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Abstract. This paper is devoted to studying the existence of positive solutions of the
problem: {

−∆u = up

|x|a + h(x, u,∇u), inΩ,

u = 0, on ∂Ω,
(∗)

where Ω ⊂ RN(N ≥ 3) is an open bounded smooth domain with boundary ∂Ω, and
1 < p < N−a

N−2 , 0 < a < 2. Under suitable conditions of h(x, u,∇u), we get a priori
estimates for the positive solutions of problem (∗). By making use of these estimates
and topological degree theory, we further obtain some existence results for the positive
solutions of problem (∗) when 1 < p < N−a

N−2 .
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1 Introduction

Let Ω ⊂ RN(N ≥ 3) be an open bounded smooth domain with boundary ∂Ω. We consider
the following elliptic problem with Hardy term:{

−∆u = up

|x|a + h(x, u,∇u), in Ω,

u = 0, on ∂Ω,
(1.1)

where 0 < a < 2, 1 < p < N−a
N−2 . We mainly focus on the existence of solutions for problem

(1.1). It is worth pointing out that problem (1.1) occurs in various branches of mathematical
physics and biological models. Theoretically, when a = 0, there is no Hardy term in problem
(1.1). As is known to all, that the processing without a Hardy term is much simpler than the
processing with a Hardy term. When h(x, u,∇u) = h(x, u), which means, no gradient terms
appear in problem (1.1), in this case, problem (1.1) is reduced to the following problem:{

−∆u = up + h(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)
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problem of this type was raised as an important issue in the survey paper [14]. For the ex-
istence of solutions to problem of this type, it was studied by many authors with different
methods and techniques: upper and lower solution method, mountain pass theorem, a priori
estimates, fixed points theorem and so on. We recall the papers [2, 7, 13, 15, 24] and the refer-
ences therein. In [7], Figueiredo, Gossez and Ubilla concerned with the existence of solutions
based on weak upper and lower solution method. Besides, Ambrosetti and Rabinowitz pro-
posed the mountain pass theorem in [2], and proved the existence of nontrivial solutions. In
[13], the author concerned the existence and regularity of solutions based on a priori estimates
and blow up method by imposing suitable conditions on the coefficients and h(x, u). It is
worth mentioning that when h(x, u) = 0, problem (1.2) becomes:{

−∆u = up, in Ω,

u = 0, on ∂Ω.
(1.3)

There are a lot of work related to this subject. For the existence of solutions, we refer to the
pioneering work of [5, 9, 10, 22]. It is well known that the Sobolev exponent 2∗ = 2N

N−2 serves
as the dividing number for existence and non-existence of solutions to (1.3); please see [5] and
[9]. It is pointed out that the proof in [5] is based on Pohozaev identity and moving planes
method. While in [10], the proof is based on a scaling argument reminiscent to that used in
the theory of Minimal Surfaces to get a priori bounds.

As for the problem (1.1) containing gradients term, variational methods can not directly
be applied for the problem generally. Thus, some other methods are proposed, we refer to
[1, 8, 19, 25] and the references therein. Specifically, for the following problem:{

−∆u = h(x, u,∇u), in Ω,

u = 0, on ∂Ω.
(1.4)

The authors in [8] obtained the existence of positive solution through an iterative method
based on mountain-pass techniques. In [1], the existence of solutions are obtained for this
problem with convection term by using the Galerkin methods. It should be noted in partic-
ular that, the method Gidas and Spruck proposed in [10] is also applicable to the case with
gradients term.

Recently, great attention has been focused on the study of the existence and non-existence
solutions of the Hardy–Hénon equation:

−∆u = |x|aup, in Ω. (1.5)

Traditionally, the equation (1.5) is called Hardy (Hénon, or Lane–Emden) equation for a <

0(a > 0, a = 0). It is shown in [11] that for a < −2, 1 < p < N+a
N−2 , equation (1.5) has no positive

solutions in RN . Besides, in [21], Reichel and Zou proved that equation (1.5) do not admit
any classical solutions in RN if 1 < p < N+2+2a

N−2 and a > −2. The non-existence results of
Reichel and Zou was revisited by Phan and Souplet in [18], and a new proof of non-existence
of bounded solutions in the case N = 3 is provided by using the technique introduced in [23].
For the Dirichlet boundary value problem of (1.5), Ni obtained the existence of multiplicity
bounded positive solutions by using the upper and lower solution and approximation meth-
ods in [16]. Particularly, in [27], Zhu studied the following Hénon equation with perturbation
terms in the unit ball B of RN(N > 4):−∆u = |x|α|u|p−2u + h(x), in B,

u = 0, on ∂B.
(1.6)
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By applying the perturbation method in the unit sphere, the author obtained an infinite num-
ber of mutually different solutions to problem (1.6). The difficulty with this problem lies in
the existence of the Hardy term, so we need to overcome the difficulties brought about by the
Hardy term. It is worth pointing out that, in [27], the technique for handling |x|a is to impose
special symmetry restrictions on u; the authors in [18] deal with the Hardy term |x|a by a
change of variables and a doubling-rescaling argument. These methods provide us with good
ideas for dealing with Hardy term.

In this paper, we focus on the existence of positive solutions for the problem (1.1) with
Hardy term. Through the well-known Liouville-type theorem (see [10, 18]), a change of vari-
able and doubling-rescaling argument (see [20]). We firstly get the decay estimates of the
solutions, then we derive a priori bounds for positive solutions of problem (1.1). Motivated
by the works above, we can show the existence of solutions combined with the topological
degree theory under some assumptions.

Firstly, we propose the definition of weak solution.

Definition 1.1. We say that u ∈ H1
0(Ω) is a weak solution of problem (1.1) if∫

Ω
∇u · ∇φdx =

∫
Ω

up

|x|a φdx +
∫

Ω
h(x, u,∇u)φdx, ∀φ ∈ C∞

0 (Ω).

Throughout this paper, we always denote by ∥.∥q the norm of Lq(Ω) for any q ≥ 1, which

means ∥u∥q = ∥u∥Lq(Ω) = (
∫

Ω |u|qdx)
1
q , 1 ≤ q < ∞, and ∥u∥∞ = ∥u∥L∞(Ω) = supΩ |u|, q = ∞.

Next, we introduce the assumptions required for this paper, to this end, we first introduce
the following eigenvalue problem: {

−∆φ = λφ, in Ω,

φ = 0, on ∂Ω,
(1.7)

we denote by λ1(Ω) the first eigenvalue of problem (1.1). Then we give the following hy-
potheses on h(x, u,∇u):

(H1) For m > 0, h(x, m, ζ) is Hölder continuous and h(x, m, ζ) ≥ 0.

(H2) If 1 < p < N−a
N−2 , we assume that there exists a positive constant λ0 such that

limm→∞
h(x,m,ζ)

mp = 0, limm→0
h(x,m,ζ)

m = λ0, and |h(x, m, ζ)| ≤ C(1 + mp + ζb) for m > 0,
1 < b < 2p

p+1 < p < N−a
N−2 , appropriate constant C > 0.

Remark 1.2. If 1 < p < N−a
N−2 , then h(x, u,∇u) = λ0u + |u|b−1u|∇u|2

1+|∇u|2 satisfies (H1) and (H2).

Now, we are turning to state the main results.

Theorem 1.3. Let N ≥ 3, 0 < a < 2 and 1 < p < N+2
N−2 . There exists a constant C̄ = C̄(N, p, a) > 0

such that the following hold:

(1) Any nonnegative solution of problem (1.1) in Ω = {x ∈ RN ; 0 < |x| < ρ}(ρ > 0) satisfies
that:

|u(x)| ≤ C̄|x|−
2−a
p−1 and |∇u(x)| ≤ C̄|x|−

p+1−a
p−1 , 0 < |x| < ρ

2
.

(2) Any nonnegative solution of problem (1.1) in Ω = {x ∈ RN ; |x| > ρ} (ρ > 0) satisfies that:

|u(x)| ≤ C̄|x|−
2−a
p−1 and |∇u(x)| ≤ C̄|x|−

p+1−a
p−1 , |x| > 2ρ.
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The proof of Theorem 1.3 is based on a change of variable and a generalization of a
doubling-rescaling arguments; see [18].

Theorem 1.4. Assume that 1 < p < N−a
N−2 , 0 < a < 2, and that (H1) and (H2) hold with λ0 <

λ1(Ω). Then there exist two universal positive constants C̃ and Ĉ such that for any positive solution
u ∈ C2(Ω\{0}) ∩ C(Ω) of problem (1.1), there holds C̃ ≤ ∥u∥C(Ω) ≤ Ĉ.

The proof of Theorem 1.4 is based on the well-known blow up technique introduced by
Gidas and Spruck (see [10]) and adopted by Phan (see [18]).

Therefore, according to Theorem 1.4 and the Leray–Schauder degree theory, we can get
the existence of positive solutions to problem (1.1).

Theorem 1.5. Assume that 1 < p < N−a
N−2 , 0 < a < 2, up

|x|a + h(x, u,∇u) ∈ Lk, where k <

min{N
a , N(p−1)

(p+1−a)b}, (H1) and (H2) hold, then problem (1.1) has at least one solution.

The rest of paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we concern the decay estimates of solutions. Section 4 is devoted to the proof of
Theorem 1.4, in which we establish a priori estimates to problem (1.1) by blow up technique.
In Section 5, we prove the existence of solutions for problem (1.1) by topology degree theory
and give the proof of Theorem 1.5.

2 Preliminaries

In this section, we will give some lemmas which will be used to prove the main results.

Lemma 2.1. Let u(x) be a nonnegative C2 solution of the following equation:

−∆u = up, x ∈ RN ,

where N > 2, 1 < p < N+2
N−2 . Then u(x) ≡ 0.

Lemma 2.2. Let RN
+ be the half space {x = (x1, x2, . . . , xN) ∈ RN : xN > 0}. Suppose that u(x) is

a nonnegative C2(RN
+)
⋂

C0({x ∈ RN : xN ≥ 0}) solution of the following problem:{
−∆u = up, x ∈ RN

+ ,

u = 0, xN = 0,

where 1 < p < N+2
N−2 . Then u(x) ≡ 0.

Remark 2.3. Lemma 2.1 and Lemma 2.2 follow directly from [10, Theorem 1.2, Theorem 1.3].

Lemma 2.4 ([18]). Let N ≥ 2, a > −2, p > 1. If p < min{ps, ps(a)} or p ≤ N+a
N−2 , ps = N+2

N−2 ,
ps(a) = N+2+2a

N−2 . Then the following equation:

−∆u = |x|aup

has no positive solution in RN .

Lemma 2.5 (Hardy’s inequality [4]). Assume N ≥ 3 and r > 0. Suppose that u ∈ H1(B(0, r)).
Then u

|x| ∈ L2(B(0, r)), with the estimate

∫
B(0,r)

u2

|x|2 dx ≤
∫

B(0,r)

(
|Du|2 + u2

r2

)
dx.
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Lemma 2.6 ([20]). Let (X, d) be a complete metric space, ∅ ̸= D ⊂ Σ ⊂ X with Σ closed. Further-
more, assume that M : D → (0, ∞) is bounded on compact subsets of D, and fix a real K > 0. If
y ∈ D is such that

M(y)dist(y, Γ) > 2k, Γ = Σ\D,

then there exists x ∈ D such that

M(x)dist(x, Γ) > 2k, M(x) ≥ M(y),

and
M(z) ≤ 2M(x) for all z ∈ D ∩ B

(
x, kM−1(x)

)
.

Lemma 2.7 (Leray–Schauder [3]). Assume that X is a real Banach space, Ω is a bounded, open
subset of X and Φ : [a, b]× Ω → X is given by Φ(λ, u) = u − T(λ, u) with T a compact map. Define

Tλ(u) = T(λ, u), u ∈ X,

Φλ = I − Tλ, λ ∈ [a, b],

Σ = {(λ, u) ∈ [a, b]× Ω : Φ(λ, u) = 0},

and note Σλ = {u ∈ Ω : (λ, u) ∈ Σ}. We also suppose that,

Φ(λ, u) = u − T(λ, u) ̸= 0, ∀(λ, u) ∈ [a, b]× ∂Ω.

If deg(Φa, Ω, 0) ̸= 0, then we have,

(1) Φ(λ, u) = u − T(λ, u) = 0 has a solution u ∈ X in Ω for every a ≤ λ ≤ b.

(2) Furthermore, there exists a compact connected set C ⊂ Σ such that

C ∩ ({a} × Σa) ̸= ∅, C ∩ ({b} × Σb) ̸= ∅.

3 Decay estimates

In this section, we concern the decay estimates of solutions to the problem (1.1). We need the
following lemma, which is an extensive of [20, Theorem 6.1] and [18, Lemma 2.1].

Lemma 3.1. Let N ≥ 3, 1 < p < N+2
N−2 , α ∈ (0, 1]. Assume in addition that c(x) ∈ Cα(B1) satisfies

that,
∥c(x)∥Cα(B1)

≤ C1 and c(x) ≥ C2, x ∈ B1, (3.1)

for some C1, C2 > 0, where B1 = {x ∈ RN ; |x| < 1}. Then there exists a constant C, depending only
on α, C1, C2, p, N such that, for any nonnegative classical solution u of

−∆u =
up

c(x)
+ h(x, u,∇u), x ∈ B1, (3.2)

u satisfies that,

|u(x)|
p−1

2 + |∇u(x)|
p−1
p+1 ≤ C

(
1 + dist−1(x, ∂B1)

)
, x ∈ B1.
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Proof. Arguing by contradiction. Denote Nk = |uk|
p−1

2 + |∇uk|
p−1
p+1 . We suppose that there

exist a sequence of ck, uk, yk verifying that (3.1), (3.2), and Nk(yk) > 2k
(
1 + dist−1(yk, ∂B1)

)
>

2k dist−1(yk, ∂B1). By Lemma 2.6, there exists xk such that

Nk(xk) ≥ Nk(yk), Nk(xk) > 2k dist−1(xk, ∂B1).

and
Nk(z) ≤ 2Nk(xk), for all z satisfying |z − xk| ≤ kN−1

k (xk).

Consequently, we have that,

λk = N−1
k (xk) → 0, k → +∞, (3.3)

due to Nk(xk) ≥ Nk(yk) > 2k. Next we let

vk(y) = λ
2

p−1

k uk(xk + λky), c̃k(y) = ck(xk + λky),

noting that |vk(0)|
p−1

2 + |∇vk(0)|
p−1
p+1 = 1,

|vk(y)|
p−1

2 + |∇vk(y)|
p−1
p+1 ≤ 2, |y| ≤ k, (3.4)

and

−∆vk = −λ
2p

p−1

k ∆uk(xk + λky)

= λ
2p

p−1

k

(
up

k (xk + λky)
ck(xk + λky)

+ h
(
xk + λky, uk(xk + λky),∇uk(xk + λky)

))

=
vp

k
ck(xk + λky)

+ λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk)

=
vp

k
c̃k(y)

+ λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk).

(3.5)

So we see that vk satisfies the following equation:

−∆vk =
vp

k
c̃k(y)

+ λ
2p

p−1

k h
(

xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk

)
(3.6)

where |y| ≤ k. According to the condition (H2) on h(x, u,∇u), it implies that,

λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk) ≤ C, |y| ≤ k,

for k large enough, we deduce that there exist a subsequence of vk converges in C1
loc(R

N) to a

function v(y) > 0. Fix y ∈ RN and denote µk = λ
− 2

p−1

k vk(y), ξk = v−
p+1

2
k ∇vk(y), we may write

that,

λ
2p

p−1

k h(xk + λky, λ
− 2

p−1

k vk, λ
− p+1

p−1

k ∇vk) = vp
k µ

−p
k h(xk + λky, µk, µ

p+1
2

k ξk).

Obviously, µk → ∞ as k → +∞ and ξk is bounded. Besides, if {xk} is bounded, condition
(H2) implies that,

vp
k (y)µ

−p
k h(xk + λky, µk, µ

p+1
2

k ξk) → 0, k → +∞. (3.7)
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On the other hand, due to (3.1), we have C2 ≤ c̃k ≤ C1, and for each R > 0 and k > k0(R)
large enough, the following holds:

|c̃k(y)− c̃k(z)| ≤ C1|λk(y − z)|α ≤ C1|y − z|α, |y|, |z| ≤ R. (3.8)

Therefore, by the Arzelà–Ascoli theorem; see [26], there exists c̃ in C(RN), with c̃ ≥ C2 such
that, after extracting a subsequence, c̃k → c̃ in Cloc(R

N). Now for each R > 0 and 1 < q < ∞,
by (3.4), (3.6) and interior elliptic Lq estimates, the sequence vk is uniformly bounded in
W2,q(BR). Using standard embeddings and interior elliptic Schauder estimates, after extract-
ing a subsequence, we may assume that vk → v in C2

loc(R
N). Moreover, (3.3) and (3.8) imply

that |c̃k(y) − c̃k(z)| → 0 as k → +∞, so that the function c̃ is actually a constant C > 0.
Therefore, we have that,

vp
k

c̃k(y)
→ Cvp, k → +∞. (3.9)

According to (3.7) and (3.9), it follows that v > 0 is a classical solution of

−∆v = Cvp, y ∈ RN

and satisfying |v(0)|
p−1

2 + |∇v(0)|
p−1
p+1 = 1, this contradicts the Liouville-type theorem.

By Lemma 3.1, we are ready to prove the decay estimates of solutions to problem (1.1) as
follows.

Proof of Theorem 1.3. Assume either Ω = {x ∈ RN ; 0 < |x| < ρ} and 0 < |x0| < ρ
2 , or Ω =

{x ∈ RN ; |x| > ρ} and |x0| > 2ρ. We denote R0 = 1
2 |x0|, and observe that, for all y ∈ B1, |x0|

2 <

|x0 + R0y| < 3|x0|
2 , so that x0 + R0y ∈ Ω in either case. Let us thus define that,

U(y) = R
2−a
p−1
0 u(x0 + R0y).

Therefore,

−∆U(y) = −R
2p−a
p−1

0 ∆u(x0 + R0y)

= R
2p−a
p−1

0

(
up(x0 + R0y)
|x0 + R0y|a + h

(
x0 + R0y, u(x0 + R0y),∇u(x0 + R0y)

))
=

Up(y)
| x0

R0
+ y|a + R

2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1
0 U(y), R

− p+1−a
p−1

0 ∇U(y)
)

=
Up(y)
c(y)

+ R
2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1
0 U(y), R

− p+1−a
p−1

0 ∇U(y)
)

,

(3.10)

where c(y) = | x0
R0

+ y|a. Then U is a solution of

−∆U(y) =
Up(y)
c(y)

+ R
2p−a
p−1

0 h
(

x0 + R0y, R
− 2−a

p−1
0 U(y), R

− p+1−a
p−1

0 ∇U(y)
)

, y ∈ B1.

Notice that |y + x0
R0
| ∈ [1, 3] for all y ∈ B1 and ∥c(y)∥C1(B1)

≤ C(a) according to Lemma 3.1,
where C(a) is a constant depending on a. Applying Lemma 3.1 again, we have that |U(0)|+
|∇U(0)| ≤ C. Hence,

|u(x0)| ≤ C̄R
− 2−a

p−1
0 , |∇u(x0)| ≤ C̄R

− p+1−a
p−1

0 ,

which yields the desired conclusion.
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4 A priori estimates

We will show a priori bounds for the positive solutions to problem (1.1) in this section. Owing
to the well-known Liouville-type results (Lemma 2.1, Lemma 2.2 and Lemma 2.4), we can get
a priori estimates. Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. To get the lower bound, we argue by contradiction. Assume that
∥u∥C(Ω) < C̃ holds for any C̃ > 0. Therefore, there exists a sequence solution {uk} of problem
(1.1) such that

Mk = sup
x∈Ω

uk(x) → 0, as k → +∞.

Multiplying the first equation of problem (1.1) by uk, and integrating the result over Ω, by
Hölder inequality, Young’s inequality with ε and Hardy’s inequality, then we have that

∫
Ω
|∇uk|2dx =

∫
Ω

up+1
k
|x|a + ukh(x, uk,∇uk)dx

=
∫

Ω

ua
k

|x|a · up+1−a
k dx +

∫
Ω

ukh(x, uk,∇uk)dx

≤
( ∫

Ω

u2
k

|x|2 dx
) a

2
( ∫

Ω
u

2(p+1−a)
2−a

k dx
) 2−a

2
+ C

∫
Ω

uk(1 + up
k + |∇uk|b)dx

≤ ε
∫

Ω

u2
k

|x|2 dx + C
( ∫

Ω
u

2(p+1−a)
2−a

k dx +
∫

Ω
uk + up+1

k + uk|∇uk|b
)

dx

≤ C

[
ε
∫

Ω
(|∇uk|2 + u2

k)dx +
∫

Ω
u

2(p+1−a)
2−a

k dx +
∫

Ω
ukdx

+
∫

Ω
up+1

k dx +
( ∫

Ω
|∇uk|2dx

) b
2
( ∫

Ω
u

2
2−b
k dx

) 2−b
2

]

≤ C

[
ε
∫

Ω
|∇uk|2dx + ε

∫
Ω

u2
kdx +

∫
Ω

u
2(p+1−a)

2−a
k dx +

∫
Ω

ukdx

+
∫

Ω
up+1

k dx + ε
∫

Ω
|∇uk|2dx +

∫
Ω

u
2

2−b
k dx

]
.

(4.1)

Hence,

(1 − εC)
∫

Ω
|∇uk|2dx

≤ C
(

ε
∫

Ω
|uk|2dx +

∫
Ω

u
2(p+1−a)

2−a
k dx +

∫
Ω

ukdx +
∫

Ω
up+1

k dx +
∫

Ω
u

2
2−b
k dx

)
.

(4.2)

Let ε → 0, then we have that

∥∇uk∥2
2 ≤ C

(
∥uk∥

2(p+1−a)
2−a

2(p+1−a)
2−a

+ ∥uk∥1 + ∥uk∥
p+1
p+1 + ∥uk∥

2
2−b

2
2−b

)
≤ C∥uk∥C(Ω)

= CMk → 0, as k → +∞.

(4.3)
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Further, let uk(x) = MkUk(x), obviously, Uk(x) satisfies that,


−∆Uk =

Mp−1
k Up

k
|x|a + M−1

k h(x, MkUk, Mk∇Uk), in Ω,

Uk > 0, in Ω,

Uk = 0, on ∂Ω.

(4.4)

Owing to

∫
Ω
|∇Uk|2dx =

∫
Ω

(
Mp−1

k
Up+1

k
|x|a + Uk

h(x, MkUk, Mk∇Uk)

Mk

)
dx

=
∫

Ω
Mp−1

k
Ua

k
|x|a Up+1−a

k dx +
∫

Ω
Uk

h(x, MkUk, Mk∇Uk)

Mk
dx

≤ Mp−1
k

( ∫
Ω

U2
k

|x|2 dx
) a

2
( ∫

Ω
U

2(p+1−a)
2−a

k dx
) 2−a

2
+
∫

Ω
U2

k
h(x, MkUk, Mk∇Uk)

MkUk
dx

≤
(

M
p−1

a
k

∫
Ω

U2
k

|x|2 dx
) a

2
(

M
p−1
2−a
k

∫
Ω

U
2(p+1−a)

2−a
k dx

) 2−a
2
+
∫

Ω
U2

k
h(x, MkUk, Mk∇Uk)

MkUk
dx

≤ a
2

CM
p−1

a
k

∫
Ω
(U2

k + |∇Uk|2)dx +
2 − a

2
M

p−1
2−a
k

∫
Ω

U
2(p+1−a)

2−a
k dx

+
∫

Ω
U2

k
h(x, MkUk, Mk∇Uk)

MkUk
dx. (4.5)

By (H2) and the standard elliptic estimates; see [12], we can easily see that, the subsequence
in Uk converges to a positive function v in C2(Ω). Moreover, v satisfies{

−∆v = λ0v, in Ω,

v = 0, on ∂Ω.
(4.6)

On the other hand, problem (4.6) has no positive solution due to λ0 < λ1(Ω). This reaches a
contradiction. Consequently, there exists a universal constant C̃ > 0 such that for any positive
solution u of problem (1.1), we have that,

∥u∥C(Ω) ≥ C̃. (4.7)

To get the upper bound, we also proceed by contradiction. Assume that ∥u∥C(Ω) > Ĉ
holds. Therefore, there exists a sequence of solutions uk and a sequence of points Pk ∈ Ω such
that

Mk = sup
x∈Ω

uk(x) = uk(Pk) → ∞, as k → +∞.

We may assume that Pk → P ∈ Ω as k → +∞, and we divide the proof into the following two
cases:

Case 1. P ∈ Ω\{0} or P ∈ ∂Ω. In this case, we rescale the solution as the following:

Uk(y) = λ
2

p−1

k uk(Pk + λky), λk = M− p−1
2

k .
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Therefore, we deduce that,

−∆Uk(y) = −λ
2p

p−1

k ∆uk(Pk + λky)

= λ
2p

p−1

k

(
up

k (Pk + λky)
|Pk + λky|a + h

(
Pk + λky, uk(Pk + λky),∇uk(Pk + λky)

))

=
Up

k (y)
|Pk + λky|a + λ

2p
p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk(y), λ
− p+1

p−1

k ∇Uk(y)
)
.

(4.8)

Then Uk satisfies that,
−∆Uk =

Up
k

|Pk+λky|a + λ
2p

p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk

)
, in Ωk,

Uk > 0, in Ωk,

Uk = 0, on ∂Ωk,

(4.9)

where Ωk = λ−1
k (Ω − {Pk}). Notice that λk = M− p−1

2
k , we can deduce that,∣∣∣∣∣ Up

k
|Pk + λky|a + λ

2p
p−1

k h(Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk)

∣∣∣∣∣
=

∣∣∣∣∣ Up
k

|Pk + λky|a + M−p
k h(Pk + λky, MkUk, M

p+1
2

k ∇Uk)

∣∣∣∣∣
≤
∣∣∣∣∣ Up

k
|Pk + λky|a + C(M−p

k + Up
k + M

(p+1)b
2 −p

k |∇Uk|b)
∣∣∣∣∣

≤ C,

(4.10)

and so we find that Uk is a solution of the equation:

−∆Uk =
Up

k
|Pk + λky|a + λ

2p
p−1

k h
(

Pk + λky, λ
− 2

p−1

k Uk, λ
− p+1

p−1

k ∇Uk

)
in a rescaled domain Ωk. Since Uk(0) = 1, 0 < Uk ≤ 1, by elliptic estimates and standard
embedding similar as that in [10], up to a subsequence, without loss of generality, still denoted
by Uk, we can deduce that {Uk} is convergent in Cloc(R

N). Hence, by the Arzelà–Ascoli
theorem and standard diagonal argument, up to a subsequence, there exists a subsequence of
{Uk} and function v ∈ C(Ω), such that Uk → v uniformly on compact sets of Ω. In addition,
v satisfies the equation −∆v = lvp, where 1 < p < N−a

N−2 , for some l > 0 either in the whole
space RN , or in a half-space with 0 boundary conditions. Clearly, this contradicts with the
Lemma 2.1 and Lemma 2.2.
Case 2. P = 0. In this case, we rescale the solution according to Uk(y) = λ

2−a
p−1

k uk(Pk + λky),

λk = M
− p−1

2−a
k . By a simple calculation, we infer that,

−∆Uk(y) = −λ
2p−a
p−1

k ∆uk(Pk + λky)

= λ
2p−a
p−1

k

(
up

k (Pk + λky)
|Pk + λky|a + h

(
Pk + λky, uk(Pk + λky),∇uk(Pk + λky)

))

=
Up

k (y)

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h
(

Pk + λky, λ
− 2−a

p−1

k Uk(y), λ
− p+1−a

p−1

k ∇Uk(y)
)
,

(4.11)
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Then Uk satisfies that
−∆Uk =

Up
k

| Pk
λk

+y|a
+ λ

2p−a
p−1

k h
(

Pk + λky, λ
− 2−a

p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk

)
, in Ωk,

Uk > 0, in Ωk,

Uk = 0, on ∂Ωk,

(4.12)

where Ωk = λ−1
k (Ω − {Pk}). Due to λk = M

− p−1
2−a

k , we can deduce that∣∣∣∣∣ Up
k

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h(Pk + λky, λ
− 2−a

p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk)

∣∣∣∣∣
=

∣∣∣∣∣ Up
k

| Pk
λk

+ y|a
+ M

− 2p−a
2−a

k h(Pk + λky, MkUk, M
p+1−a

2−a
k ∇Uk)

∣∣∣∣∣
≤
∣∣∣∣∣ Up

k

| Pk
λk

+ y|a
+ C(M

− 2p−a
2−a

k + M
p− 2p−a

2−a
k Up

k + M
(p+1−a)b−(2p−a)

2−a
k |∇Uk|b)

∣∣∣∣∣
≤ C,

(4.13)

and thus we find that Uk is a solution of the following equation:

−∆Uk =
Up

k

| Pk
λk

+ y|a
+ λ

2p−a
p−1

k h
(

Pk + λky, λ
− 2−a

p−1

k Uk, λ
− p+1−a

p−1

k ∇Uk

)

in a rescaled domain Ωk containing B(0, ρλ−1
k ) for some ρ > 0. Moreover, it follows from

the estimate in Theorem 1.3 that the sequence |Pk |
λk

= |Pk|u
p−1
2−a
k (Pk) is bounded. We may thus

assume that Pk
λk

→ x0 ∈ RN as k → +∞. A similar limiting procedure as in Case 1 then
produces a positive solution v of

−∆v =
vp

|y + x0|a
, y ∈ RN , (4.14)

where 0 < a < 2, then by elliptic regularity, we obtain that uk satisfy a local W2,q̂ bound for
N
2 < q̂ < N

|a| , so a local Hölder bound holds, and this is sufficient to pass the limit to obtain
a solution of problem (4.14). After a space shift, this gives a contradiction with Lemma 2.4.
Therefore, there exists a positive constant Ĉ such that

∥u∥C(Ω) ≤ Ĉ. (4.15)

(4.7) and (4.15) yield the desired conclusion of Theorem 1.4 and this completes the proof.

5 Existence results

This section devotes to proving some existence results to problem (1.1). For the convenience
of proving existence results, we consider the following problem with a parameter t ∈ [0, 1],{

−∆u = up

|x|a + h(x, u,∇u) + t(|u|+ λ), in Ω,

u = 0, on ∂Ω.
(5.1)
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Fortunately, we have proved the boundedness of solutions firstly in Section 4, therefore, in
this section, we only need to use the Leray–Schauder topological degree theory (see [3, 6, 17])
to prove the existence of solutions.

Proof of Theorem 1.5. We always assume that h(x, u,∇u) satisfies (H1) and (H2). Let X =

C(Ω), we denote that,

f (x, u) =
up

|x|a + h(x, u,∇u).

Given u ∈ X and t > 0, let ϕt(u) = u be the unique solution of the problem (5.1). Then the
solution to problem (1.1) is equivalent to a fixed point of the operator ϕ0(u). Since f ∈ Lk(Ω)

for k < min{N
a , N(p−1)

(p+1−a)b}, we have ϕt(u) ∈ W2,r(Ω) for r ∈ (N
2 , min{N

a , N(p−1)
(p+1−a)b}). Therefore,

ϕt : X → X is compact. Observe that the right-hand sides in (5.1) are nonnegative for every
u ∈ X, hence, ϕt has no fixed point beyond the nonnegative cone K = {u′ ∈ X : u′ > 0} for
any t ≥ 0.

Let ∥u∥X = ε for ε > 0 small. Assume u = ϕ0(u), using Lp estimates, we have that,

∥u∥∞ ≤ C∥u∥2,r ≤ C∥ f ∥r ≤ C∥u∥p
∞,

where ∥ · ∥2,r denotes the norm in W2,r(Ω). Furthermore, We can deduce that,

∥u∥∞ ≤ C∥u∥p
∞ ≤ Cεp−1∥u∥∞.

This is a contradiction for ε sufficiently small due to the assumption p > 1. Hence u ̸= ϕ0(u)
and the homotopy invariance of the topological degree implies

deg(I − ϕ0, 0, Bε) = deg(I, 0, Bε) = 1,

where I denotes the identity and Bε = {u ∈ X : ∥u∥X < ε}.
Theorem 1.4 immediately implies ϕT(u) ̸= u for T large and u ∈ BR

⋂
K, ϕt(u) ̸= u for

t ∈ [0, T] and u ∈ (BR\BR)
⋂

K (where R > 0 is lage enough), hence we have that,

deg(I − ϕ0, 0, BR) = deg(I − ϕT, 0, BR) = 0.

Then we can obtain deg(I − ϕ0, 0, BR\Bε) = −1, hence, there exist u ∈ (BR\Bε)
⋂

K such that
ϕ0(u) = u. Finally, the maximum principle implies the positivity of u.
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