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Abstract: In this paper, we consider the controllability of a general reaction-diffusion

system with homogeneous Dirichlet boundary conditions. We prove the exact controllability

to the trajectories and the approximate controllability of the system which contains certain

superlinear nonlinearities. The Kakutani fixed point theorem, global Carleman estimates,

and the regularity argument of the parabolic system are used.
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1 Introduction and main results

In this paper, we consider the following reaction-diffusion systems

ut = ∆u+ f1(u, v) + χωf,

vt = ∆v + f2(u, v) + χωg,
(x, t) ∈ Ω × (0, T0), (1.1)

with initial and boundary conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.2)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T0), (1.3)

where Ω is a bounded domain in R
N , 1 ≤ N < 6, with the smooth boundary ∂Ω, QT0 =

Ω × (0, T0), fi ∈ C1(R × R) with fi(0, 0) = 0, i = 1, 2, and f, g are control functions
acting on the nonempty open set ω ⊂ Ω. χω denotes the characteristic function of the
set ω.
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Throughout this paper, the symbols W k,p(Ω) andW 2,1
p (QT0), 1 ≤ p <∞, k integer,

denote the usual Sobolev spaces and

W̃ 1,1
qN

(QT0) = { y ∈W 1,1
qN

(QT0); y vanishes for (x, t) ∈ ∂Ω × (0, T0) and t = 0}.

We assume that
(H1) qN is a positive integer. qN ∈ (2,∞) when N = 1, 2, and qN ∈ (N+2

2
, 2(N+2)

N−2
)

when N = 3, 4, 5.
With the assumption (H1), we have the following embeddings (see [15], p.61):

W 2,1
qN

(QT0) →֒ Cα0,α0/2(QT0), W 2(1−1/qN ),qN (Ω) →֒ L∞(Ω) with 0 < α0 < 2 −
N + 2

qN
.

Due to the system (1.1)–(1.3), we are interested in the generalized solution in the
following sense.

Definition 1.1 (u, v) is said to be a generalized solution of (1.1)–(1.3) if it satisfies

the following conditions:

(i) (u, v) ∈ (LqN (0, T0;W
1,qN
0 (Ω)) ∩W 2,1

qN
(QT0))

2;

(ii) (u, v) satisfies (1.1) a.e. in QT and (u− u0, v − v0) ∈ (W̃ 1,1
qN

(QT0))
2.

Let us consider local existence of the generalized solutions. We can do some
deformation for (1.1)–(1.3) as

ut = ∆u+ f1(u, v) − f1(0, 0) + χωf,

vt = ∆v + f2(u, v) − f2(0, 0) + χωg,
(x, t) ∈ Ω × (0, T0), (1.4)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.5)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T0). (1.6)

Rewrite (1.4)–(1.6) in the following form

ut = ∆u+ F1(u, v; 0, 0)u+ F2(u, v; 0, 0)v + χωf,

vt = ∆v + F3(u, v; 0, 0)u+ F4(u, v; 0, 0)v + χωg,
(x, t) ∈ Ω × (0, T0), (1.7)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.8)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T0), (1.9)

where

F1(u, v; 0, 0) =

∫ 1

0

∂f1

∂u
(θu, θv)dθ,

F2(u, v; 0, 0) =

∫ 1

0

∂f1

∂v
(θu, θv)dθ,

F3(u, v; 0, 0) =

∫ 1

0

∂f2

∂u
(θu, θv)dθ,

F4(u, v; 0, 0) =

∫ 1

0

∂f2

∂v
(θu, θv)dθ,
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and assume that
(H2) Fi : R × R → R satisfy

lim
|(s,µ)|→∞

|Fi(s, µ; 0, 0)|

ln3/2(1 + |s| + |µ|)
= 0, i = 1, 2, 3, 4.

Then we have the following local existence result for the solution of (1.1)–(1.3).

Theorem 1.1 Let (H1) and (H2) be satisfied. Then for any f, g ∈ LqN (QT0), (u0, v0) ∈
(W 1,qN

0 (Ω)∩W 2,qN (Ω))2, there exists T1 ∈ (0, T0) such that (1.1)–(1.3) has a generalized

solution (u, v) in QT1.

The result above may not be new, but it is difficult to find its proof. For the
completeness of the text, we will give the proof in the Appendix at the end of this
paper.

Let us now analyze the controllability property. Consider the solution of the
problem (without control functions)

u∗t = ∆u∗ + f1(u
∗, v∗),

v∗t = ∆v∗ + f2(u
∗, v∗),

(x, t) ∈ Ω × (0, T ), (1.10)

with the initial and boundary conditions

u∗(x, 0) = u∗0(x), v∗(x, 0) = v∗0(x), x ∈ Ω, (1.11)

u∗(x, t) = v∗(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (1.12)

Let (u∗, v∗) be an arbitrary bounded trajectory of (1.10)–(1.12) globally defined on
[0, T ], T < T ∗, where T ∗ ∈ (0,∞] is the maximal existence time, corresponding to the
data u∗0, v

∗
0 ∈W 1,qN

0 (Ω)∩W 2,qN (Ω). Setting u = u− u∗, v = v− v∗, where (u, v, f, g)
satisfies (1.1)–(1.3), we obtain

ut = ∆u+ f1(u+ u∗, v + v∗) − f1(u
∗, v∗) + χωf,

vt = ∆v + f2(u+ u∗, v + v∗) − f2(u
∗, v∗) + χωg,

(x, t) ∈ Ω × (0, T ), (1.13)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.14)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (1.15)

where u0(x) = u(x, 0) − u∗0(x), v0(x) = v(x, 0) − v∗0(x). Then the system (1.13)–(1.15)
can be rewritten as follows:

ut = ∆u+ F1(u, v; u
∗, v∗)u+ F2(u, v; u

∗, v∗)v + χωf,

vt = ∆v + F3(u, v; u
∗, v∗)u+ F4(u, v; u

∗, v∗)v + χωg,
(x, t) ∈ Ω × (0, T ), (1.16)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.17)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
(1.18)
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where

F1(u, v; u
∗, v∗) =

∫ 1

0

∂f1

∂u
(θu+ u∗, θv + v∗)dθ,

F2(u, v; u
∗, v∗) =

∫ 1

0

∂f1

∂v
(θu+ u∗, θv + v∗)dθ,

F3(u, v; u
∗, v∗) =

∫ 1

0

∂f2

∂u
(θu+ u∗, θv + v∗)dθ,

F4(u, v; u
∗, v∗) =

∫ 1

0

∂f2

∂v
(θu+ u∗, θv + v∗)dθ.

In this paper, we assume that
(H3) Fi : R × R → R satisfy

lim
|(s,µ)|→∞

|Fi(s, µ; s0, µ0)|

ln3/2(1 + |s| + |µ|)
= 0, i = 1, 2, 3, 4,

uniformly in (s0, µ0) ∈ K ×K, with K ⊂ R being compact.

Definition 1.2 The system (1.1)–(1.3) is said to be exactly controllable to the trajec-

tories at time T < T ∗ if for any initial data (u0, v0) ∈ (W 1,qN
0 (Ω) ∩W 2,qN (Ω))2, there

exist control functions f, g ∈ LqN (QT ) such that the corresponding solution (u, v) of

(1.1)–(1.3) is also defined on [0, T ] and satisfies

(u(·, T ), v(·, T )) = (u∗(·, T ), v∗(·, T )) a.e. in Ω. (1.19)

Definition 1.3 The system (1.1)–(1.3) is approximately controllable at time T if for

any T > 0, initial data (u0, v0) ∈ (W 1,qN
0 (Ω) ∩W 2,qN (Ω))2, ud, vd ∈ L2(Ω) and ε > 0,

there exist f, g ∈ LqN (QT ) such that the corresponding solution (u, v) of (1.1)–(1.3)
satisfies

‖u(·, T )− ud‖L2(Ω) ≤ ε and ‖v(·, T )− vd‖L2(Ω) ≤ ε. (1.20)

Remark 1.1 Clearly, the exact controllability to the trajectories of (1.1)–(1.3) is equiv-

alent to the exact null controllability of (1.16)–(1.18). Therefore, we only need to prove

the exact null controllability of (1.16)–(1.18).

In recent years, the controllabilities of the nonlinear parabolic systems have been
studied by many authors (see [3]–[9] and the references therein). For reaction-diffusion
systems, Anita and Barbu [3] have considered the local null controllability with fi(x, u, v)
= αia(x)uv, i = 1, 2, where the αi are the positive constants and a is a function in
L∞(Ω) such that a ≥ a0 > 0 a.e. in Ω, where a0 is a constant. Wang and Zhang [6]
extended that result to the systems with only one control force. In [7], F. Ammar
Khodja, A. Benabdallah and C. Dupaix obtained local null controllability of a gen-
eral reaction-diffusion system. There seems to have been relatively little work devoted
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to the global exact controllability and the approximate controllability of the systems
which contains certain superlinear nonlinearities. This is a precisely problem which we
consider in this paper. It is worth mentioning that these nonlinearities may lead to
the state of the systems blow-up without imposing any control functions (see Section
2). It is well-known that the blow-up phenomena is usually adverse to us in reality.
Therefore, we want to prevent the blow-up phenomena happening. Our method is that
we introduce some control functions into the systems to change the dynamics of the
systems. The advantage of this method not only avoids the occurrence of the blow-up
phenomena, but also leads the state to the ideal targets at the given time. In other
words, the systems achieve the controllability. Since the control functions act on a
subset of the domain where the state work on, the method is realizable in the point
view of practice.

Motivated by the article [1], our main results are stated as follows:

Theorem 1.2 Let 1 ≤ N < 6. Suppose that (H1) and (H3) hold. Then the system

(1.1)–(1.3) is exactly controllable to the trajectories at time T .

As a consequence of Theorem 1.2, we have the approximate controllability result.

Theorem 1.3 Let 1 ≤ N < 6. Suppose that (H1) and (H3) hold. Then the system

(1.1)–(1.3) is approximately controllable at time T .

Our results rest on a generalized fixed point theorem of Kakutani (see [10], p.7)
which has been used in a variety of areas in differential equations and control theory
(for instance see [1], [4]).

Theorem 1.4 (Kakutani) Let K be a compact convex subset of a Banach space X and

let T : K → 2X be an upper semicontinuous mapping with convex values T (x) such

that T (x) ⊂ K, ∀x ∈ K. Then there is at least one x ∈ K such that x ∈ T (x).

The rest of this paper is organized as follows. In Section 2, we give some blow-up
and global existence results to a special case of (1.1)–(1.3), which point out that blow-
up may occur. The exact controllability and the approximate controllability results
are proved in the Section 3 and the Section 4 respectively. In Appendix at the end of
the paper, we give the proof of Theorem 1.1 for the sake of completeness.

2 Blow-up and global existence of solutions for (1.1)

–(1.3) in the absence of control functions

In this section, we will give an example to show that the solutions of (1.1)–(1.3) may
occur blow-up phenomena, provided that Fi (i = 1, 2, 3, 4) satisfy (H3). Our crucial
theorem is the following result to be proved later.
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Theorem 2.1 Take fi(u, v) = (1 + u + v) lnγi(1 + u + v), i = 1, 2 with 1 < γi < 3/2
in (1.1). Then (H3) holds and the solutions of (1.1)–(1.3) blow-up in the absence of

control functions with large nonnegative initial data.

In order to prove Theorem 2.1, we merely consider the classical solutions of the
following weakly coupled reaction-diffusion system

ut = ∆u+ (1 + u+ v)p1 lnq1(1 + u+ v),

vt = ∆v + (1 + u+ v)p2 lnq2(1 + u+ v),
(x, t) ∈ Ω × (0, T ), (2.1)

with initial and boundary conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (2.2)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (2.3)

where u0, v0 ∈ C2,α0(Ω)(0 < α0 < 1) are nonnegative functions and constants pi, qi ≥
0, i = 1, 2.

For the local existence of a classical solution for (2.1)–(2.3) we refer to Chapter 12
in [16]. Many authors have considered the global existence and blow-up of solutions
for some reaction-diffusion systems (see e.g. [13][14]). As far as we know, there are no
the similar results for the reaction functions in (2.1). Therefore, we prove the global
existence and the blow-up of the solutions for the system (2.1)–(2.3) first.

Let us begin with a single parabolic equation.

ut − Lu = f(u), (x, t) ∈ Ω × (0, T ), (2.4)

u(x, 0) = φ(x), x ∈ Ω, (2.5)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (2.6)

where

Lu :=
n∑

i,j=1

(aij(x)uxi
)xj

+
n∑

i=1

bi(x)uxi
+ c(x)u,

(aij(x)) is a uniformly positive definite matrix, the coefficients of L are sufficiently
smooth in Ω × [0, T ), φ is a Hölder continuous function in Ω, and f(u) is Lipschitz
continuous in R. The following blow-up results are basic and well known (see [12]):

Lemma 2.1 If f(u) ≥ 0, f ′(u) > 0 for u > 0, f is convex with
∫ ∞

du/f(u) <∞ and

φ ≥ 0,
∫
Ω
φ dx is sufficiently large, then there is a T ∗

1 > 0 such that the solution of

(2.4)–(2.6) exists in QT ∗

1
, but does not exist in QT ∗

1 +ε for any ε > 0.

Remark 2.1 We note that f(u) = (1 + u) lnp(1 + u) with p > 1 satisfies the require-

ments in Lemma 2.1, and the solution of (2.4)–(2.6) may blow-up in a finite time.

Since the reaction functions in (2.1) are quasi-monotone increasing, we have the
following existence-comparison theorem.
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Lemma 2.2 Let (ũ, ṽ) and (û, v̂) be a pair of upper and lower solutions ([13]) of equa-

tions (2.1)–(2.3) in QT such that (û, v̂) ≤ (ũ, ṽ) in QT . Then the problem (2.1)–(2.3)
has a unique solution (u, v) and

(û, v̂) ≤ (u, v) ≤ (ũ, ṽ) in QT .

This lemma is a particular case of Theorem 2.2 in [13]. Therefore, we omit the
proof here. Now, we are in a position to show the following global existence result for
(2.1)–(2.3).

Theorem 2.2 Assume 0 < pi + qi ≤ 1, i = 1, 2. Then the solution of (2.1)–(2.3) is

nonnegative and global.

Proof. If 0 < pi+qi < 1, we put U(t) = V (t) = Cet− 1
2

with C ≥ max{sup
Ω
u0(x)+

1, sup
Ω
v0(x) + 1, 2

pi+qi
1−(pi+qi)}. Then, we can consider (U(t), V (t)) and (0, 0) as a pair of

upper and lower solutions of problem (2.1)–(2.3). U(t) and V (t) satisfy

Ut(t) ≥∆U(t) + (1 + U(t) + V (t))p1+q1

≥∆U(t) + (1 + U(t) + V (t))p1 lnq1(1 + U(t) + V (t)),

Vt(t) ≥∆V (t) + (1 + U(t) + V (t))p2+q2

≥∆V (t) + (1 + U(t) + V (t))p2 lnq2(1 + U(t) + V (t)),

with pi + qi < 1, i = 1, 2. Moreover, (U(t), V (t)) ≥ (0, 0) on the parabolic boundary.
Thus, we know from Lemma 2.2 that problem (2.1)–(2.3) has a unique solution (u, v)
and

0 ≤ u(x, t) ≤ U(t), 0 ≤ v(x, t) ≤ V (t), (x, t) ∈ QT .

If pi + qi = 1, the solution of the following linear system

ut = ∆u+ (1 + u+ v),

vt = ∆v + (1 + u+ v),
(x, t) ∈ Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

could be regarded as a upper solution of (2.1)–(2.3), since

ut =∆u+ (1 + u+ v)p1 lnq1(1 + u+ v)

≤ ∆u+ (1 + u+ v)p1+q1 ≤ ∆u+ (1 + u+ v),

vt =∆v + (1 + u+ v)p2 lnq2(1 + u+ v)

≤ ∆v + (1 + u+ v)p2+q2 ≤ ∆v + (1 + u+ v).

We can get the conclusion as the solution of linear system is global. �

Corresponding to Lemma 2.1 for the single equation case, we have the following
blow-up result for (2.1)–(2.3).

EJQTDE, 2012 No. 11, p. 7



Theorem 2.3 Assume

(i) pi ≥ 1, qi > 1, i = 1, 2,

(ii)

∫

Ω

u0 dx or

∫

Ω

v0 dx is large enough.

Then the solutions of (2.1)–(2.3) blow-up in a finite time.

Proof. By the conditions, we can get

ut = ∆u+ (1 + u+ v)p1 lnq1(1 + u+ v) ≥ ∆u+ (1 + u) lnq1(1 + u).

Using Lemma 2.1 and Remark 2.1, we get immediately that u blow-up in a finite time.
This implies the same conclusion about v as well. �

By Theorem 2.3, we can obtian Theorem 2.1.
Proof of Theorem 2.1. We consider the nonnegative solutions of (2.1)–(2.3)

with nonnegative initial data. Obviously, the condition (H3) holds by virtue of γi <
3
2
.

If we choose one of the initial data large enough and use γi > 1, then all the conditions
of Theorem 2.3 are satisfied. Then the blow-up phenomena will occur in the absence
of control functions. �

3 Proof of the exact controllability result

In this section, we are devoted to prove Theorem 1.2. The proof is based on the null
controllability of the linear parabolic system and the Kakutani fixed point theorem.

3.1 Observability estimate

For R > 0, we set

KR = {(y, z) ∈ (L∞(QT ))2; ‖y‖L∞(QT ) + ‖z‖L∞(QT ) ≤ R}.

Let (y, z) ∈ KR. Consider the linearized version of (1.16)–(1.18):

ut = ∆u+ a(x, t)u+ b(x, t)v + χωf,

vt = ∆v + c(x, t)u+ d(x, t)v + χωg,
(x, t) ∈ Ω × (0, T ), (3.1)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (3.2)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (3.3)

with a(x, t) = F1(y, z; u
∗, v∗), b(x, t) = F2(y, z; u

∗, v∗), c(x, t) = F3(y, z; u
∗, v∗) and

d(x, t) = F4(y, z; u
∗, v∗), and its adjoint problem:

− ψt = ∆ψ + a(x, t)ψ + c(x, t)ζ,

− ζt = ∆ζ + b(x, t)ψ + d(x, t)ζ,
(x, t) ∈ Ω × (0, T ), (3.4)

ψ(x, T ) = ψ0(x), ζ(x, T ) = ζ0(x), x ∈ Ω, (3.5)

ψ(x, t) = ζ(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (3.6)

For the linear system (3.1)–(3.3), the following result is well known.
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Lemma 3.1 (see [15], p.616) Let a, b, c, d ∈ L∞(QT ). For any f, g ∈ LqN (QT ), (u0, v0) ∈
(W 1,qN

0 (Ω) ∩W 2,qN (Ω))2, system (3.1)–(3.3) has a unique solution (u, v) ∈
(LqN (0, T ;W 1,qN

0 (Ω)) ∩W 2,1
qN

(QT ))2 and moreover

‖(u, v)‖W 2,1
qN

(QT ) ≤ C(‖(u0, v0)‖W 2(1−1/qN ),qN (Ω) + ‖(f, g)‖LqN (QT )).

From (H3) we can see that for each η′ > 0, there exits Cη′ ≥ 1, such that

|Fi(s, µ; s0, µ0)| ≤ Cη′ + η′ ln3/2(1 + |s| + |µ|) ≤ 2(Cη′ + η′2/3 ln(1 + |s| + |µ|))3/2,

for any (s, µ) ∈ R ×R and (s0, µ0) ∈ K ×K, with K ⊂ R. Replacing (2η′)2/3 by η, we
obtain that

‖a(x, t)‖
2/3
L∞(QT ), ‖b(x, t)‖

2/3
L∞(QT ), ‖c(x, t)‖

2/3
L∞(QT ), ‖d(x, t)‖

2/3
L∞(QT ) ≤ Cη + η ln(1 +R).

(3.7)

By Lemma 3.1, we have that for any (y, z) ∈ KR, (3.1)–(3.3) possesses one solution
(u, v) ∈ (LqN (0, T ;W 1,qN

0 (Ω)) ∩W 2,1
qN

(QT ))2.
Following [11], let us introduce some notations. Let ω′

⋐ ω be a subdomain of ω
and let β be a function in C2(Ω) such that

min{|∇β(x)|, x ∈ Ω \ ω′} > 0 and
∂β

∂ν
≤ 0 on ∂Ω,

where ν denotes the outward unit normal to ∂Ω. Moreover, we can always assume that
β satisfies

min{β(x), x ∈ Ω} ≥ max

{
3

4
‖β‖L∞(Ω), ln 3

}
,

and set

ρ(x, t) :=
eλβ(x)

t(T − t)
, (x, t) ∈ QT , α(x, t) := τ

e
4
3
λ‖β‖L∞(Ω) − eλβ(x)

t(T − t)
, (x, t) ∈ QT , (3.8)

where λ > 0 and τ > 0 are appropriate positive constants. The following results hold:

Theorem 3.1 (see [2] and [11] p.288). There exist λ0 > 0, τ0 > 0 and a positive

constant C such that for any λ ≥ λ0, τ ≥ τ0 and s ≥ −3, the inequality

∫∫

QT

(
1

λ
|zt|

2 +
1

λ
|D2

xz|
2 + λτ 2ρ2|∇z|2 + λ4τ 4ρ4z2

)
ρ2s−1e−2αdxdt

≤ C

(
τ

∫∫

QT

|zt ± ∆z|2ρ2se−2αdxdt+ λ4τ 4

∫ T

0

∫

ω′

z2ρ2s+3e−2αdxdt

) (3.9)

holds for any function z(x, t) satisfying homogeneous Dirichlet condition and the right-

hand side of (3.9) is finite. Moreover, the constant τ0 is of the form τ0 = c0(Ω, ω
′)(T +

T 2), and the constants C, c0 and λ0 only depend on Ω and ω′.
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Lemma 3.2 (see [7]) Let λ0 > 1, C being the constant given in Theorem 3.1. Then

for any λ ≥ λ0, τ ≥ τ1 = T 2

4

(
4C
λ4

)1/3
‖(a, b, c, d)‖

2/3
L∞(QT ) and s ≥ −3, the solution (ψ, ζ)

of (3.4)–(3.6) satisfies:

I(s, ψ) + I(s, ζ) ≤ Cλ4

∫ T

0

∫

ω′

(ψ2 + ζ2)δ2s+3e−2αdxdt, (3.10)

where δ = τρ and I(s, z) =

∫∫

QT

(
1

λ
|zt|

2 +
1

λ
|∆z|2 + λδ2|∇z|2 + λ4δ4z2

)
δ2s−1e−2αdxdt.

From the results above, we can obtain the observability estimate as follows:

Lemma 3.3 Under the assumptions of Lemma 3.2, the solution (ψ, ζ) of (3.4)–(3.6)
satisfies:

‖(ψ, ζ)(0)‖2
L2(Ω) ≤ CT

∫ T

0

∫

ω

e−2α(ψ2 + ζ2)dxdt, (3.11)

with CT = exp
{
C

(
1 + 1

T
+ (1 + ‖(a, b, c, d)‖∞)T + ‖(a, b, c, d)‖

2/3
∞

)}
, where

‖(a, b, c, d)‖∞ = (‖a‖2
L∞(QT ) + ‖b‖2

L∞(QT ) + ‖c‖2
L∞(QT ) + ‖d‖2

L∞(QT ))
1/2.

Proof. By the definition of function I and Lemma 3.2,
∫ 3T

4

T
4

∫

Ω

e−2α(ψ2 + ζ2)dxdt ≤
1

λ4

(
I(−

3

2
, ψ) + I(−

3

2
, ζ)

)
≤ C

∫ T

0

∫

ω

e−2α(ψ2 + ζ2)dxdt.

As e−2α(x,t) ≥ e−
Cτ
T2 on

(
T
4
, 3T

4

)
× Ω ,we get

∫ 3T
4

T
4

∫

Ω

(ψ2 + ζ2)dxdt ≤ Ce
Cτ
T2

∫ T

0

∫

ω

e−2α(ψ2 + ζ2)dxdt. (3.12)

Recall that (ψ, ζ) satisfies (3.4) and take m = 3‖(a, b, c, d)‖L∞(QT ),

d

dt

(
e−2m(T−t)(‖ψ(t)‖2

L2(Ω) + ‖ζ(t)‖2
L2(Ω))

)

= 2e−2m(T−t)(m‖ψ(t)‖2
L2(Ω) +m‖ζ(t)‖2

L2(Ω) +

∫

Ω

(ψψt + ζζt)dx)

= 2e−2m(T−t)(m‖ψ(t)‖2
L2(Ω) +m‖ζ(t)‖2

L2(Ω) +

∫

Ω

(|∇ψ|2 + |∇ζ |2)dx

−

∫

Ω

aψ2dx−

∫

Ω

dζ2dx−

∫

Ω

(b+ c)ψζdx

≥ 2e−2m(T−t)

[
(m− ‖a‖L∞(QT ) −

1

2
(‖b‖L∞(QT ) + ‖c‖L∞(QT ))

∫

Ω

ψ2dx

+(m− ‖d‖L∞(QT ) −
1

2
(‖b‖L∞(QT ) + ‖c‖L∞(QT ))

∫

Ω

ζ2dx

]

≥ 0.

(3.13)
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We obtain that the function e−2m(T−t)(‖ψ(t)‖2
L2(Ω)+‖ζ(t)‖2

L2(Ω)) is increasing in t. Then
by the monotonicity and the mean value theorem of integral, we can get

T

2
e−2mT (‖ψ(0)‖2

L2(Ω) + ‖ζ(0)‖2
L2(Ω)) ≤

∫ 3T
4

T
4

∫

Ω

e−2m(T−t)(ψ2 + ζ2)dxdt

≤ e−
mT
2

∫ 3T
4

T
4

∫

Ω

(ψ2 + ζ2)dxdt.

(3.14)

Let τ = C‖(a, b, c, d)‖
2/3
L∞(QT )T

2 with C sufficiently large. Combining (3.12) and (3.14),

we obtain (3.11). �

Our crucial lemma is the following:

Lemma 3.4 Let 1 ≤ N < 6. Suppose that (H1) and (H3) hold. Then the system

(3.1)–(3.3) is null-controllable, that is, for any (u0, v0) ∈ (W 1,qN
0 (Ω) ∩ W 2,qN (Ω))2

and T > 0, there exist f, g ∈ LqN (QT ) such that the associated solution (u, v) ∈
(LqN (0, T ;W 1,qN

0 (Ω)) ∩W 2,1
qN

(QT ))2 with

(u, v)(T ) = (0, 0) a.e. in Ω. (3.15)

Moreover,

‖χωf‖
2
LqN (QT ) + ‖χωg‖

2
LqN (QT ) ≤ CT‖(u0, v0)‖

2
L2(Ω), (3.16)

where CT is defined in Lemma 3.3.

Proof. For any given (y, z) ∈ KR and any ε > 0, we consider the following
optimal control problem

(Pε) Minimize

{
1

2

∫ T

0

∫

ω

e2α(f 2 + g2)dxdt+
1

2ε

∫

Ω

[u2(x, T ) + v2(x, T )]dx

}
,

where (f, g) ∈ L2(QT ) and (u, v) is the solution of (3.1)–(3.3) corresponding to (f, g).
The existence of a pair of solution (fε, gε) to the problem (Pε) follows from a standard
argument. By the Pontryagin maximum principle, we have

fε = χωe
−2αψε, gε = χωe

−2αζε, (3.17)

where (ψε, ζε) is the solution of

− ψt = ∆ψ + a(x, t)ψ + c(x, t)ζ,

− ζt = ∆ζ + b(x, t)ψ + d(x, t)ζ,
(x, t) ∈ Ω × (0, T ), (3.18)

ψ(x, T ) = −
1

ε
uε(x, T ), ζ(x, T ) = −

1

ε
vε(x, T ), x ∈ Ω, (3.19)

ψ(x, t) = ζ(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (3.20)
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Multiplying the first equation in (3.18) by uε and the second equation by vε and
integrating on QT yield

∫∫

QT

[(ψε)t + ∆ψε + a(x, t)ψε + c(x, t)ζε]uεdxdt

+

∫∫

QT

[(ζε)t + ∆ζε + b(x, t)ψε + d(x, t)ζε]vεdxdt = 0.

Using (3.1)–(3.3) and integrating by parts, it follows that
∫∫

QT

(ψεχωfε + ζεχωgε)dxdt

=

∫

Ω

[(ψεuε)(T ) + (ζεvε)(T )]dx−

∫

Ω

[(ψεuε)(0) + (ζεvε)(0)]dx.

By virtue of (3.17) and (3.19), we have

1

2

∫∫

QT

χωe
2α(f 2

ε + g2
ε)dxdt+

1

2ε

∫

Ω

(u2
ε(x, T ) + v2

ε(x, T ))dx

≤ ‖(ψε, ζε)(x, 0)‖L2(Ω)‖(u0, v0)‖L2(Ω).

(3.21)

Using Lemma 3.3 gives

‖(ψε, ζε)(x, 0)‖2
L2(Ω)‖(u0, v0)‖L2(Ω) ≤ CT

∫∫

QT

χωe
−2α(ψ2

ε + ζ2
ε )dxdt‖(u0, v0)‖L2(Ω),

(3.22)

By (3.17) and (3.21), we can get
∫∫

QT

χωe
−2α(ψ2

ε + ζ2
ε )dxdt ≤ 2‖(ψε, ζε)(x, 0)‖L2(Ω)‖(u0, v0)‖L2(Ω). (3.23)

Combining (3.21)–(3.23), we obtain

1

2

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt+
1

2ε
‖(uε, vε)(x, T )‖2

L2(Ω) ≤ CT‖(u0, v0)‖
2
L2(Ω). (3.24)

Next, we will show that our control functions are in LqN (QT ). We introduce
ϕε = e−2αψε. By (3.18)–(3.20), we have

(ϕε)t + ∆(ϕε) = Gε(x, t) (x, t) ∈ Ω × (0, T ),

ϕε(x, T ) = 0, x ∈ Ω,

ϕε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

with Gε(x, t) = −c(x, t)e−2αζε−4(∇α)(e−2α∇ψε)+ [∆(e−2α)+(e−2α)t −a(x, t)e
−2α]ψε.

By parabolic regularity, we have

‖ϕε‖W 2,1
2 (QT ) ≤ C‖Gε(x, t)‖L2(QT ).
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On the other hand, setting

I1 =

∫∫

QT

c2(x, t)e−4αζ2
εdxdt,

we have, using (3.10) in Lemma 3.2,

I1 =

∫∫

QT

(c2(x, t)e−2α)(e−2αζ2
ε )dxdt ≤ ‖c2(x, t)e−2α‖L∞(QT )

∫∫

QT

e−2αζ2
εdxdt

≤ CT

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt.

In the same way, setting

I2 =

∫∫

QT

|(∇α)(e−2α∇ψε)|
2dxdt,

I3 =

∫∫

QT

|[∆(e−2α) + (e−2α)t − a(x, t)e−2α]ψε|
2dxdt,

we can obtain by the same kind of computations that

I2, I3 ≤ CT

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt.

It follows from these inequalities that

‖ϕε‖
2
W 2,1

2 (QT )
≤ CT

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt.

Set ϑε = e−2αζε and repeat the above process. We can conclude that

‖ϑε‖
2
W 2,1

2 (QT )
≤ CT

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt.

Now, by the embedding W 2,1
2 (QT ) →֒ LqN (QT ) and (3.24), we have

‖fε‖
2
LqN (QT ) + ‖gε‖

2
LqN (QT ) = ‖χωϕε‖

2
LqN (QT ) + ‖χωϑε‖

2
LqN (QT )

≤ CT

∫ T

0

∫

ω

e−2α(ψ2
ε + ζ2

ε )dxdt ≤ CT‖(u0, v0)‖
2
L2(Ω).

(3.25)

From (3.25) and Lemma 3.1, it follows, at least for a subsequence, that for ε → 0

(fε, gε) ⇀ (f, g) weakly in (LqN (QT ))2,

(uε, vε) ⇀ (u, v) weakly in (LqN (0, T ;W 1,qN
0 (Ω)) ∩W 2,1

qN
(QT ))2,

and (u, v, f, g) satisfy (3.1)–(3.3). By (3.24), we have (u, v)(T ) = 0. Moreover, (3.16)
holds. This completes the proof of Lemma 3.4. �
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3.2 Proof of Theorem 1.2

For each (y, z) ∈ KR, we define a map Φ : KR(⊂ L2(QT )2) → 2L2(QT )2 by

Φ(y, z) = {(u, v) ∈ (LqN (0, T ;W 1,qN
0 (Ω)) ∩W 2,1

qN
(QT ))2; ∃ f, g ∈ LqN (QT )

satisfying (3.16) such that (u, v) is the solution to the system

(3.1)–(3.3) corresponding to (y, z), f, g and (u, v)(T ) = 0 a.e. in Ω}.

It is readily seen that Φ(y, z) is nonempty, closed and convex in L2(QT ). Then we prove
Φ(KR) ⊂ KR with sufficiently large R > 0. First of all, we show that

‖(u, v)‖2
L∞(QT ) ≤ CT‖(u0, v0)‖

2
L∞(Ω). (3.26)

Exactly as in [4], we can obtain

‖(u, v)(t)‖L∞(Ω) ≤C
(
‖(u0, v0)‖L∞(Ω) + T

−N+2
2qN

+1
(‖χωf‖LqN (QT ) + ‖χωg‖LqN (QT ))

+(1 + ‖(a, b, c, d)‖L∞(QT ))

∫ t

0

‖(u, v)(τ)‖L∞(Ω)dτ

)
,

and by Gronwall’s inequality,

‖(u, v)‖L∞(QT ) ≤Ce
C(1+‖(a,b,c,d)‖L∞(QT ))T ·

(
‖(u0, v0)‖L∞(Ω) + T

−N+2
2qN

+1
(‖χωf‖LqN (QT ) + ‖χωg‖LqN (QT ))

)
.

(3.27)

Then by (3.27) and Lemma 3.4, we can get (3.26). Substituting (3.7) into (3.26), we
have

‖(u, v)‖2
L∞(QT ) ≤ exp

{
C

(
1 +

1

T
+ (1 + [Cη + η ln(1 +R)]3/2)T

+ Cη + η ln(1 +R)
)}

‖(u0, v0)‖
2
L∞(Ω).

Choosing T := T (R, η) = [Cη + η ln(1 +R)]−1, we get for R sufficiently large

‖(u, v)‖2
L∞(QT ) ≤ exp{C(1 +

1

T
)}‖(u0, v0)‖

2
L∞(Ω)

= exp{C(1 + Cη + η ln(1 +R)}‖(u0, v0)‖
2
L∞(Ω)

≤(1 +R)ηC exp{C(1 + Cη)}‖(u0, v0)‖
2
L∞(Ω).

Taking η = 1
2C

yields

‖(u, v)‖2
L∞(QT ) ≤ C(1 +R)1/2‖(u0, v0)‖

2
L∞(Ω).
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For R sufficiently large,

‖(u, v)‖L∞(QT ) ≤ R.

It follows that Φ(KR) ⊂ KR.
Moreover, by the parabolic regularity and (3.16) we have

‖(u, v)‖W 2,1
qN

(QT ) ≤ CT (‖(u0, v0)‖L2(Ω).

By the embedding W 2,1
qN

(QT ) →֒ Cα0,α0/2(QT ) (0 < α0 < 1) and the Arzelà-Ascoli
theorem, Φ(KR) is a relatively compact subset of (L2(QT ))2.

Note also that Φ is upper semicontinuous in (L2(QT ))2. Indeed, let (yn, zn) ∈
KR, (yn, zn) → (y, z) in KR, and (un, vn) ∈ Φ(yn, zn), (un, vn) → (u, v) in (L2(QT ))2.
We want to show (u, v) ∈ Φ(y, z). By Lemma 3.1 and Lemma 3.4 it follows (selecting
a subsequence if necessary) that

(fn, gn) ⇀ (f, g) weakly in (LqN (QT ))2,

(un, vn) ⇀ (ũ, ṽ) strongly in(C(QT ))2,

weakly in (LqN (0, T ;W 1,qN
0 (Ω)) ∩W 2,1

qN
(QT ))2.

Then we obtain (u, v) = (ũ, ṽ) ∈ (LqN (0, T ;W 1,qN
0 (Ω)) ∩W 2,1

qN
(QT ))2. Thus letting n

tend to +∞ in the system

(un)t = ∆un + F1(yn, zn; u∗, v∗)un + F2(yn, zn; u∗, v∗)vn + χωfn,

(vn)t = ∆vn + F3(yn, zn; u∗, v∗)un + F4(yn, zn; u∗, v∗)vn + χωgn,
(x, t) ∈ Ω × (0, T ),

un(x, 0) = u0(x), vn(x, 0) = v0(x), x ∈ Ω,

un(x, t) = vn(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

we conclude that (u, v, f, g) satisfy (3.1)–(3.3), (3.15) and (3.16), i.e., (u, v) ∈ Φ(y, z).
Therefore, Φ is upper semicontinuous in (L2(QT ))2.

Then applying the Kakutani fixed point theorem we infer that there is at least
one (y, z) ∈ KR such that (y, z) ∈ Φ(y, z). Hence, our assertion is proved for any T =
T (R, η). For any T > T (R, η), clearly, we can choose control defined on (0, T (R, η))
which gives a solution satisfying (3.15) at T = T (R, η). We then extend the solution
from 0 to the whole interval (0, T ). �

4 Proof of the approximate controllability result

In this section we will prove Theorem 1.3. Let T > 0 and u0, v0 ∈W 1,qN
0 (Ω)∩W 2,qN (Ω)

be given. Observe that we only need to consider the final data ud, vd ∈ C3
0 (Ω), since

this space is dense in L2(Ω).
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For the given time T , there exists δ > 0, which is small enough and only depends
on Ω, f1, f2, ud, vd and ε, such that the following auxiliary system:

ht = ∆h+ f1(h, ξ),

ξt = ∆ξ + f2(h, ξ),
(x, t) ∈ Ω × (T − δ, T ),

h(x, T − δ) = ud(x), ξ(x, T − δ) = vd(x), x ∈ Ω,

h(x, t) = ξ(x, t) = 0, (x, t) ∈ ∂Ω × (T − δ, T ),

possesses a solution (h, ξ) ∈ (C(Ω × (T − δ, T ))∩C2,1(Ω × (T − δ, T )))2 (see [16]) sat-
isfying ‖h(·, T ) − ud‖L2(Ω) ≤ ε, ‖ξ(·, T ) − vd‖L2(Ω) ≤ ε.

We consider the trajectory u∗ ≡ v∗ ≡ 0 on [0, T − δ] with u0 = v0 = 0 and

f = g = 0. By Theorem 1.2, we can find (f̃1, g̃1) ∈ LqN (Ω × (0, T − δ)) so that

u(x, T − δ) = 0, v(x, T − δ) = 0 a.e. in Ω.

On [T−δ, T ], we take the solution of auxiliary system as the trajectory. Using Theorem

1.2 again, there exists (f̃2, g̃2) ∈ LqN (Ω×(T−δ, T )) such that the solution of the system

ut = ∆u+ f1(u, v) + χωf̃2,

vt = ∆v + f2(u, v) + χωg̃2,
(x, t) ∈ Ω × (T − δ, T ),

u(x, T − δ) = 0, v(x, T − δ) = 0, x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (T − δ, T )

satisfies

u(x, T ) = h(x, T ), v(x, T ) = ξ(x, T ) a.e. in Ω.

Finally, we define

(f(x, t), g(x, t)) =

{
(f̃1(x, t), g̃1(x, t)) (x, t) ∈ Ω × [0, T − δ],

(f̃2(x, t), g̃2(x, t)) (x, t) ∈ Ω × (T − δ, T ].

Obviously, (1.20) holds. This completes the proof of Theorem 1.3. �

5 Appendix.

In this part, we will give the proof of Theorem 1.1. By deformation, we only need to
prove local existence of (1.7)–(1.9) combining with Schauder fixed point theorem.

For R′ > 0, T1 < T0, we set

KR′,T1 = {(y, z) ∈ (L∞(QT1))
2; ‖y‖L∞(QT1

) + ‖z‖L∞(QT1
) ≤ R′},

EJQTDE, 2012 No. 11, p. 16



where R′, T1 will be determined in later. The set KR′,T1 is a bounded closed convex
subset of (L∞(QT1))

2. Let (y, z) ∈ KR′,T1. We consider the linearized version of (1.7)–
(1.9) in QT1 .

ut = ∆u+ a′(x, t)u+ b′(x, t)v + χωf,

vt = ∆v + c′(x, t)u+ d′(x, t)v + χωg,
(x, t) ∈ Ω × (0, T1), (5.1)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (5.2)

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T1), (5.3)

with a′(x, t) = F1(y, z; 0, 0), b′(x, t) = F2(y, z; 0, 0), c′(x, t) = F3(y, z; 0, 0) and d′(x, t) =
F4(y, z; 0, 0). From (H2) we can see for each η0 > 0, there exits C(η0) ≥ 1, such that

‖a′(x, t)‖
2/3
L∞(QT1

), ‖b
′(x, t)‖

2/3
L∞(QT1

), ‖c
′(x, t)‖

2/3
L∞(QT1

), ‖d
′(x, t)‖

2/3
L∞(QT1

)

≤ Cη0 + η0 ln(1 +R′).
(5.4)

By Lemma 3.1, we have that for any (y, z) ∈ KR′,T1 , (5.1)–(5.3) possesses one solution
(u, v) ∈ (LqN (0, T1;W

1,qN
0 (Ω)) ∩ W 2,1

qN
(QT1))

2. Denote Φ′ : KR′,T1 → (L∞(QT1))
2 by

Φ′(y, z) = (u, v). Then, by Sobolev embedding theorem, Φ′(KR′,T1) is a relatively
compact subset of (L∞(QT1))

2.
Note that Φ′ is continuous in (L∞(QT1))

2. Indeed, let (yn, zn) ∈ KR′,T1, (yn, zn) →
(y, z) in KR′,T1 and (un, vn) = Φ′(yn, zn), (un, vn) → (u, v) in (L∞(QT1))

2. We only need
to prove Φ′(y, z) = (u, v). We have (un, vn) ∈ (LqN (0, T1;W

1,qN
0 (Ω)) ∩W 2,1

qN
(QT1))

2. By
Sobolev embedding theorem and Lemma 3.1, it follows (selecting a subsequence if
necessary) that

(un, vn) → (ũ, ṽ) strongly in(C(QT1))
2,

and weakly in(LqN (0, T1;W
1,qN
0 (Ω)) ∩W 2,1

qN
(QT1))

2.

Then we obtain (u, v) = (ũ, ṽ) ∈ (LqN (0, T1;W
1,qN
0 (Ω)) ∩W 2,1

qN
(QT1))

2. Thus letting n
tend to +∞ in the system

(un)t = ∆un + F1(yn, zn; 0, 0)un + F2(yn, zn; 0, 0)vn + χωf,

(vn)t = ∆vn + F3(yn, zn; 0, 0)un + F4(yn, zn; 0, 0)vn + χωg,
(x, t) ∈ Ω × (0, T1),

un(x, 0) = u0(x), vn(x, 0) = v0(x), x ∈ Ω,

un(x, t) = vn(x, t) = 0, (x, t) ∈ ∂Ω × (0, T1),

we conclude that (u, v, f, g) satisfy (5.1)–(5.3), i.e., Φ′(y, z) = (u, v). Therefore, Φ′ is
continuous in (L∞(QT1))

2.
Next we will choose suitable R′ and T1 to have that Φ′(KR′,T1) ⊂ KR′,T1. For any

fixed f, g ∈ LqN (QT0) and (u0, v0) ∈ (W 1,qN
0 (Ω) ∩W 2,qN (Ω))2, there exists C1(T0) > 0

such that
‖f‖LqN (QT0

) + ‖g‖LqN (QT0
) ≤ C1(T0)‖(u0, v0)‖L∞(Ω).
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Exactly same as in [4], we can obtain

‖(u, v)‖L∞(QT1
) ≤ C exp{C(1 + ‖(a′, b′, c′, d′)‖L∞(QT1

))T1}·(
‖(u0, v0)‖L∞(Ω) + T

−N+2
2qN

+1

1 (‖f‖LqN (QT1
) + ‖g‖LqN (QT1

))

)

≤ exp{C2(1 +
1

T1
+ (1 + ‖(a′, b′, c′, d′)‖L∞(QT1

))T1)}‖(u0, v0)‖L∞(Ω).

(5.5)

Substituting (5.4) into (5.5), we have

‖(u, v)‖L∞(QT1
) ≤ exp{C3(1 +

1

T1

+ (1 + [Cη0 + η0 ln(1 +R′)]3/2)T1)}‖(u0, v0)‖L∞(Ω).

(5.6)

Choosing η0 = 1
12C3

and T1 = [Cη0 + η0 ln(1 +R′)]−1, we see that, for R′ large enough,

‖(u, v)‖2
L∞(QT1

) ≤ exp{6C3(1 + Cη0 + η0 ln(1 +R′))}‖(u0, v0)‖
2
L∞(Ω)

≤ exp{6C3(1 + Cη0)}(1 +R′)1/2‖(u0, v0)‖
2
L∞(Ω),

and then

‖(u, v)‖2
L∞(QT1

) ≤
1

4
R′2.

It follows that Φ′(KR′,T1) ⊂ KR′,T1. Then by Schauder fixed point theorem, we can
conclude that the system (1.7)–(1.9) has a local solution (u, v) ∈ (L∞(QT1))

2. By
classical parabolic regularity, the solution also satisfies (u, v) ∈ (LqN (0, T1;W

1,qN
0 (Ω))∩

W 2,1
qN

(QT1))
2. �
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