstract. In this paper, we present a class of autonomous nonlinear oscillators with
non-autonomous first integral. We prove explicitly the existence of a global sink which
is, under some conditions, an algebraic limit cycle. For that class, we draw the possible
phase portraits in the Poincaré disk.
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1 Introduction and the main result

In this paper, we consider the class of second-order nonlinear ordinary differential equations
of the form

xtt + f3(x)x3
t + f2(x)x2

t + f1(x)xt + f0(x) = 0, (1.1)

where fi ̸= 0, i = 0, 1, 2, 3 are smooth real functions of the variable x = x(t). In the (x, ẋ)
phase plane, equation (1.1) is equivalent to{

ẋ = y,

ẏ = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x),
(1.2)

where the dot is the derivative with respect to the independent variable t. This kind of os-
cillator arises in modeling physical, chemical or electronic processes [3, 13]. The qualitative
behavior of the solutions of such oscillators is very important and complicated. Various meth-
ods have been proposed in the literature to examine the global dynamics of these solutions.
Analytical methods, such as the integrability method, attempt to transform the differential
system (1.2) into a known differential equation (linear, Bernoulli, Riccati, Abel). This method
is used to obtain the solutions explicitly. However, this method may not be sufficient to charac-
terize all the features of the system, especially when the solutions are not analytically known.
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On the other hand, some mathematicians have introduced new tools allowing to obtain the
maximum qualitative information about the dynamics of planar differential systems in gen-
eral. The tool relies on geometric characteristics is called the classification of phase portraits
in the Poincaré disk.

A significant number of papers regarding limit cycles, first integrals and invariants curves
[9, 16, 18, 20, 22, 24, 31] has been published, where the main goal was studying the qualitative
behavior of these solutions.

Starting with [7], Chandrasekar et al. investigated the integrability of a class of oscillators,
described by the generalized second-order nonlinear ordinary differential equation

ẍ + (k1xq + k2)ẋ + k3x2q+1 + k4xq+1 + λ1x = 0, (1.3)

where the parameters λ1, q and ki, i = 1, 2, 3, 4 are real. Using the extended Prelle–Singer
method, the authors were able to determine the first integrals and general solutions for the
integrable cases.

In [27], Sinelshchikov proved that two subfamilies of the following family of oscillators

yzz + k(y)y3
z + h(y)y2

z + f (y)yz + g(y) = 0, (1.4)

with k, h, f and g ̸= 0 are arbitrary sufficiently smooth functions, are integrable and each
subfamily possesses an autonomous parametric first integral and two autonomous invariant
curves.

In [28], the same author, along with Guha and Choudhury, studied a family of non-
autonomous second-order differential equations of the type

yzz + a3(z, y)y3
z + a2(z, y)y2

z + a1(z, y)yz + a0(z, y) = 0, (1.5)

where ai, i = 0, 1, 2, 3 are smooth functions such that a3 ̸= 0 and |a2|2 + |a1|2 + |a0|2 ̸= 0. The
authors showed that equations from (1.5) with a Lax representation admit a quadratic rational
first integral.

As a continuation of [7], Jibin and Han [17] showed that the oscillator considered in [7]
has a unique and stable limit cycle and they gave its exact parametric representation. In fact,
this limit cycle was obtained explicitly a long time before (see [1, 4] and references therein).

Naturally, the following question arises: is there an integrable polynomial planar oscillator
of the form (1.1) with an explicit algebraic limit cycle? To the best of our knowledge, we have
not encountered such an example in the literature. In this paper, we provide the answer
to this question. Moreover, since autonomous rational first integrals and limit cycles are
incompatible, in the sense that a planar vector field may have at most one of them. We
think that it is interesting to provide an example in which algebraic limit cycles and non-
autonomous first integrals can coexist. We consider the class of autonomous oscillators of the
form (1.2), where

f3(x) = − w
2h

,

f2(x) = −3w2(x3 − hx)
4h2 ,

f1(x) = −3
8

(w
h

)3
x6 +

3
4

w3

h2 x4 − 1
8

w
h
(3w2 + 20)x2 + w,

f0(x) = − x
16h4 h1(x)h2(x),



A class of oscillators with non-autonomous first integrals and algebraic limit cycles 3

with

h1(x) = w2x4 − hw2x2 + 4h2,

h2(x) = w2x4 − 2hw2x2 + h2w2 + 4h2,

are smooth real functions of the variable x ∈ R, while h ∈ R∗ and w ∈ R are parameters.
Our main result is the following.

Theorem 1.1. Let X be the vector field given by (1.2) and let Γ be the set{
(x, y) ∈ R2 : x2 +

(
y +

w
2h

(x2 − h)x
)2

= h
}

.

Then the following statements hold:

(a) X has a non-autonomous first integral given by

H(x, y, t) =
x2+(y+ w

2h (w
2−h)x)

2−h

x2+(y+ w
2h (w

2−h)x)
2 ewt, ∀(x, y, t) ∈ R3.

(b) If h > 0 and w > 0 (resp. w < 0), then Γ is a global sink (resp. source) of X.

(c) If h > 0 and 0 < w < 4 (resp. −4 < w < 0), then Γ is a hyperbolic stable (resp. unstable)
algebraic limit cycle of X. Moreover, Γ is the unique limit cycle of X and is a global sink (resp.
source) of X.

Moreover, the phase portraits of X in the Poincaré disk are topologically equivalent to those given in
Figure 1.1.

h > 0
|w| > 4.

h > 0
|w| = 4.

h > 0
0 < |w| < 4.

h < 0
w ̸= 0.

h ̸= 0
w = 0.

Figure 1.1: The topological distinct phase portraits of X.

The paper is organized as follows. In Section 2, we introduce some preliminary results.
Theorem 1.1 is proved in Section 3.

2 Preliminary results

2.1 First integrals and invariant algebraic curves

Let X = (P, Q) be a polynomial vector field. We say that X is integrable if and only if there
exists a non-constant C1 function H : R2 → R such that

P(x, y)
∂H
∂x

(x, y) + Q(x, y)
∂H
∂y

(x, y) = 0, (2.1)
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for all (x, y) ∈ R2. Therefore the function H is constant along the trajectories (x(t), y(t)) of X,
i.e., if I ⊂ R is an interval, then there exists c ∈ R : H(x(t), y(t)) = c, for all t ∈ I. In such
a case the function H is called first integral and the trajectories of X are contained in the level
sets of H. If the first integral depends on the time t, i.e., H = H(x, y, t), thus we say that H is
a non-autonomous first integral of X if

P(x, y)
∂H
∂x

(x, y, t) + Q(x, y)
∂H
∂y

(x, y, t) +
∂H
∂t

(x, y, t) = 0, (2.2)

for all (x, y, t) ∈ R2 × I. Let F : R2 → R be a real polynomial. We say that F is an invariant for
X if it satisfies

P(x, y)
∂F
∂x

(x, y) + Q(x, y)
∂F
∂y

(x, y) = K(x, y)F(x, y), (2.3)

for all (x, y) ∈ R2. Here, K : R2 → R, which is the cofactor of F, is a real polynomial and its
degree is at most n − 1, where n represents the maximum of the degrees of P and Q. It can be
observed that the set defined by the equation F(x, y) = 0 is invariant under the flow of X. In
this case, this set may contain ovals, which can be algebraic limit cycles. For more details about
first integrals, invariant algebraic curves and algebraic limit cycles, see [4,6,8,10,21,23,32] and
Chapter 8 of [11] and the references therein.

2.2 Singular points

Let X = (P, Q) be a polynomial vector field. We say q ∈ R2 is a singularity of X if P(q) =

Q(q) = 0. The Jacobian matrix J of the vector field X at q is given by

J(q) =


∂P
∂x

(q)
∂P
∂y

(q)

∂Q
∂x

(q)
∂Q
∂y

(q)

 . (2.4)

Let D(q) = λ1λ2 be the determinant and T(q) = λ1 + λ2 the trace of J(q), where λ1 and λ2

are the eigenvalues of J(q), that are the solutions of the characteristic equation

λ2 − T(q)λ + D(q) = 0.

The singularity q is:

(a) Hyperbolic if both eigenvalues have real parts different from zero. Here, we distinguish:

(i) If D(q) < 0, then q is a saddle.
(ii) If D(q) > 0 and T(q) > 0, then q is an unstable focus/node.

(iii) If D(q) > 0 and T(q) < 0, then q is a stable focus/node.

(b) Degenerate monodromic if D(q) > 0 and T(q) = 0. In this case, q is a weak focus or a
center.

(c) Semi-hyperbolic if D(q) = 0 and T(q) ̸= 0.

(d) Nilpotent if D(q) = T(q) = 0 and J(q) is not identically zero.

(e) Degenerate if D(q) = T(q) = 0 and J(q) is identically zero.

We characterize the local phase portraits at hyperbolic, semi-hyperbolic and nilpotent singular
points using Theorems 2.15, 2.19 and 3.5 of [11], respectively. For the degenerate singularities,
we employ the blow-up technique, see [2] for details.
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2.3 The blow-up technique

Consider X a planar polynomial vector field with an isolated singularity at the origin, then we
can apply the change of coordinates ϕ : S1 × R+ → R2 given by ϕ(θ, r) = (r cos θ, r sin θ) =

(x, y), where R+ = {r ∈ R : r ≥ 0}. Consequently, we can induce the vector field X0 in
S1 × R+ by pullback, i.e., X0 = Dϕ−1X. One can see that if the k-jet of X (i.e., the Taylor
expansion of order k of X, denoted by jk) is zero at the origin, then the k-jet of X0 is also
zero at every point in S1 × {0}. Thus, taking the first k ∈ N satisfying jk(X(0, 0)) = 0 and
jk+1(X(0, 0)) ̸= 0, we can define the vector field X̂ = 1

rk X0. Therefore, it follows that the
behavior of X̂ near S1 is the same as that of X near the origin. One can also see that S1 is
invariant under the flow of X̂. For a more detailed study of this technique, see [2] or Chapter
3 of [11]. The vector field X̂ can be also expressed as

ṙ =
xẋ + yẏ

rk+1 , θ̇ =
xẏ − yẋ

rk+2 .

The blow-up technique has a generalization called the quasihomogeneous blow-up. In this
case, we consider the change of coordinates ψ(θ, r) = (rα cos θ, rβ sin θ) = (x, y) for (α, β) ∈
N2. In a similar way, we can induce the vector field X0 in S1 × R+. For some k ∈ N maximal,
one can define Xα,β = 1

rk X0 and such a vector field is given by

ṙ = ξ(θ)
cos θ rβ ẋ + sin θ rαẏ

rα+β+k−1 , θ̇ = ξ(θ)
α cos θ rαẏ − β sin θ rβ ẋ

rα+β+k ,

where ξ(θ) = (β sin2 θ + α cos2 θ)−1. Since ξ(θ) > 0 for all θ ∈ S1, therefore it can be eliminated
by a change in the time variable. Thus, it follows then

ṙ =
cos θ rβ ẋ + sin θ rαẏ

rα+β+k−1 , θ̇ =
α cos θ rαẏ − β sin θ rβ ẋ

rα+β+k ,

As in the previous technique, the behavior of Xα,β near S1 (which is invariant) is similar to the
behavior of X near the origin.

2.4 The Poincaré compactification

To study the behavior of the trajectories of a planar vector field near infinity, we will employ
the Poincaré compactification (for more details, see [30] or Chapter 5 of [11]).

Let X = (P, Q) be a planar polynomial vector field of degree n ∈ N. We identify R2

with the plane (x1, x2, 1) in R3 and define the Poincaré sphere as S2 = {(y1, y2, y3) ∈ R3 :
y2

1 + y2
2 + y2

3 = 1}. We denote the northern hemisphere, the southern hemisphere and the equator by
H+ = {y ∈ S2 : y3 > 0}, H− = {y ∈ S2 : y3 < 0} and S1 = {y ∈ S2 : y3 = 0}, respectively. The
Poincaré compactified vector field p(X) associated with X is an analytic vector field generated on
S2 by the central projections f± : R2 → H±, given by f±(x1, x2) = ±∆(x1, x2)(x1, x2, 1), where
∆(x1, x2) = (x2

1 + x2
2 + 1)−

1
2 . These two maps define two symmetric copies of X, one copy

X+ in H+ and the other copy X− in H−. In brief, we obtain the vector field X′ = X+ ∪ X−

defined on S2\S1. Note that the equator S1 of the sphere S2 corresponds with the infinity of R2.
The analytic extension of X′ from S2\S1 to S2, given by yn−1

3 X′, is the Poincaré compactified
vector field p(X). The Poincaré disk D is the projection of the closed northern hemisphere
on y3 = 0 under (y1, y2, y3) 7→ (y1, y2) (the vector field given by this projection will also be
denoted by p(X)). The behavior of p(X) near S1 is the same as the behavior of X near infinity
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of R2. We define the local charts of S2 by Ui = {y ∈ S2 : yi > 0}, Vi = {y ∈ S2 : yi < 0}
for i ∈ {1, 2, 3} and their corresponding local maps by ϕi : Ui → R2, ψi : Vi → R2 with
ϕi(y1, y2, y3) = −ψi(y1, y2, y3) =

( ym
yi

, yn
yi

)
, where m ̸= i, n ̸= i and m < n. Denoting by (u, v)

the image of ϕi and ψi, for i = 1, 2, in each chart. The expression of p(X) in the local chart U1

is

u̇ = vn
[

Q
(

1
v

,
u
v

)
− uP

(
1
v

,
u
v

)]
, v̇ = −vn+1P

(
1
v

,
u
v

)
,

and in the local chart U2, it is given by

u̇ = vn
[

P
(

u
v

,
1
v

)
− uQ

(
u
v

,
1
v

)]
, v̇ = −vn+1Q

(
u
v

,
1
v

)
.

The expression of p(X) in V1 and V2 is the same as that for U1 and U2, except by a multiplica-
tive factor of (−1)n−1. In these local charts for i ∈ {1, 2}, the coordinate v = 0 represents the
points of S1. Thus, the singularities at infinity of R2. Note that S1 is invariant under the flow
of p(X).

2.5 The Markus–Neumann theorem

Let X be a polynomial vector field and p(X) be its compactification defined on D. Consider
ϕ the flow associated to p(X). The separatrices of p(X) are orbits, which can be:

1. All the orbits contained in S1, i.e., at infinity;

2. All the singular points;

3. All the trajectories that are located on the boundaries of the hyperbolic sectors of the
finite and infinite singular points;

4. All the limit cycles of X.

The set of all separatrices, denoted by S is closed. Each connected component of D\S is called
a canonical region of the flow (D, ϕ).

The separatrix configuration Sc of the flow (D, ϕ), is the union of all the separatrices S of
the flow, together with one orbit from each canonical region.

Two separatrix configurations Sc and S∗
c of the flow (D, ϕ) are topologically equivalent if

there exists a homeomorphism from D to D that transforms orbits of Sc into those of S∗
c

while preserving or reversing the orientation of all these orbits.

Theorem 2.1 (Markus–Neumann). Let p(X) and p(Y) be two Poincaré compactifications in the
Poincaré disk D of two polynomial vector fields X and Y, with finitely many singularities. Then the
phase portraits of p(X) and p(Y) are topologically equivalent if and only if their separatrix configura-
tions are topologically equivalent.

Proof. See [5, 25, 26] and Section 1.9 of [11].

2.6 The solutions of the quartic algebraic equation of degree four

It is well known that the quartic equation

ax4 + bx3 + cx2 + d = 0, (2.5)
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where a ̸= 0, can be transformed via the change of variable x 7→ x − b
4a into the equation

x4 + px2 + qx + r = 0. (2.6)

The discriminant of equation (2.6) is given by

∆ = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3.

Suppose ∆ > 0. Then the following statements hold (see [19] or Chapter 12 of [12]).

(i) If p < 0 and 4r < p2, then all roots of (2.6) are simple and real.

(ii) If p ⩾ 0 or 4r ⩾ p2, then all roots of (2.6) are simple and complex.

Moreover, we observe that if q = 0, then ∆ = 16(p2 − 4r)2r.

3 Proof of Theorem 1.1

Let us look at statement (a). To see that

H(x, y, t) =
x2 +

(
y + w

2h (w
2 − h)x

)2 − h

x2 +
(
y + w

2h (w
2 − h)x

)2 ewt, (3.1)

is a non-autonomous first integral of X, it is sufficient to observe that the equation

P(x, y)
∂H
∂x

(x, y, t) + Q(x, y)
∂H
∂y

(x, y, t) +
∂H
∂t

(x, y, t) = 0,

is satisfied. We now look at statement (b). Suppose w > 0 and let

H1(x, y) =
x2 +

(
y + w

2h (w
2 − h)x

)2 − h

x2 +
(
y + w

2h (w
2 − h)x

)2 .

We want to prove that

Γ =

{
(x, y) ∈ R2 : x2 +

(
y +

w
2h

(x2 − h)x
)2

= h
}

,

is a global sink of X. It follows from (3.1) that H(x, y, t) = H1(x, y)ewt.
Let (x(t), y(t)) ∈ R2 be an orbit of X. Since w > 0, observe that if t → +∞, then ewt → +∞.

However, it follows from statement (a) that H(x(t), y(t), t) is constant, for every t ∈ R. There-
fore, we have H1(x(t), y(t)) → 0 as t → +∞. The statement now follows from the fact that
Γ coincides with the set

{
(x, y) ∈ R2 : H1(x, y) = 0

}
. For w < 0, the proof follows straight-

forwardly from the fact that X is invariant under the change of variables and parameters
(x, t, w) 7→ (−x,−t,−w).

Let us look at statement (c). First, let

F(x, y) = x2 +
(

y +
w
2h

(x2 − h)x
)2

− h. (3.2)

Notice that if h > 0, then

P(x, y)
∂F
∂x

(x, y) + Q(x, y)
∂F
∂y

(x, y) = K(x, y)F(x, y), (3.3)
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where

K(x, y) = − w
4h3 (w

2x6 − 2hw2x4 + 4hwx3y + h2(w2 + 4)x2 − 4h2wxy + 4h2y2). (3.4)

Therefore, if h > 0, the curve F = 0 is an invariant algebraic curve of X.
We claim that if 0 < |w| < 4, then the origin is the unique finite singularity of X. Indeed,

it follows from (1.2) that the finite singularities of X, other then the origin, are of the form
(xi, 0), i ∈ {1, 2, 3, 4} where xi are the real solutions of h1(x)h2(x) = 0, with

h1(x) = w2x4 − hw2x2 + 4h2, h2(x) = w2x4 − 2hw2x2 + h2w2 + 4h2.

Let ∆i denote the discriminant of hi, i ∈ {1, 2}. It follows from Subsection 2.6 that

∆1 = 64h6w6(w2 − 16)2, ∆2 = 4096h6w6(w2 + 4).

Therefore, we conclude that if w ̸= 0 and h ̸= 0, then h2 always has a positive discrimi-
nant. Hence, all its singularities are either real or complex. Since h2 satisfies statement (ii) of
Subsection 2.6, we conclude that h2 never has real solutions.

Similarly, it can be seen that if h > 0 and 0 < |w| < 4, then h1 also does not have real
solutions. Thus, if h > 0 and 0 < |w| < 4, then the origin is the unique finite singularity of X.
Since it does not lie on the curve F−1(0) = Γ, we conclude that Γ is an algebraic limit cycle.
Moreover, the limit cycle Γ is hyperbolic (for more details, see [14]) if only if

I(Γ) =
∫ T

0
K(γ(t))dt ̸= 0,

where T > 0 is the period of Γ, γ(t) is the parameterization of Γ and the cofactor K is given
by (3.3) and (3.4), hence

• if I(Γ) < 0, Γ is a stable limit cycle;

• if I(Γ) > 0, Γ is an unstable limit cycle.

It follows from (3.4) that K(x, y) < 0 (resp. K(x, y) > 0) if w > 0 (resp. w < 0). Consequently,
Γ is a hyperbolic limit cycle. In particular, it follows from statement (b) that Γ is the unique
limit cycle of X and that it is stable if w > 0 and unstable if w < 0.

We now look to the phase portraits of X. If w = 0 then

ẋ = y, ẏ = −x,

and thus X has a global center. In the sequel, we assume w ̸= 0. Since X is invariant under
the change of variables (x, t, w) 7→ (−x,−t,−w), it is enough to assume w > 0. Similarly to
the previous analysis on the roots of h1 and h2, one can see that:

(a) All the roots of h2 are complex;

(b) If h < 0, then all roots of h1 are complex;

(c) If h > 0 and 0 < w < 4, then all the roots of h1 are complex;

(d) If h > 0 and w = 4, then h1 has two real solutions of multiplicity two, given by x± =

±
√

h
2 ;
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(e) If h > 0 and w > 4, then h1 has four distinct real solutions, given by

x1 = − 1√
2

√√√√h

(
1 +

√
w2 − 16

w2

)
, x2 = − 1√

2

√√√√h

(
1 −

√
w2 − 16

w2

)
,

x3 =
1√
2

√√√√h

(
1 −

√
w2 − 16

w2

)
, x4 =

1√
2

√√√√h

(
1 +

√
w2 − 16

w2

)
.

Let pi = (xi, 0), i ∈ {1, 2, 3, 4} be the singularities associated to xi and let O denote the
origin. Calculations show that the origin is always a hyperbolic unstable focus. Moreover, if
w > 4 then p1 and p4 are hyperbolic stable nodes, while p2 and p3 are hyperbolic saddles.
Furthermore, if w = 0 then p1 = p2 and p3 = p4 are semi-hyperbolic saddle-nodes.

We now look at the infinity. The unique singularity at infinity is the origin of the second
chart of the Poincaré compactification. In this case, after performing two quasihomogeneous
blow-ups, with weights (α1, β1) = (2, 3) and (α2, β2) = (2, 1) respectively, we obtain the local
phase portraits as illustrated in Figure 3.1.

h > 0. h < 0.

Figure 3.1: Local phase portrait at the origin of the second chart of the Poincaré
compactification.

We now study the phase portrait for the case w > 4. In this case, the local phase portrait
is shown in Figure 3.2.

1

2

3

4

5

6

7

8

9

10

p1

p4

Figure 3.2: Uncompleted phase portrait for w > 4.
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Observe that the invariant algebraic curve F(x, y) = 0 is given by the union of the curves

y± =
w
2h

(h − x2)x ±
√

h − x2, (3.5)

for |x| <
√

h. It follows that separatrix 10 goes to the stable node p4, while separatrix 8 goes
to the stable node p1. Since X is invariant under the change of variables (x, y) 7→ (−x,−y),
it follows that separatrix 5 goes to p1 and separatrix 3 goes to p4. Separatrices 7 and 2 are
now enclosed in the bounded region delimited by Γ and thus have no other option than to be
generated at the origin. See Figure 3.3.

1

4

6

9

p1

p4

Figure 3.3: Uncompleted phase portrait for w > 4.

We now have numerical evidence, according to software P4 (see Chapters 9 and 10 of [11]),
that separatrix 1 goes to p1. Therefore, it follows from the invariance of X under the change
of variables (x, y) 7→ (−x,−y) that separatrix 6 goes to p4. Hence, separatrix 9 must be born
at the north pole, while separatrix 4 must be born at the south pole. The other phase portraits
can be obtained in a similar manner.
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