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Abstract. This paper is concerned with a predator-prey model with cannibalism and
prey-evasion. The global existence and boundedness of solutions to the system in
bounded domains of 1D and 2D are proved for any prey-evasion sensitivity coefficient.
It is also shown that prey-evasion driven Turing instability when the prey-evasion co-
efficient surpasses the critical value. Besides, the existence of Hopf bifurcation, which
generates spatiotemporal patterns, is established. And, numerical simulations demon-
strate the complex dynamic behavior.
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1 Introduction

Cannibalism, adult preying on juveniles of the same species, has an effective impact on the
regulation and equilibration of population density [7, 23]. Numerous mathematical modeling
and analysis of cannibalism have been developed rapidly over the past few decades [5, 8].
These analyses focused mainly on the stabilizing-destabilizing effect of cannibalism, which
seems to strongly depend on the form of the model. For example, Kohlmeier and Ebenhöh
[13] found that cannibalism can stabilize population cycles. A high cannibalism rate may
cause the internal steady state to change from being unstable to stable due to the interac-
tion between logistic population growth of the prey and a Beddington–DeAngelis functional
response. In 1999, Magnússon [18] proposed an age-structured predator-prey model and
showed that cannibalism has a destabilizing effect. If the mortality rate of juveniles is high
and/or the recruitment rate to the mature population is low, then the equilibrium will be
stable for low levels of cannibalism. However, a loss of stability by the Hopf bifurcation will
take place as the level of cannibalism increases, and numerical studies indicate that a stable
limit cycle exists.
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In 2006, Buonomo and Lacitignola [3] introduced a predator-prey model with age structure
and cannibalism in the predator population

dA
dt

= MJ − dA A,

dJ
dt

= η1δAP − (1 − ηc)σAJ − (M + dJ)J,

dP
dt

= r1P − r2P2 − δAP,

(1.1)

where A(t) and J(t) represent the densities of individuals of mature and immature preda-
tor populations at time t, respectively, and P(t) denotes the number of individuals of prey
population. Further, M is the constant maturation rate from juveniles to adults; δ is the inter-
specific competition rate; σ is the cannibalism attack rate; η1 and ηc denote the coefficients in
converting preys into new immature predators (juveniles), and juveniles into new juveniles,
respectively. r1 and r2 are the logistic coefficients, dA and dJ are the death rates.

By the following non-dimensional variables

u = δA/dA, v = MδJ/d2
A, w = r2P/dA, τ = dAt,

and denoting τ by t again, system (1.1) becomes

du
dt

= v − u,

dv
dt

= auw − γuv − cv,

dw
dt

= rw − w2 − uw,

(1.2)

where a = η1 Mδ
r2dA

, γ = σ(1−ηc)
δ , c =

M+dJ
dA

, r = r1
dA

. Obviously, if ar > c, then system (1.2) has a
unique positive equilibrium point ũ = (ũ, ṽ, w̃), where

ũ =
ar − c
a + γ

, ṽ =
ar − c
a + γ

, w̃ =
γr + c
a + γ

. (1.3)

Buonomo and Lacitignola derived that cannibalism is a stabilizing mechanism in the model
(1.2). That is, when cannibalism attack rate increases to a level that exceeds the critical value,
the coexistence steady state changes from being unstable to stable. Moreover, they provided
numerical simulations to demonstrate the mathematical analysis. The same conclusion has
been pointed out by Buonomo and coauthors [4]. They also found that the effects of cannibal-
ism and prey growth are opposite. Besides, numerical simulations showed that the higher the
uptake of prey by predators, the higher the critical value of cannibalism.

Recently, Jia et al. [10] discussed the corresponding pure diffusion system of (1.2) and ob-
tained the result that the effects of prey growth and predator cannibalism rate on the stability
of nonnegative constant steady state are opposite. They also proved the nonexistence and exis-
tence of nonconstant positive solutions and found that diffusion can cause a periodic solution
of spatial inhomogeneity which occurs in unstable area (also the unstable area of ODE). Very
recently, in another paper, we investigated the temporal, spatial and spatiotemporal patterns
of the corresponding cross-diffusion system of (1.2) in detail. We showed that cannibalism is
no longer a stabilizing effect, and cross-diffusion is the decisive factor of destabilizing positive
steady state.
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From biological characteristics, it can be seen that in addition to the random diffusion
of predators, the spatial movements between predators and prey can also be pursuit and
evasion,that is to say, predators pursuing preys and preys escaping from predators. Such
movement is not random but directed, that is predators move toward the gradient direction of
prey distribution (called “prey-taxis”), and/or preys move opposite to the gradient of predator
distribution (called “prey-evasion” or “predator-taxis”) [28]. These processes are well known
to be important in biological control and ecological balance such as regulating prey (pest)
population or incipient outbreaks of prey or forming large scale aggregation for survival
[20, 31].

Tsyganov and coauthors [22] proposed a predator-prey model with both prey-taxis and
predator-taxis, and found that the taxis terms change the shape of the propagating waves and
increase the propagation speed. Since then, there are many mathematical literatures demon-
strating and explaining the pursuit-evasion phenomenon. Meanwhile, various reaction-
diffusion models with prey-taxis and (or) predator-taxis have been proposed to study global
existence, traveling wave, pattern formation, and bifurcation analysis [11, 12, 14, 15, 17, 19, 24,
27, 30]. Recently, Wu and coauthors [28] considered a reaction-diffusion predator-prey model
system with predator-taxis, which is a similar situation occurs when susceptible population
avoids the infected ones in epidemic spreading. They proved the global existence and bound-
edness of solutions in bounded domains of arbitrary spatial dimension and any predator-taxis
sensitivity coefficient. It is also shown that a smaller predator-taxis effect can destabilize the
positive constant steady state and generate non-constant spatial pattern.

Inspired by the above discussion, the main aim of this paper is to investigate the global
existence and dynamical behavior in a predator-prey model with both cannibalism and prey-
evasion 

ut − d1∆u = −u + v, x ∈ Ω, t > 0,

vt − d2∆v = auw − γuv − cv, x ∈ Ω, t > 0,

wt − d3∆w − ξ∇ · (w∇u) = rw − w2 − uw, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.4)

where −ξ∇ · (w∇u) is prey-evasion, which shows the tendency of prey moving toward the
opposite direction of the increasing predator gradient direction. Ω ⊂ Rn is a bounded domain
with smooth boundary ∂Ω. ν is the outer normal directional derivative on ∂Ω. The homo-
geneous Neumann boundary condition indicates that this system is self-contained with zero
population flux across the boundary. The initial values u0(x), v0(x), w0(x) are nonnegative
smooth functions which are not identically zero.

Our main results on the global existence and boundedness of solutions of system (1.4) are
as follows.

Theorem 1.1. Let n = {1, 2} and Ω ⊂ Rn be a bounded domain with smooth boundary. For any
(u0, v0, w0) ∈ [W1,p(Ω)]3 where p > n, satisfying u0(x) ≥ 0, v0(x) ≥ 0, w0(x) ≥ 0 for x ∈ Ω, the
system (1.4) has a unique nonnegative and bounded global classical solution (u(x, t), v(x, t), w(x, t)),
and (u, v, w) ∈

(
C([0, ∞); W1,p(Ω)) ∩ C2,1(Ω × (0, ∞))

)3.

The rest of the paper is organized as follows. In Section 2, we obtain some preliminary
results. Section 3 is devoted to prove the global existence and uniform boundedness of the
classical solution of (1.4). The dynamical behavior and pattern formation of the prey-evasion
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system are studied in Section 4. And, numerical simulations are emphasized the theoretical
results. The last section is a brief discussion.

2 Preliminaries

2.1 Existence and uniqueness of local solutions

We first give a claim concerning the local-in-time existence of a classical solution to (1.4).

Lemma 2.1. Assume that the initial data u0, v0, and w0 be nonnegative and satisfy (u0, v0, w0) ∈
[W1,p(Ω)]3 for p > n. Then the following statements for the model (1.4) hold.

(1) There exists a positive constant Tmax (the maximal existence time) such that the problem (1.4)
has a unique local in time classical solution (u(x, t), v(x, t), w(x, t)) satisfying

(u, v, w) ∈
(
C([0, Tmax); W1,p(Ω)) ∩ C2,1(Ω × (0, Tmax))

)3.

Moreover, u, v, and w satisfy the inequalities

u > 0, v > 0, w > 0 in Ω × (0, Tmax). (2.1)

(2) If for each T > 0 there exists a constant C(T) (depending on T and ∥(u0, v0, w0)∥W1,p(Ω) only)
such that

∥(u(t), v(t), w(t))∥L∞ ≤ C(T), 0 < t < min{T, Tmax}, (2.2)

then Tmax = +∞.

(3) The total mass of u(x, t), v(x, t) and w(x, t) satisfies∫
Ω

wdx ≤ m1 := max
{∫

Ω
w0dx, r|Ω|

}
, t ∈ (0, Tmax), (2.3)∫

Ω
vdx ≤ m2 := max

{∫
Ω
(v0 + aw0)dx,

a(r + c)
c

m1

}
, t ∈ (0, Tmax), (2.4)∫

Ω
udx ≤ m3 := max

{∫
Ω

u0dx, m2

}
, t ∈ (0, Tmax). (2.5)

Proof. We first let η = (u, v, w)T, then the system (1.4) can be reformulated as the abstract
form 

ηt −∇ · (A(η)∇η) = F (η), x ∈ Ω, t > 0,
∂η
∂ν = 0, x ∈ ∂Ω, t > 0,

η(·, 0) = (u0, v0, w0)
T, x ∈ Ω,

(2.6)

where

A(η) =

 d1 0 0
0 d2 0

ξw 0 d3

 , F (η) =

 −u + v
auw − γuv − cv
rw − w2 − uw

 .

System (2.6) is normally parabolic since all the eigenvalues of A(η) are positive. Then from
Theorem 7.3 and Corollary 9.3 in Ref. [1] or Theorem 14.4 and 14.6 in Ref. [2], we obtain that
there exists a unique classical solution. Next, the estimates (2.1) follow from the maximum
principle.
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Furthermore, since the system (2.6) is a lower triangular system, then we can invoke The-
orem 15.5 of Ref. [2] to conclude that Tmax = ∞ if (2.2) holds.

Finally, we show that the solution (u(x, t), v(x, t), w(x, t)) is bounded in L1(Ω). Integrating
the third equation in (1.4) over Ω and using the Cauchy–Schwarz inequality we have

d
dt

∫
Ω

wdx = r
∫

Ω
wdx −

∫
Ω

w2dx −
∫

Ω
uwdx

≤ r
∫

Ω
wdx − 1

|Ω|

(∫
Ω

wdx
)2

, t ∈ (0, Tmax).

By an ODE comparison principle, we derive∫
Ω

wdx ≤ max
{∫

Ω
w0dx, r|Ω|

}
=: m1.

Then we have∫
Ω
(vt + awt)dx =

d
dt

∫
Ω
(v + aw)dx

=
∫

Ω
[d2∆v + d3a∆w + ξa∇ · (w∇u)]dx +

∫
Ω
(raw − aw2 − γuv − cv)dx

=
∫

Ω
[raw + acw − aw2 − γuv − c(v + aw)]dx

≤
∫

Ω
[aw(r + c)− c(v + aw)]dx

since
∫

Ω wdx ≤ m1, it gets∫
Ω

vdx ≤
∫

Ω
(v + aw)dx ≤ max

{∫
Ω
(v0 + aw0)dx,

a(r + c)
c

m1

}
=: m2.

Similarly, it can be derived ∫
Ω

udx ≤ max
{∫

Ω
u0dx, m2

}
=: m3.

This completes the proof of part (3).

2.2 Relationship between bounds for u, ∇v and w in the case n ≥ 2

In this subsection, by using appropriate smoothing estimates for the Neumann heat semigroup
to the system (1.4), which have been inspired by Winkler [26], we establish some relationships
between the quantities

sup
s∈(0,t)

∥u(·, s)∥L∞ , sup
s∈(0,t)

∥∇v(·, s)∥Lq , sup
s∈(0,t)

∥w(·, s)∥Lp , t ∈ (0, Tmax),

for suitably wide ranges of the free parameters p ∈ (1, ∞] and q ∈ (1, ∞) when n ≥ 2.

Lemma 2.2. Assume that n ≥ 2 and q > max{1, n
3}. Then for any ε > 0, there exists C(ε, q) > 0

such that

∥u(·, t)∥L∞(Ω) ≤ C(ε, q) + C(ε, q) ·
{

sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

, t ∈ (0, Tmax). (2.7)
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Proof. Since q > n
3 , without loss of generality we may assume that ε satisfies (n + 1 − n

q )ε < 2
and (n + 1 − n

q )qε < 3q − n. Here the former property ensures that

r ≡ r(ε, q) :=
n

2 − (n + 1 − n
q )ε

is a positive number satisfying r > n
2 ≥ 1 as well as

(n − q)r
n

=
n − q

2 − (n + 1 − n
q )ε

<
n − q

2 − 3q−n
q

= q.

Hence, the Gagliardo–Nirenberg inequality gives c1 = c1(ε, q) > 0 such that with a :=
a(ε, q) := n− n

r
n+1− n

q
∈ (0, 1) we have

∥ϕ∥Lr(Ω) ≤ c1∥∇ϕ∥a
Lq(Ω)∥ϕ∥1−a

L1(Ω)
+ c1∥ϕ∥L1 , ϕ ∈ W1,q(Ω), (2.8)

and moreover we can employ smoothing estimates for the Neumann heat semi-group (et∆)t≤0

[25] to find c2 = c2(ε, q) > 0 fulfilling

∥et∆ϕ∥L∞(Ω) ≤ c2(1 + t−
n
2r )∥ϕ∥Lr(Ω), t > 0, ϕ ∈ Lr(Ω). (2.9)

As Lemma 2.1 provides that with some m2 > 0 we have ∥v(·, t)∥L1(Ω) ≤ m2 for all t ∈ (0, Tmax),
based on a variation-of-constants representation we can combine (2.8) with (2.9) to see that
due to the maximum principle,

∥u(·, t)∥L∞(Ω)

= ∥et(d1∆−1)u0 +
∫ t

0
e(t−s)(d1∆−1)v(·, s)ds∥L∞(Ω)

≤ e−t∥u0∥L∞(Ω) + c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥v(·, s)∥Lr(Ω)ds

≤ ∥u0∥L∞(Ω) + c1c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥∇v(·, s)∥a

Lq(Ω)∥v(·, s)∥1−a
L1(Ω)

ds

+ c1c2

∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)∥v(·, s)∥L1 ds

≤ ∥u0∥L∞(Ω) + {c1c2m1−a
2 ∥∇v∥a

L∞((0,t);Lq(Ω)) + c1c2m2} ·
∫ t

0
(1 + (t − s)−

n
2r )e−(t−s)ds

≤ ∥u0∥L∞(Ω) + {c1c2m1−a
2 ∥∇v∥a

L∞((0,t);Lq(Ω)) + c1c2m2} ·
(

1 + Γ
(

1 − n
2r

))
for all t ∈ (0, Tmax). Here Γ(1 − n

2r ) is the Gamma function which is positive and real-valued
according to r > n

2 , this already entails (2.7) due to the fact that

a =
n − (2 − (n + 1 − n

q )ε)

n + 1 − n
q

=
n − 2

n + 1 − n
q
+ ε

by definition of a and r.

A similar argument shows that the regularity of ∇v depends on Lp bounds for w and L∞

bounds for u.



Global boundedness and stabilization in a predator-prey model 7

Lemma 2.3. Let n ≥ 2. Assume that p ∈ (1, ∞] and q > n
n−1 be such that (n − p)q < np. Then for

each ε > 0 there exists C(ε, p, q) > 0 such that

∥∇v(·, t)∥Lq(Ω)

≤ C(ε, p, q) + C(ε, p, q) ·
{

1 + sup
s∈(0,t)

∥w(·, s)∥Lp(Ω)

} n−1− n
q

n(1− 1
p )
+ε

· sup
s∈(0,t)

∥u(·, s)∥L∞(Ω)

+ C(ε, p, q) ·
{

1 + sup
s∈(0,t)

∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

· sup
s∈(0,t)

∥u(·, s)∥L∞(Ω)

+ C(ε, p, q) ·
{

1 + sup
s∈(0,t)

∥∇v(·, s)∥Lq(Ω)

} n−2
n+1− n

q
+ε

, t ∈ (0, Tmax). (2.10)

Proof. Since (n − p)q < np and thus 1
q +

1
n − 1

p > 0, we assume that apart from (1 − 1
p )ε < 1

n

the inequality (1 − 1
p )ε <

1
q +

1
n − 1

p holds about ε, so that

λ ≡ λ(ε, p, q) :=
1

1
q +

1
n − (1 − 1

p )ε

is a positive number satisfying λ < q. Moreover

λ >
1

1
q +

1
n

> 1 (2.11)

thanks to the condition q > n
n−1 .

By applying Duhamel representation and smoothing properties of the Neumann heat
semigroup, for all t ∈ (0, Tmax) one can estimate

∥∇v(·, t)∥Lq(Ω)

= ∥∇et(d2∆−1)v0 + a
∫ t

0
∇e(t−s)(d2∆−1)u(·, s)w(·, s)ds − γ

∫ t

0
∇e(t−s)(d2∆−1)u(·, s)v(·, s)ds

+ (1 − c)∇e(t−s)(d2∆−1)v(·, s)ds∥Lq(Ω)

≤ c1e−t∥v0∥Lq(Ω) + c2a
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥u(·, s)w(·, s)∥Lλ(Ω)ds

+ c2γ
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥u(·, s)v(·, s)∥Lλ(Ω)ds

+ c2|1 − c|
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)∥v(·, s)∥Lλ(Ω)ds. (2.12)

Furthermore, by the Hölder inequality, since λ < p we have

∥u(·, s)w(·, s)∥Lλ(Ω) ≤ ∥w(·, s)∥a1
Lp(Ω)

∥w(·, s)∥1−a1
L1 ∥u(·, s)∥L∞(Ω)

≤ m1−a1
1 ∥w(·, s)∥a1

Lp(Ω)
∥u(·, s)∥L∞(Ω), s ∈ (0, Tmax)
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with a1 = a1(ε, p, q) := 1− 1
λ

1− 1
p
∈ (0, 1), and with m1 := supt∈(0,Tmax)

∥w(·, t)∥L1(Ω) being finite

according to Lemma 2.1. And the Gagliardo–Nirenberg inequality yields

∥v(·, s)∥Lλ(Ω) ≤ ∥v(·, s)∥Lr(Ω)

≤ c3∥∇v(·, s)∥a2
Lq(Ω)

∥v(·, s)∥1−a2
L1(Ω)

+ c3∥v(·, s)∥L1(Ω)

≤ c3m1−a2
2 ∥∇v(·, s)∥a2

Lq(Ω)
+ c3m2

with a2 ≡ a2(ε, p, q) := n− n
λ

n+1− n
q
∈ (0, 1), and λ < r which is given in Lemma 2.7.

Therefore, for all t ∈ (0, Tmax), (2.12) can be simplified as follows

∥∇v(·, t)∥Lq(Ω) ≤ c1∥v0∥W1,∞(Ω) + ac2m1−a1
3 ·

{
sups∈(0,t) ∥w(·, s)∥Lp(Ω)

}a1

·
{

sups∈(0,t) ∥u(·, s)∥L∞(Ω)

}
·
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds

+ (c2γ + c2|1 − c|)
(

c3m1−a2
2 sups∈(0,t) ∥∇v(·, s)∥a2

Lq(Ω)
+ c3m2

)
·
{

sups∈(0,t) ∥u(·, s)∥L∞(Ω)

}
·
∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds.

Noting that for all t > 0 we have∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
λ−

1
q ))e−(t−s)ds ≤ c4(ε, p, q) :=

∫ t

0
(1 + σ

− 1
2−

n
2 (

1
λ−

1
q ))e−σdσ

= Γ
(

1
2
− n

2

(
1
λ
− 1

q

))
,

that c4 < ∞ thanks to the inequality 1
λ < 1

q +
1
n contained in (2.11), and then

a1 =
1 −

{
1
q +

1
n −

(
1 − 1

p

)
ε
}

1 − 1
p

=
n − 1 − n

q

n
(

1 − 1
p

) + ε,

we conclude as intended.

Combining the previous two lemmata allows us to eliminate the dependence on u in (2.10)
as follows.

Lemma 2.4. Let 2 ≤ n < 5. Assume that p ∈ (1, ∞] and that q > n
n−1 satisfy q > n

5−n and
(n − p)q < np. Then for all ε > 0 there exists C(ε, p, q) > 0 with the property that

∥∇v(·, t)∥Lq(Ω) ≤ C(ε, p, q) ·
{

1 + sups∈(0,t) ∥u(·, s)∥Lp(Ω)

} (n−1− n
q )(n+1− n

q )

n(1− 1
p )(5−n− n

q )
+ε

, t ∈ (0, Tmax).
(2.13)

Proof. We note that n + 1 − n
q > 2(n − 2) since the assumption that q > n

5−n , and that n − 1 −
n
q > 0 due to q > n

n−1 . Then, there exists ε̃ = ε̃(p, q) > 0 such that

θ(ε1) :=

{
n − 1 − n

q

n(1 − 1
p )

+ ε

}
·

n + 1 − n
q(

n + 1 − n
q

)
(1 − 2ε1)− 2(n − 2)
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is well-defined for all ε1 ∈ (0, ε̃), with

θ(ε1) → θ0 :=
(n − 1 − n

q )(n + 1 − n
q )

n(1 − 1
p )(5 − n − n

q )
as ε1 ↘ 0.

For ε > 0, we can find ε1 = ε1(ε, p, q) ∈ (0, ε̃) such that

θ(ε1) ≤ θ0 + ε, (2.14)

and then from Lemma 2.2 and Lemma 2.3 provide c1 = c1(ε, q) > 0 and c2 = c2(ε, p, q) > 0
such that

L(t) := 1 + sup
s∈(0,t)

∥w(·, s)∥Lp(Ω), t ∈ (0, Tmax),

and
M(t) := sup

s∈(0,t)
∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax),

as well as
N(t) := sup

s∈(0,t)
∥u(·, s)∥L∞(Ω), t ∈ (0, Tmax),

satisfy

N(t) ≤ c1 + c1M
n−2

n+1− n
q
+ε1

(t), t ∈ (0, Tmax) (2.15)

and

M(t) ≤ c2 + c2L
n−1− n

q
n(1− 1

p )
+ε1

(t)M(t) + c2M
n−2

n+1− n
q
+ε1

N(t) + c2M
n−2

n+1− n
q
+ε1

, t ∈ (0, Tmax). (2.16)

In the case of t ∈ (0, Tmax) and M(t) ≥ 1, from (2.15) we obtain that

N(t) ≤ 2c1M
n−2

n+1− n
q
+ε1

(t)

and by (2.16),

M(t) ≤ c2 + 2c1c2L
n−1− n

q
n(1− 1

p )
+ε1

(t)M
n−2

n+1− n
q
+ε1

(t) + 2c1c2M
2(n−2)
n+1− n

q
+2ε1

(t) + c2M
n−2

n+1− n
q
+ε1

(t)

≤ (2c2 + 4c1c2)L
n−1− n

q
n(1− 1

p )
+ε1

(t)M
2(n−2)
n+1− n

q
+2ε1

(t),

because L(t) ≥ 1 by definition. Since for any such t we therefore have

M
1−2ε1− 2(n−2)

n+1− n
q (t) ≤ (2c2 + 4c1c2)L

n−1− n
q

n(1− 1
p )
+ε1

(t),

and since

1 − 2ε1 −
2(n − 2)
n + 1 − n

q
=

(n + 1 − n
q )(1 − 2ε1)− 2(n − 2)

n + 1 − n
q

> 0

by positivity of θ(ε1), from this we can infer that actually for arbitrary t ∈ (0, Tmax), regardless
of the sign of M(t)− 1,

M(t) ≤ c3Lθ(ε1)(t)

with c3 ≡ c3(ε, p, q) := max
{

1, (2c2 + 4c1c2)

n+1− n
q

(n+1− n
q )(1−2ε1)−2(n−2)

}
> 0. Once again since L(t) ≥ 0

for all t ∈ (0, Tmax), in view of (2.14) this establishes (2.13).
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Lemma 2.5. Let n = 2. Then whenever p ∈ ( n
n−1 , ∞] and q > n, for all ε > 0 there exists

C(ε, p, q) > 0 such that

∥w(·, t)∥Lp(Ω) ≤ C(ε, p, q) + C(ε, p, q) ·
{

sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

} 1− 1
p

2
n − 1

q
+ε

(2.17)

for all t ∈ (0, Tmax).

Proof. Firstly, we observe that 1
q < 1

n < 1
n + 1

p < 1 thanks to the assumption that p > n
n−1 and

q > n. Then the interval J1 :=
( 1

q , 1
n + 1

p

]
is not empty and

ψ1(ζ) :=
1

ζ − 1
q

, ζ ∈ J1,

defines a positive function ψ1 on J1 which satisfies

ψ1
( 1

n + 1
p

)
p

=

1
p

1
n + 1

p −
1
q

<

1
p

1
q +

1
p −

1
q

= 1. (2.18)

Next, since q > n together with the inequality p ≥ 1 infer that 1
p + 1

q < 1
n + 1

p , similarly, it

follows that J2 :=
( 1

p +
1
q , 1

n + 1
p

]
̸= ∅, and

ψ2(ζ) :=
1 − 1

p

ζ − 1
p −

1
q

, ζ ∈ J2,

is well-defined and nonnegative with

ψ2

(
1
n
+

1
p

)
=

1 − 1
p

1
n − 1

q

. (2.19)

According to (2.18), (2.19) and continuity of ψ1 and ψ2, we thereby see that for any ε > 0 it is
possible to pick ζ = ζ(ε, p, q) ∈ J1 ∩ J2 = J2 such that ζ < 1

n + 1
p and that ψ1(ζ) < p as well as

ψ2(ζ) ≤
1− 1

p
2
n−

1
q
+ ε, where we can clearly moreover achieve that ζ > 1

p .

Setting µ ≡ µ(ε, p, q) := 1
ζ , we can find a positive number µ simultaneously fulfilling

µ < p, µ < q,
1
µ
>

1
p
+

1
q

,
1
µ
<

1
n
+

1
q

, and
1
µ
<

1
n
+

1
p

(2.20)

as well as
qµ

q − µ
< p (2.21)

and
1 − 1

p
1
µ − 1

p −
1
q

≤
1 − 1

p
2
n − 1

q

+ ε. (2.22)

Furthermore, µ > 1 since p > n
n−1 and the rightmost property in (2.20).
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Keeping this parameter µ fixed henceforth, using a Duhamel representation, for all t ∈
(0, Tmax), we can estimate

∥∇u(·, t)∥Lq(Ω)

= ∥∇et(d1∆−1)u0 +
∫ t

0
∇e(t−s)(d1∆−1)v(·, s)ds∥Lq(Ω)

≤c2e−t∥u0∥Lq(Ω) + c3

∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
µ−

1
q ))e−(t−s)∥v(·, s)∥Lµ(Ω)ds

≤ c4 +
{

c4 sups∈(0,t) ∥∇v(·, s)∥a0
Lq(Ω)

∥v(·, s)∥1−a0
L1(Ω)

+ c4∥v(·, s)∥L1(Ω)

}
·
(

1 + Γ
(

1
2
− n

2

(
1
µ
− 1

q

)))

≤ c4 +
(

c4m1−a0
2 sups∈(0,t) ∥∇v(·, s)∥a0

Lq(Ω)
+ c4m2

)(
1 + Γ

(
1
2
− n

2

(
1
µ
− 1

q

)))

≤ c5

(
1 + sups∈(0,t) ∥∇v(·, s)∥a0

Lq(Ω)

)
≤ c6

(
1 + sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

)a0

≤ c6 + c6 sups∈(0,t) ∥∇v(·, s)∥Lq(Ω)

where a0 =
n− n

µ

n+1− n
q
∈ (0, 1) since q > n, and Γ

( 1
2 −

n
2

( 1
µ − 1

q

))
< ∞ due to 1

µ < 1
n + 1

q . Apart

from that, by the first inequality in (2.20) and regularization features of the Neumann heat
semigroup ([25, Lemma 1.3], [29, Lemma 3.3]) one can pick c1 = c1(ε, p, q) > 0 satisfying

∥et∆∇ · ϕ∥Lp(Ω) ≤ c1

(
1 + t−

1
2−

n
2 (

1
µ−

1
p )
)
∥ϕ∥Lµ(Ω)

for all t > 0 and each ϕ ∈ C1(Ω̄; Rn) such that ϕ · ν = 0 on ∂Ω, which shows that for all
t ∈ (0, Tmax), ∫ t

0
∥e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds

≤ c1

∫ t

0
(1 + (t − s)−

1
2−

n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∇u(·, s)∥Lµ(Ω)ds. (2.23)

Hence due to the second relation in (2.20), we may employ the Hölder inequality shows
that again writing L(t) := 1 + sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω),
t ∈ (0, Tmax), for any such t we have

∥w(·, s)∇u(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥α
Lp(Ω)∥w(·, s)∥1−α

L1(Ω)
∥∇u(·, s)∥Lq(Ω)

≤ m1−α
1 ∥w(·, s)∥α

Lp(Ω)(c6 + c6∥∇v(·, s)∥Lq(Ω))

≤ c6m1−α
1 Lα(t) + c6m1−α

1 Lα(t)M(t), s ∈ (0, t)
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with α = α(ε, p, q) :=
1+ 1

q−
1
µ

1− 1
p

∈ (0, 1).

The relation (2.23) indicates that with some c7 = c7(ε, p, q) > 0,

∫ t

0
∥e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds ≤ c7L

1+ 1
q −

1
µ

1− 1
p (t) + c7L

1+ 1
q −

1
µ

1− 1
p (t)M(t) (2.24)

for all t ∈ (0, Tmax). In order to make appropriate use of this, we observe that from the third
equation of (1.4),

wt ≤ d3∆w − w + ξ · ∇(w∇u) + (r + 1)w in Ω × (0, Tmax).

In view of the nonnegativity of w and an associated variation-of-constants formula, one can
obtain that

∥w(·, t)∥Lp(Ω)

≤
∥∥∥∥et(d3∆−1)w0 + ξ

∫ t

0
e(t−s)(d3∆−1)∇ · (w(·, s)∇u(·, s))ds + (r + 1)

∫ t

0
e(t−s)(d3∆−1)wds

∥∥∥∥
Lp(Ω)

≤ e−t∥w0∥Lp(Ω) + |ξ|
∫ t

0
∥e(t−s)(d3∆−2)∇ · (w(·, s)∇u(·, s))∥Lp(Ω)ds

+ (r + 1)c8

∫ t

0
(1 + t−

n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∥Lµ(Ω)ds, t ∈ (0, Tmax). (2.25)

Using the Hölder inequality, we have

∥w(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥β

Lp(Ω)
∥w(·, s)∥1−β

L1(Ω)
≤ m1−β

1 ∥w(·, s)∥β

Lp(Ω)
,

where β =
1− 1

µ

1− 1
p

. Therefore, by the Young inequality, we obtain that

(r + 1)c8

∫ t

0
(1 + t−

n
2 (

1
µ−

1
p ))e−(t−s)∥w(·, s)∥Lµ(Ω)ds

≤ (r + 1)c8m1−β
1

{
sup

s∈(0,t)
∥w(·, s)∥Lp(Ω)

}β (
1 + Γ

(
1 − n

2

(
1
µ
− 1

p

)))

≤ 1
2

sup
s∈(0,t)

∥w(·, s)∥Lp(Ω) + c9

where c9 = 1
2 (r + 1)c8m1−β

1 (1 + Γ(1 − n
2 (

1
µ − 1

p ))) and Γ(1 − n
2 (

1
µ − 1

p )) is positive and real-

valued due to 1
µ < 2

n + 1
p .

In conjunction with (2.25) and (2.24), this infers the existence of c10 = c10(ε, p, q) > 0 such
that

L(t) ≤ c10 + c10L
1+ 1

q −
1
µ

1− 1
p (t) + c10L

1+ 1
q −

1
µ

1− 1
p (t)M(t), t ∈ (0, Tmax),

where the third inequality in (2.20) ensures that
1+ 1

q−
1
µ

1− 1
p

< 1 and Young inequality so as to

provide

c10L
1+ 1

q −
1
µ

1− 1
p ≤ 1

4
L(t) + c11,
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and

c10L
1+ 1

q −
1
µ

1− 1
p M(t) ≤ 1

4
L(t) + c12M

1− 1
p

1
µ − 1

p − 1
q (t), t ∈ (0, Tmax).

In light of (2.22), this yields (2.17).

3 Proof of Theorem 1.1

3.1 Boundedness when n = 2

Lemma 3.1. Let n = 2. Then there exists C > 0 such that

∥u(·, t)∥L∞(Ω) ≤ C, t ∈ (0, Tmax). (3.1)

Proof. Without loss of generality assuming that p < n. Let

θ(ζ, ε) :=

{
1 − 1

p
2
n − ζ

+ ε

}{
(n − 1 − nζ)(n + 1 − nζ)

n(1 − 1
p )(5 − n − nζ)

+ ε

}
,

ζ ∈ J :=
(

0,
n − 1

n

]
, ε > 0,

noting that θ is well-defined because n−1
n < 5−n

n . Since evidently θ( n−1
n , 0) = 0, and since

apart from that clearly 1
p −

1
n < n−1

n , by means of a continuity argument we can choose ζ ∈ J
and ε > 0 such that ζ < n−1

n and

ζ >
1
p
− 1

n
(3.2)

and that
θ(ζ, ε) < 1, (3.3)

and thus ζ < 1
n . Writing q := 1

ζ , therefore one can find that q > n
n−1 and (n − p)q < np

as well as q > n, where the latter relation together with the inequality p > n
n−1 enables

us to invoke Lemma 2.5, thus inferring the existence of c1 > 0 such that for L(t) := 1 +

sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax), we have

L(t) ≤ c1 + c1M
1− 1

p
2
n − 1

q
+ε
(t), t ∈ (0, Tmax). (3.4)

On the other hand, using that (n − p)q < np and q > n
n−1 , and that thus also q > n

5−n , we may
employ Lemma 2.4 to find c2 > 0 such that

M(t) ≤ c2L
(n+1− n

q )(n−1− n
q )

n(1− 1
p )(5−n− n

q )
+ε
(t), t ∈ (0, Tmax). (3.5)

Combined with (3.4), this provides that

L(t) ≤ c1 + c1c

1− 1
p

2
n − 1

q
2 Lθ( 1

q ,ε)(t), t ∈ (0, Tmax)

and thus shows that with some c3 > 0 we have

L(t) ≤ c3, t ∈ (0, Tmax),

because θ( 1
q , ε) < 1 by (3.3). Through (3.5), the latter entails boundedness of (0, Tmax) ∋ t 7→

∥∇v(·, t)∥Lq(Ω), so that Lemma 2.2 establishes the claim.
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Lemma 3.2. Let n = 2. Then for all q > n there exists C(q) > 0 fulfilling

∥w(·, t)∥L∞(Ω) + ∥∇v(·, t)∥Lq(Ω) ≤ C(q), t ∈ (0, Tmax). (3.6)

Proof. For each fixed q > n,
n − 1 − n

q

n( 2
n − 1

q )
=

n − 1 − n
q

2 − n
q

< 1,

by a continuity argument we can pick ε = ε(q) > 0 appropriately small such that still

θ :=

{
1

2
n − 1

q

+ ε

}
·
{

n − 1 − n
q

n
+ ε

}
< 1.

Then from Lemma 3.1, we may employ Lemma 2.3 with p := ∞ to find c1 = c1(q) > 0 such
that L(t) := 1 + sups∈(0,t) ∥w(·, s)∥Lp(Ω) and M(t) := sups∈(0,t) ∥∇v(·, s)∥Lq(Ω), t ∈ (0, Tmax),
satisfy

M(t) ≤ c1L
n−1− n

q
n (t), t ∈ (0, Tmax) (3.7)

which we combine with the outcome of Lemma 2.5, applicable since the inequality q > n,
which namely yields c2 = c2(q) > 0 fulfilling

L(t) ≤ c2 + c2M
1

2
n − 1

q
+ε
(t), t ∈ (0, Tmax).

Therefore

L(t) ≤ c2 + c
1

2
n − 1

q
+ε

1 c2Lθ(t), t ∈ (0, Tmax),

so that the inequality θ < 1 guarantees boundedness of L and thus, by (3.7), also derives
boundedness of M.

3.2 Boundedness in the one-dimensional case

Lemma 3.3. Let n = 1. Then for all q > 1 there exists C(q) > 0 such that

∥u(·, t)∥L∞(Ω) + ∥∇v(·, t)∥Lq(Ω) + ∥w(·, t)∥L∞(Ω) ≤ C(q), t ∈ (0, Tmax). (3.8)

Proof. In view of the boundedness of (0, Tmax) ∋ t 7→ ∥v(·, t)∥L1(Ω) asserted by Lemma 2.1,
straightforward application of L1–L∞ smoothing estimates for the Neumann heat semigroup
in the present one-dimensional situation entails c1 > 0 such that

∥u(·, t)∥L∞(Ω) ≤ c1, t ∈ (0, Tmax), (3.9)

which again thanks to Lemma 2.1 ensures boundedness of (0, Tmax) ∋ t 7→ ∥u(·, t)w(·, t)∥L1(Ω)

and (0, Tmax) ∋ t 7→ ∥u(·, t)v(·, t)∥L1(Ω). Accordingly, standard L∞–W1,q regularization prop-
erties of (et∆)t≥0 guarantee the existence of c2 = c2(q) > 0 fulfilling

∥vx(·, t)∥Lq(Ω) ≤ c2, t ∈ (0, Tmax), (3.10)

therefore ∥ux(·, t)∥Lq(Ω) ≤ c3.
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To establish L∞(Ω) bound for w, we can find some µ = µ(q) ∈ (1, q) for any q, and again
combine the maximum principle with a known smoothing feature of the heat semigroup to
fix c4, c5 > 0 such that

∥w(·, t)∥L∞(Ω) ≤ ∥et(d3∆−1)w0∥L∞(Ω) +
∫ t

0
∥e(t−s)(d3∆−1)∂x(w(·, s)ux(·, s)∥L∞(Ω)ds

+ (r + 1)
∫ t

0
∥e(t−s)(d3∆−1)w(·, s)∥L∞(Ω)ds

≤ e−t∥w0∥L∞(Ω) + c4

∫ t

0
(1 + (t − s)−

1
2−

1
2µ )e−(t−s)∥w(·, s)ux(·, s)∥Lµ(Ω)ds

+ c5

∫ t

0
(1 + (t − s)−

n
2µ )e−(t−s)∥w(·, s)∥Lµ(Ω)ds, t ∈ (0, Tmax), (3.11)

where by the Hölder inequality, for all s ∈ (0, Tmax) one can estimate

∥w(·, s)ux(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥
L

µq
q−µ (Ω)

∥ux(·, s)∥Lq(Ω)

≤ ∥w(·, s)∥γ
L∞(Ω)

∥w(·, s)∥1−γ
L1(Ω)

∥ux(·, s)∥Lq(Ω)

with γ := µq−q+µ
µq ∈ (0, 1) since q > µ. And

∥w(·, s)∥Lµ(Ω) ≤ ∥w(·, s)∥δ
L∞(Ω)∥w(·, s)∥1−δ

L1(Ω)
≤ c6∥w(·, s)∥L∞(Ω) + c7

where c6 := 1
2c5m1−δ(1+Γ(1− n

2µ ))
, c7 := 1

4c6
. In view of (3.10) and Lemma 2.1, from (3.11) we thus

infer the existence of c8, c9 > 0 such that if now we let L(t) := 1 + sups∈(0,t) ∥w(·, s)∥L∞(Ω),
t ∈ (0, Tmax), then

L(t) ≤ c8 + c8 ·
{∫ t

0
(1 + (t − s)−

1
2−

1
2µ )e−(t−s)ds

}
· Lγ(t) +

1
2

L(t)

thus
L(t) ≤ 2c8 + 2c8c9Lδ(t), t ∈ (0, Tmax),

where c9 ≤
∫ ∞

0 (1 + σ
− 1

2−
1

2µ )e−σdσ = 1 + Γ( 1
2 − 1

2µ ) is finite since µ > 1. As γ < 1, this
indicates boundedness of w and hence completes the proof.

3.3 Proof of Theorem 1.1

Proof of Theorem 1.1. Using (2.3)–(2.5) and Lemma 3.3 when n = 1; combining Lemma 3.1 and
Lemma 3.2 when n = 2, the conclusion of Theorem 1.1 is obtained immediately.

4 Dynamical behavior of prey-evasion system

In this section, we investigate the dynamic behavior of the system (1.4). We first consider the
local stability of the constant equilibrium solutions by linearized stability analysis. According
to the principle of linearized stability for quasi-linear parabolic problems (see [21] Th 8.6, [6]
Th 5.2), we know that the constant equilibrium (ũ, ṽ, w̃) is locally asymptotically stable with
respect to (1.4) if and only if all the eigenvalues of the linearized elliptic problem of (1.4) at
an equilibrium are of negative real parts. To this end, we introduce the asymptotic stability of
(ũ, ṽ, w̃) of kinetic system (1.2) in [3].



16 M. Chen and S. Fu

Proposition 4.1. Suppose that ar > c. Let

f (w̃) = a(a + 1)w̃3 + (a2 + 3a + 1)w̃2 + (a + 1 − ac − ar)w̃ − c. (4.1)

Then there exists a unique γ∗, such that ũ is asymptotically stable if γ > γ∗ and is unstable if
0 < γ < γ∗, where γ∗ = aw̄−c

r−w̄ , f (w̄) = 0.

Linearizing the system (1.4) at an equilibrium solution (u, v, w), we obtain that φt

ϕt

ψt

 = L(ξ)

 φ

ϕ

ψ

 = D

 ∆φ

∆ϕ

∆ψ

+ J(u,v,w)

 φ

ϕ

ψ

 (4.2)

where

D =

 d1 0 0
0 d2 0

ξw 0 d3

 , J(u,v,w) =

 −1 1 0
aw − γv −γu − cv au
−w 0 r − 2w − u

 . (4.3)

The stability of ũ is determined by the following eigenvalue problem

L

 φ

ϕ

ψ

 = λ

 φ

ϕ

ψ

 ,

that is 

d1∆φ − φ + ϕ = λφ, x ∈ Ω,

d2∆ϕ + (aw − γv)φ − (γu + c)ϕ + auψ = λϕ, x ∈ Ω,

ξw∆φ + d3∆ψ − wφ + (r − 2w − u)ψ = λψ, x ∈ Ω,
∂φ

∂ν
=

∂ϕ

∂ν
=

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(4.4)

Let −∆ have eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ · · · and limi→∞ = ∞ under the Neumann
boundary condition, and let yi(x) be the normalized eigenfunction corresponding to µi. Sup-
pose that λ is an eigenvalue of (4.4) with corresponding eigenfunction (φ, ϕ, ψ), therefore
according to the Fourier expansion, there exists {ai}, {bi}, {ci} such that

φ(x) =
∞

∑
i=0

ai φi(x), ϕ(x) =
∞

∑
i=0

biϕi(x), ψ(x) =
∞

∑
i=0

ciψi(x).

By a straightforward computation, we have

Li(ξ)

 ai
bi
ci

 = λ

 ai
bi
ci

 , i = 0, 1, 2, . . .

with

Li(ξ) =

 −d1µi − 1 1 0
aw − γv −d2µi − γu − c au

−ξwµi − w 0 −d3µi + r − 2w − u

 . (4.5)

Therefore, the local stability of positive constant steady states of the system (1.4) is given by
the following lemma.
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Lemma 4.2. Assume that ar > c, γ > γ∗, di > 0 (i = 1, 2, 3), ξ > 0. Then for system (1.4), (ũ, ṽ, w̃)

is locally asymptotically stable if 0 < ξ < ξ0 and is unstable if ξ > ξ0, where

ξ0 =
1

aũw̃µi
(β1µ3

i + β2µ2
i + β3µi + β4) > 0,

βi (i = 1, 2, 3, 4) will be given in the following proof.

Proof. If constant equilibrium solution (u, v, w) = (ũ, ṽ, w̃), then

Li(ξ) =

 −d1µi − 1 1 0
c −d2µi − aw̃ aũ

−ξw̃µi − w̃ 0 −d3µi − w̃

 , (4.6)

and the characteristic equation of Li is

Φ(λ) = |λI −Li| = λ3 + α1(ξ)λ
2 + α2(ξ)λ + α3(ξ) = 0 (4.7)

with

α1 = (d1 + d2 + d3)µi + aw̃ + w̃ + 1,

α2 = (d1d2 + d1d3 + d2d3)µ
2
i + ((d1 + d3)aw̃ + (d1 + d2)w̃ + d2 + d3)µi + aw̃2 + γũ + w̃, (4.8)

α3 = d1d2d3µ3
i + (d1d3aw̃ + d1d2w̃ + d2d3)µ

2
i + (d1aw̃2 + aũw̃ξ + d3γũ + d2w̃)µi + (ar − c)w̃.

Obviously, αj > 0 (j = 1, 2, 3) for all i = 0, 1, 2, . . . , and

B(ξ) := α1α2 − α3 = β1µ3
i + β2µ2

i + (β3 − aũw̃ξ)µi + β4,

where

β1 = (d1 + d3)(d1 + d2)(d2 + d3),

β2 = (d1 + d3)(d1 + 2d2 + d3)aw̃ + (d1 + d2)(d1 + d2 + 2d3)w̃ + (d2 + d3)(2d1 + d2 + d3),

β3 = (d1 + d3)a2w̃2 + 2(d1 + d2 + d3)aw̃2 + (d1 + d2 + 2d3)aw̃ + (d1 + d2)(γũ + w̃2)

+ 2(d1 + d2 + d3)w̃ + d2 + d3,

β4 = a(a + 1)w̃3 + (a2 + 3a + 1)w̃2 + (a + 1 − ac − ar)w̃ − c.

It is easy to see that B(ξ) is monotonically decreasing with respect to ξ, that is B(ξ) > 0 if
ξ < ξ0, on the contrary B(ξ) < 0 if ξ > ξ0, where B(ξ0) = 0 with

ξ0 =
1

aũw̃µi
(β1µ3

i + β2µ2
i + β3µi + β4) > 0 (4.9)

thanks to β4 = f (w̃) > 0 when γ > γ∗. By the Routh–Hurwitz criterion or Corollary 2.2 in
[16], the proof is completed, that is (ũ, ṽ, w̃) is locally asymptotically stable if 0 < ξ < ξ0 and
is unstable if ξ > ξ0.

To illustrate our analysis of Lemma 4.2, we present the following numerical example.

Example 4.3. For (1.4), let n = 1, Ω = (0, 7) and set

a = 2, c = 1, r = 2, γ = 0.5, d1 = 0.3, d2 = 0.2, d3 = 0.3.

Then the equilibrium point (ũ, ṽ, w̃) = (1.2, 1.2, 0.8). According to the Lemma 4.2, (ũ, ṽ, w̃)

is asymptotically stable if ξ < ξ0 = 8.06 (k = 3), see Figure 4.1, and (ũ, ṽ, w̃) is unstable if
ξ > ξ0 = 8.06 (k = 3), see Figure 4.2.
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Figure 4.1: Stable behavior with χ = 7 < χ0 = 8.06 for the model (1.4).

Figure 4.2: Unstable behavior with χ = 9 > χ0 = 8.06 for the model (1.4).

Remark 4.4. Lemma 4.2 illustrates that prey-evasion has a destabilizing effect.

Remark 4.5. Lemma 4.2 implies that there is no steady state bifurcation curve near (ũ, ṽ, w̃)

since α3 > 0.

According to the proof of Lemma 4.2, we know that the linearized equation (4.4) has a
pair of purely imaginary eigenvalues at ξ = ξ0, then a Hopf bifurcation generating a family
of periodic orbits of (1.4) occurs if some transversality conditions are met. We next show that
the existence of periodic orbits of (1.4) for a certain parameter range.

To apply the Hopf bifurcation theorem (Theorem 6.1 of [16]), we first let the three roots of
(4.6) be θ1,2 = σ(ξ)± iδ(ξ) and θ3 satisfying σ(ξ0) = 0, δ(ξ0) > 0 when ξ ∈ (ξ0 − ε, ξ0 + ε).
From (4.7), we have 

−α1(ξ) = 2σ(ξ) + θ3(ξ),

α2(ξ) = σ2(ξ) + δ2(ξ) + 2σ(ξ)θ3(ξ),

−α3(ξ) = (σ2(ξ) + δ2(ξ))θ3(ξ).

(4.10)

Differentiating (4.10) with respect to ξ and using (4.8), we obtain

2σ′(ξ) + θ′3(ξ) = 0,

2σ(ξ)σ′(ξ) + 2δ(ξ)δ′(ξ) + 2σ′(ξ)θ3(ξ) + 2σ(ξ)θ′3(ξ) = 0,

(2σ(ξ)σ′(ξ) + 2δ(ξ)δ′(ξ))θ3(ξ) + (σ2(ξ) + δ2(ξ))θ′3(ξ) = −aũw̃µi.

(4.11)

Solving (4.11) with ξ = ξ0 by Cramer’s rule, we derive that

θ′3(ξ0) = − aũw̃µi

δ2 + θ2
3
< 0,

and
σ′(ξ0) = −1

2
θ′3(ξ0) > 0. (4.12)
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Moreover, it is easy to see that α3 > 0 for all i ∈ N if ξ > 0, then 0 cannot be an eigenvalue
for (4.4) when ξ = ξ0. Besides, in order to illustrate that θ = ±iδ(ξ0) are a pair of simple
eigenvalues of (4.4) for δ(ξ0) > 0, we need to assume that ξ0k ̸= ξ0j, j ̸= k. Then this shows
that (4.4) has no eigenvalues of the form kδ(ξ0)i for k ∈ Z \ {±1}.

Therefore the existence of nontrivial periodic orbits of (1.4) would be stated in the follow-
ing theorem.

Theorem 4.6. Let ar > c, γ > γ∗ and ξ0k ̸= ξ0j, j ̸= k. For some i ∈ N, assume that µi is a simple
eigenvalue of −∆ in Ω with Neumann boundary condition, and the corresponding eigenfunction is
yi(x). Then

i) (1.4) has a unique one-parameter family {p(τ) : 0 < τ < ε} of nontrivial periodic orbits
near (ξ, u, v, w) = (ξ0, ũ, ṽ, w̃). More precisely, there exist ε > 0 and C∞ function τ 7→
(ui(τ), Ti(τ), ξi(τ)) from τ ∈ (−ε, ε) to C1(R, X3)× (0, ∞, R) satisfying

(ui(0), Ti(0), ξi(0)) = ((ũ, ṽ, w̃), 2π/δ0, ξ0),

and
ui(τ, x, t) = (ũ, ṽ, w̃) + τyi(x)

(
V+

i eiδ0t + V−
i e−iδ0t

)
+ o(τ), (4.13)

where

δ0 =
√
(d1d2 + d1d3 + d2d3)µ2

i + ((d1 + d3)aw̃ + (d1 + d2)w̃ + d2 + d3)µi + aw̃2 + γũ + w̃,

and V±
i is an eigenvector satisfying Li(ξ)V±

i = iδ0V±
i ;

ii) for 0 < |τ| < ε, p(τ) = p(ui(τ)) = {ui(τ, ·, t) : t ∈ R} is a nontrivial periodic orbit of (1.4)
of period Ti(τ);

iii) if 0 < τ1 < τ2 < ε, then p(τ1) ̸= p(τ2);

iv) there exists ι > 0 such that if (1.4) has a nontrivial periodic solution ū(x, t) of period T for some
ξ ∈ R with

|ξ − ξ0i| < ι, |T − 2π/δ0| < ι, max
t∈R,x∈Ω̄

|ū(x, t)− (ũ, ṽ, w̃)| < ι,

then ξ = ξ0(τ) and ū(x, t) = ui(τ, x, t + ω) for some τ ∈ (0, ε) and some ω ∈ R.

We carry out numerical simulation in one-dimension to demonstrate the analytical results
of Theorem 4.6.

Example 4.7. For (1.4), let n = 1, Ω = (0, 8), and choose a = 2, r = 2, c = 0.1, γ = 0.5, d1 =

0.3, d2 = 0.2, d3 = 0.3. Then the equilibrium point (ũ, ṽ, w̃) = (1.56, 1.56, 0.44). It can be
calculated that Hopf bifurcation value ξ = 5.33(k = 3). This parameter set shows that the
occurrence of a Hopf bifurcation at (ũ, ṽ, w̃, ξ), and the expression (4.13) gives the oscillation
frequency, the eigenfunction yi(x) = cos π jx

l gives the spatial profile of the oscillation, see
Figure 4.3.
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u(x, t) v(x, t) w(x, t)

Figure 4.3: Spatiotemporal patterns of (1.4).

5 Conclusions

In this paper, a predator-prey system with both cannibalism and prey-evasion is considered.
We first investigate the global existence and boundedness of the unique classical solution in
1D and 2D. The core steps are to establish some inequalities relating certain powers of the
quantities

sup
s∈(0,t)

∥u(·, s)∥L∞ , sup
s∈(0,t)

∥∇v(·, s)∥Lq , sup
s∈(0,t)

∥w(·, s)∥Lp , t ∈ (0, Tmax),

for suitably wide ranges of the free parameters p ∈ (1, ∞] and q ∈ (1, ∞) when n ≥ 2.
Then we obtain the result that Turing instability occurs when prey-evasion sensitive coeffi-

cient ξ surpasses the threshold value ξ0. We also show the existence of periodic orbits of (1.4)
by treating prey-evasion ξ as a bifurcation parameter, which gives spatiotemporal patterns.
This means that prey-evasion is the decisive factor in destabilizing positive steady state and
cannibalism is no longer a stabilizing effect.
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