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Abstract. Motivated by the Q-condition result proven by Arcoya and Boccardo in
[J. Funct. Anal. 268(2015), No. 5, 1153–1166], we analyze the behaviour of the weak so-
lutions {uε} of the problems{

−∆puε + ε| f (x)|uε = f (x) in Ω,
uε = 0 on ∂Ω,

when ε tends to 0. Here, Ω denotes a bounded open set of RN (N ≥ 2),
−∆pu = −div(|∇u|p−2∇u) is the usual p-Laplacian operator (1 < p < ∞) and f (x)
is an L1(Ω) function.

We show that this sequence converges in some sense to u, the entropy solution of
the problem {

−∆pu = f (x) in Ω,
u = 0 on ∂Ω.

In the semilinear case, we prove stronger results provided the weak solution of that
problem exists.
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1 Introduction

In this paper we develop a new method to approach solutions (in a broad sense that we will
discuss later) of a problem with data only in L1 that does not require the approximation of
such data by more regular functions. Specifically, we consider the following boundary value
problem {

−div(a(x, u,∇u)) + b(x)g(u) = f (x) in Ω,

u = 0 on ∂Ω,
(P)
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where Ω is a bounded open set of RN (N ≥ 2) and a : Ω×R×RN → RN is a nonlinear Leray–
Lions operator, i.e., it is a Carathéodory function such that for every s ∈ R, ξ, η ∈ RN (ξ ̸= η),
and for almost every x ∈ Ω satisfies

a(x, s, ξ)ξ ≥ α|ξ|p, (1.1)

|a(x, s, ξ)| ≤ h(x) + β|ξ|p−1, (1.2)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0, (1.3)

where 1 < p < ∞, h(x) ∈ Lp′(Ω) and α, β > 0. With respect to the coefficient b(x) of the lower
order term and to the datum f (x), it assumed that

0 ≤ b(x) ∈ L1(Ω), f (x) ∈ L1(Ω), (1.4)

and g : R → R is a continuous function satisfying that

g is increasing, odd and lim
s→+∞

g(s) = +∞. (1.5)

A simple model of function g for the reader may be g(s) = |s|γ−1s for γ > 0.
We remark that the problem (P) under the previous hypotheses (1.1), (1.2), (1.3), (1.4)

and (1.5) does not always have a solution in the usual sense when f belongs to L1(Ω). More-
over, in the case in which the solution of the problem (P) exists with a right-hand side in
L1(Ω) it is not necessarily bounded; in fact, it may not even be in the W1,1

loc (Ω) space when
p ≤ 2 − 1

N . Motivated by this, many authors started to study if there was a more general
concept of solution in which existence and uniqueness were guaranteed; see, for example, the
paper [6], where they use the concept of renormalized solution, or [5], where the concept of
entropy solution is introduced.

Nevertheless, under some extra conditions the existence of a weak solution of (P) can be
ensured. In [2] (see also [1]), the authors proved that if there exists certain relation between the
coefficient b(x) of the lower order term and the datum f (x), then the existence of a bounded
weak solution is granted even if f (x) only belongs to L1(Ω). Concretely, they showed that if
the so-called Q-condition is satisfied, i.e., if there exists some Q > 0 such that

| f (x)| ≤ Qb(x), (1.6)

then the problem (P) has a unique weak solution u ∈ W1,p
0 (Ω) ∩ L∞(Ω). Moreover, they also

gave an L∞(Ω)-estimate for u, namely

∥u∥∞ ≤ g−1(Q).

Therefore, they put in evidence that this interplay between the coefficients provides a
regularizing effect on the problem (P). After the publication of these works, several number
of papers studying this kind of regularizing effects given by the interplay between coefficients
in other types of problems were published, such as [3, 4], giving rise to a prolific and original
line of modern research.

Motivated by this result, in this paper we approach the problem (P) in such a way that the
resulting approximated problems satisfy the relation (1.6) and we study the convergence of the
sequence of solutions. Concretely, we consider the following approximated elliptic problems{

−div(a(x, un,∇un)) +
[
b(x) + 1

n | f (x)|
]
g(un) = f (x) in Ω,

un = 0 on ∂Ω.
(Pn)
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Observe that the coefficients of these problems satisfy the relation (1.6) since

| f (x)| ≤ n
[
b(x) + 1

n | f (x)|
]
,

so, if we assume the hypotheses (1.1), (1.2), (1.3), (1.4) and (1.5), the results of [2] provide for
each n ∈ N the existence of a weak solution un ∈ W1,p

0 (Ω)∩ L∞(Ω) of (Pn) which also satisfies
that

∥un∥∞ ≤ g−1(n). (1.7)

The purpose of this paper will be to study the behaviour of the sequence {un} when n
goes to ∞. We stress that similar studies can be done on other problems for which existence
or regularity results have been proven thanks to some Q-condition type hypothesis. Therefore,
this paper can be the beginning of a productive line of research.

The main result, stated below, is related with the entropy solution of (P), whose existence
and uniqueness is guaranteed thanks to the results of [5]. We also point out that the proof of
our theorem is, in fact, an alternative existence proof to the one given in [5], where the major
difference between both are the approximate problems considered.

Theorem 1.1. Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) verify (1.4)
and that g satisfies (1.5). Then the solution of (P) in the sense of Definition 2.5 exists and the sequence
{un} of weak solutions of (Pn) converges in measure to that solution.

Note that the sequence of weak solutions {un} of (Pn), in general, cannot converge weakly
in W1,p

0 (Ω) because, in this case, that would imply the existence of a weak solution of (P).
Recall that this type of solution (see Definition 2.4) does not always exist for problem (P).

In the semilinear case, i.e., when p = 2, we study if this stronger convergence can be
proved as long as the weak solution of (P) exists. For this purpose, we consider the linear
operator a(x, s, ξ) = M(x)ξ, where M(x) is a symmetric bounded elliptic matrix, i.e., there
exist α, β > 0 such that

α|ξ|2 ≤ M(x)ξξ, (1.8)

|M(x)| ≤ β (1.9)

for every ξ ∈ RN and for almost every x in Ω.
The mentioned result for the semilinear case is the following one.

Theorem 1.2. Suppose that a(x, s, ξ) = M(x)ξ with M(x) a symmetric matrix satisfying (1.8)
and (1.9). Assume also that b(x) and f (x) verify (1.4) and that g satisfies (1.5). If the weak solution
u ∈ H1

0(Ω) of (P) exists and it is in L∞(Ω), then {un}, the sequence of weak solutions of (Pn), verifies
that

un ⇀ u in H1
0(Ω).

We stress that, unlike Theorem 1.1, this theorem is not an existence result since we are
assuming that the weak solution of (P) exists.

In order to prove these results we will follow the next structure in the work. In Section 2
we state the theorem of [2] in which our study is motivated, we take a brief review of the
Marcinkiewicz spaces, we remind the concept of entropy solution of (P) and we give other
preliminary results. In Section 3 we prove Theorem 1.1, the main result of this paper. Finally,
in Section 4, we deal with the semilinear case and we give the proof of Theorem 1.2.
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2 Preliminaries

First of all, we state here the result of [2] that has motivated this research and then we indicate
the key of the proof. As we will see, the tools which are used in the proof are not excessively
sophisticated, so the approach we adopt in this paper is elemental.

Theorem 2.1 ([2]). Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) ver-
ify (1.4) and that g satisfies (1.5). If the relation (1.6) between b(x) and f (x) is verified, then there
exists a unique u ∈ W1,p

0 (Ω) ∩ L∞(Ω) weak solution of (P) which also satisfies that

∥u∥∞ ≤ g−1(Q).

Remark 2.2. The key of the proof is to obtain an a priori L∞(Ω)-estimate. The idea is to
approximate (P) in such a way that its coefficients still satisfy the Q-condition (1.6), and this
condition allows us to prove the uniform boundedness in L∞(Ω) of the sequence of approxi-
mated solutions.

Formally speaking, this L∞(Ω)-estimate is obtained by taking as test function in (P) the
mapping Gk(u) := max{min{u + k, 0}, u − k} with k > 0. In particular, using (1.1) and (1.6)
we get that

α
∫

Ω
|∇Gk(u)|p +

∫
Ω

b(x)g(u)Gk(u) ≤
∫

Ω
f (x)Gk(u) ≤

∫
Ω

Qb(x)|Gk(u)|,

i.e., that
α
∫

Ω
|∇Gk(u)|p +

∫
Ω

b(x)
[
|g(u)| − Q

]
|Gk(u)| ≤ 0.

Observe that g−1 exists thanks to (1.5) and that we can choose k = g−1(Q) in the above
inequality to get that the second integral is nonnegative and, as a consequence, it is deduced
that g−1(Q) is an a priori bound in L∞(Ω).

In several parts of this paper we work with the Marcinkiewicz spaces. For the convenience
of the reader, we recall here their definition and some of their properties. For 0 < q < ∞,
we denote by Mq(Ω) the set of measurable functions v : Ω → R such that there exists C > 0
satisfying that

meas{|v| > k} ≤ C
kq , ∀k > 0. (2.1)

This space is a complete quasi-normed space with the quasi-norm

∥v∥q
Mq(Ω)

= inf{C > 0 : (2.1) holds}.

We also recall that, since Ω is bounded, then

Mq2(Ω) ↪→ Lq1(Ω) ↪→ Mq1(Ω)

for 0 < q1 < q2 < ∞.
Related with these spaces we state the following lemma whose proof can be found in [5,

Lemma 4.1]. For any k > 0 we set Tk(s) = min{k, max{s,−k}}.

Lemma 2.3 ([5]). Let u : Ω → R be a function such that Tk(u) ∈ W1,p
0 (Ω) for every k > 0 and

1
k

∫
{|u|<k}

|∇u|p ≤ M
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for some constant M > 0 and for every k > 0. Then u ∈ Mp1(Ω) for p1 = N(p−1)
N−p if 1 < p < N and

for every p1 > 1 if p ≥ N. More precisely, there exists C = C(M, N, p) > 0 such that

meas{|u| > k} ≤ C
kp1

, ∀k > 0.

We also recall here the concepts of weak solution and entropy solution of (P).

Definition 2.4. A function u : Ω → R is a weak solution of the problem (P) if u ∈ W1,p
0 (Ω),

b(x)g(u) ∈ L1(Ω) and ∫
Ω

a(x, u,∇u)∇φ +
∫

Ω
b(x)g(u)φ =

∫
Ω

f (x)φ

for every φ ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Definition 2.5. A function u : Ω → R is an entropy solution of (P) if Tk(u) ∈ W1,p
0 (Ω) for every

k > 0, b(x)g(u) ∈ L1(Ω) and∫
Ω

a(x, u,∇u)∇Tk(u − φ) +
∫

Ω
b(x)g(u)Tk(u − φ) =

∫
Ω

f (x)Tk(u − φ)

for every φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) and every k > 0.

Observe that the concept of entropy solution is more general than the concept of weak
solution, i.e., every weak solution is an entropy solution. Although the reciprocal is not true
in general, if an entropy solution of (P) is in W1,p

0 (Ω), then is also a weak solution of (P)
(see [5, Corollary 4.3]).

Regarding the uniqueness, both types of solutions are unique (see [5, Theorem 5.1]). How-
ever, unlike the weak solution, which may not exist when p ≤ 2− 1

N , it was proved in [5, The-
orem 6.1] that the entropy solution of (P) always exists.

Finally, we end this section with a convergence lemma that we will use throughout this
paper.

Lemma 2.6. Suppose that a(x, s, ξ) satisfies (1.1), (1.2) and (1.3), that b(x) and f (x) verify (1.4) and
that g satisfies (1.5). If the sequence {un} of weak solutions of (Pn) is bounded in Mq(Ω) for some
q > 0 and satisfies that un → u a.e. in Ω for some function u, then

b(x)g(un) → b(x)g(u) in L1(Ω).

Proof. Let ψk,δ : R → R be the function given by

ψk,δ(s) =


0 if 0 ≤ s ≤ k,
1
δ (s − k) if k < s < k + δ,

1 if s ≥ k + δ,

−ψk,δ(−s) if s < 0.

Taking ψk,δ(un) ∈ W1,p
0 (Ω)∩ L∞(Ω) as test function in (Pn) and dropping two nonnegative

terms we obtain that ∫
Ω

b(x)g(un)ψk,δ(un) ≤
∫

Ω
| f (x)| |ψk,δ(un)|,
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what implies that ∫
{k+δ≤|un|}

b(x)|g(un)| ≤
∫
{k≤|un|}

| f (x)|.

If δ → 0, Fatou Lemma gives∫
{k≤|un|}

b(x)|g(un)| ≤
∫
{k≤|un|}

| f (x)|.

We claim that {b(x)g(un)} is uniformly integrable. Fix ε > 0. Since b(x) is nonnegative
by (1.4) and g is increasing and odd by (1.5), we deduce from the above inequality that for
every measurable set E ⊂ Ω we have∫

E
b(x)|g(un)| =

∫
E∩{|un|≤k}

b(x)|g(un)|+
∫

E∩{k≤|un|}
b(x)|g(un)|

≤ g(k)
∫

E
b(x) +

∫
{k≤|un|}

| f (x)|.

On the one hand, since f (x) ∈ L1(Ω), thanks to the absolute continuity of the integral
there exists some δ′ > 0 such that if E ⊂ Ω is a measurable set with meas(E) < δ′ then∫

E | f (x)| < ε
2 . As {un} is bounded in Mq(Ω), we can fix k > 0 large enough such that

meas{|un| ≥ k} ≤ δ′ for every n ∈ N. Thus,∫
{k≤|un|}

| f (x)| ≤ ε

2
, ∀n ∈ N.

On the other hand, since b(x) ∈ L1(Ω), again by the absolute continuity of the integral
there exists some δ > 0 such that E ⊂ Ω is a measurable set with meas(E) < δ then∫

E
b(x) <

ε

2g(k)
.

In this way, we have that if E ⊂ Ω is a measurable set with meas(E) < δ then∫
E

b(x)|g(un)| ≤ g(k)
∫

E
b(x) +

∫
{k≤|un|}

| f (x)| < ε, ∀n ∈ N.

Therefore, the sequence {b(x)g(un)} is uniformly integrable. As we also have that this
sequence b(x)g(un) → b(x)g(u) a.e. in Ω, we can apply Vitali’s Theorem (since meas(Ω) < ∞)
to conclude that b(x)g(u) ∈ L1(Ω) and that

b(x)g(un) → b(x)g(u) in L1(Ω).

3 Convergence to the entropy solution

In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. First, let us remember that as un are weak solutions of (Pn), then for every
n ∈ N and for every φ ∈ W1,p

0 (Ω) ∩ L∞(Ω) we have that∫
Ω

a(x, un,∇un)∇φ +
∫

Ω

[
b(x) + 1

n | f (x)|
]
g(un)φ =

∫
Ω

f (x)φ. (3.1)

Now we begin with the proof.
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Step 1. {un} is bounded on some Marcinkiewicz space.
Taking Tk(un) ∈ W1,p

0 (Ω) ∩ L∞(Ω) as test function in (3.1) we obtain for every n ∈ N and
for every k > 0 that∫

{|un|≤k}
a(x, un,∇un)∇Tk(un) +

∫
Ω

[
b(x) + 1

n | f (x)|
]
g(un)Tk(un) =

∫
Ω

f (x)Tk(un).

Observe that the second integral is nonnegative since g(s)s ≥ 0 for every s ∈ R by (1.5) and
that we can apply (1.1) on the first integral since a(x, un,∇un) = a(x, Tk(un),∇Tk(un)) on the
set {|un| < k}. So, from the above equality we deduce that

α
∫

Ω
|∇Tk(un)|p = α

∫
{|un|<k}

|∇un|p ≤
∫

Ω
f (x)Tk(un) ≤ k∥ f ∥1, ∀n ∈ N, ∀k > 0. (3.2)

Thus, we can apply Lemma 2.3 to assure that there exists a constant C > 0 depending only
of N, p, α and f such that

meas{|un| > k} ≤ Ck−
N(p−1)

N−p , (3.3)

for every n ∈ N and every k > 0. As a consequence, we deduce that {un} is bounded on the
space Mp1(Ω) with p1 = N(p−1)

N−p .

Step 2. {un} converges in measure to some function u.
To show that {un} converges in measure it suffices to show that it is Cauchy in measure.

Let ε > 0 and let t > 0. As

{|un − um| > t} ⊆ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > t},

then

meas{|un − um| > t} ≤ meas{|un| > k}+ meas{|um| > k}+ meas{|Tk(un)− Tk(um)| > t}.

Thanks to (3.3), we can fix k0 > 0 large enough to obtain that

meas{|un| > k0} <
ε

3
, ∀n ∈ N.

By (3.2), we deduce that {Tk(un)} is bounded in W1,p
0 (Ω) for every k > 0. Thus, for every

fixed k > 0 there exists a subsequence {uσk(n)} of {un} such that {Tk(uσk(n))} is Cauchy in
Lp(Ω). Using the Cantor’s diagonal argument, we can build a subsequence {uσ(n)} of {un}
such that {Tk(uσ(n))} is Cauchy in Lp(Ω) for every k > 0. For the sake of simplicity, we still
denote {uσ(n)} by {un}.

So, since {Tk0(un)} is a Cauchy sequence in Lp(Ω), there exists n0 ∈ N such that

meas{|Tk0(un)− Tk0(um)| > t} ≤ t−p
∫

Ω
|Tk0(un)− Tk0(um)|p <

ε

3
, ∀m, n ≥ n0.

Thus, it is proven that {un} is Cauchy in measure and hence there exists some measurable
function u such that un → u in measure. As a consequence, there exists a subsequence of
{un}, still denoted by {un}, such that

un → u a.e. in Ω.
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Now, since for k > 0 fixed the sequence {Tk(un)} is bounded in W1,p
0 (Ω) by (3.2) and Tk(u)

is its only possible almost everywhere limit because of the continuity of Tk, we can conclude
that

Tk(un) ⇀ Tk(u) in W1,p
0 (Ω),

Tk(un) → Tk(u) in Lp(Ω),

Tk(un) → Tk(u) a.e. in Ω.

Observe that this implies that Tk(u) ∈ W1,p
0 (Ω) for every k > 0.

Step 3. Tk(un) strongly converges to Tk(u) in W1,p
0 (Ω) for every k > 0.

Following the ideas of [8], in order to obtain the strong convergence of the truncations in
the W1,p

0 (Ω) space we choose

wn = T2k(un − Th(un) + Tk(un)− Tk(u))

with h > k > 0 as test function in (3.1). See that if we set M = 4k + h then we have that
∇wn = 0 on the set {|un| > M}. Thus, we can write∫

Ω
a(x, TM(un),∇TM(un))∇wn +

∫
Ω

[
b(x) + 1

n | f (x)|
]
g(un)wn =

∫
Ω

f (x)wn. (3.4)

Now, we split the first integral on the sets {|un| < k} and {|un| ≥ k}. On the one hand,
observing that {|Tk(un)− Tk(u)| ≤ 2k} = Ω, that ∇Tk(un) = 0 on the set {|un| ≥ k} and that
a(x, s, 0) = 0 by (1.1), we obtain that∫

{|un|<k}
a(x, TM(un),∇TM(un))∇wn

=
∫
{|un|<k}

a(x, Tk(un),∇Tk(un))∇T2k(Tk(un)− Tk(u))

=
∫
{|un|<k}

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))

=
∫

Ω
a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u)).

(3.5)

On the other hand, using (1.1) we deduce that

a(x, TM(un),∇TM(un))∇(Gh(un)− Tk(u))

= a(x, TM(un),∇TM(un))∇Gh(un)− a(x, TM(un),∇TM(un))∇Tk(u)

≥ −a(x, TM(un),∇TM(un))∇Tk(u)

and, thus, we have∫
{|un|≥k}

a(x, TM(un),∇TM(un))∇wn

=
∫
{|un|≥k}∩{|Gh(un)+k+Tk(u)|≤2k}

a(x, TM(un),∇TM(un))∇(Gh(un)− Tk(u))

≥ −
∫
{|un|≥k}

|a(x, TM(un),∇TM(un))| |∇Tk(u)|.

(3.6)
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From equations (3.5) and (3.6) we deduce that∫
Ω

a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(u))

≤
∫
{|un|≥k}

|a(x, TM(un),∇TM(un))| |∇Tk(u)|+
∫

Ω
a(x, TM(un),∇TM(un))∇wn.

Adding −
∫

Ω a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)) to both sides of the previous inequality
and using (3.4) we obtain that∫

Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))

≤
∫
{|un|≥k}

|a(x, TM(un),∇TM(un))| |∇Tk(u)|

−
∫

Ω

[
b(x) + 1

n | f (x)|
]
g(un)wn +

∫
Ω

f (x)wn

−
∫

Ω
a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)).

(3.7)

Our next step will be taking limits when n → ∞ on the above inequality. First, see that
as |a(x, TM(un),∇TM(un))| is bounded in Lp′(Ω) by (1.2) and (3.2), and as χ{|un|≥k}|∇Tk(u)|
converges strongly to zero in Lp(Ω) by Lebesgue Theorem, then

lim
n→∞

∫
{|un|≥k}

|a(x, TM(un),∇TM(un))| |∇Tk(u)| = 0. (3.8)

Secondly, since {b(x)g(un)} is bounded in L1(Ω) by Lemma 2.6 and since { 1
n | f (x)|g(un)} is

also bounded in L1(Ω) because 1
n | f (x)g(un)| ≤ | f (x)| for every n ∈ N by (1.5) and (1.7),

Lebesgue Theorem easily implies that

lim
n→∞

(
−

∫
Ω

[
b(x) + 1

n | f (x)|
]
g(un)wn +

∫
Ω

f (x)wn

)
=

∫
Ω
[−b(x)g(u) + f (x)]T2k(u − Th(u)).

(3.9)

Finally, since a(x, Tk(un),∇Tk(u)) → a(x, Tk(u),∇Tk(u)) strongly in Lp′(Ω) by (1.2) and by
Lebesgue Theorem, and since ∇Tk(un) ⇀ ∇Tk(u) weakly in Lp(Ω), we deduce that

lim
n→∞

∫
Ω

a(x, Tk(un),∇Tk(u))∇(Tk(un)− Tk(u)) = 0. (3.10)

Observe that the first integral of (3.7) is nonnegative by (1.3). So if we take limits when
n → ∞ in (3.7) and we apply (3.8), (3.9) and (3.10) we obtain that

0 ≤ lim
n→∞

∫
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u))

≤
∫

Ω
[−b(x)g(u) + f (x)]T2k(u − Th(u)).

(3.11)

Now, see that b(x)g(u) ∈ L1(Ω) by Lemma 2.6, so Lebesgue Theorem implies that

lim
h→∞

∫
Ω
[−b(x)g(u) + f (x)]T2k(u − Th(u)) = 0
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and thus we can take limits when h → ∞ in (3.11) to assure that

lim
n→∞

∫
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]∇(Tk(un)− Tk(u)) = 0.

This allows us to apply Lemma 5 of [7] to conclude that

Tk(un) → Tk(u) strongly in W1,p
0 (Ω) for every k > 0.

Step 4. u is the entropy solution of (P).
Let us take Tk(un − φ) with φ ∈ W1,p

0 (Ω) ∩ L∞(Ω) and k > 0 as test function in (3.1).
Observe that if we define L = k + ∥φ∥∞, then we have that ∇Tk(un − φ) = 0 on the set
{|un| > L}, so we can write∫

Ω
a(x, un,∇un)∇Tk(un − φ) =

∫
Ω

a(x, TL(un),∇TL(un))∇Tk(un − φ)

and thus (3.1) with this test function can be rewritten as∫
Ω

a(x, TL(un),∇TL(un))∇Tk(un − φ)

+
∫

Ω

[
b(x) + 1

n | f (x)|
]
g(un)Tk(un − φ) =

∫
Ω

f (x)Tk(un − φ).
(3.12)

Since TL(un) → TL(u) strongly in W1,p
0 (Ω), then we have that ∇TL(un) → ∇TL(u) a.e. in

Ω and, as a consequence of (1.2) and Lebesgue Theorem, we have that

a(x, TL(un),∇TL(un)) → a(x, TL(u),∇TL(u)) in Lp′(Ω).

As we also have that ∇Tk(un − φ) → ∇Tk(u − φ) in Lp(Ω), we can assure that∫
Ω

a(x, TL(un),∇TL(un))∇Tk(un − φ) →
∫

Ω
a(x, TL(u),∇TL(u))∇Tk(u − φ)

=
∫

Ω
a(x, u,∇u)∇Tk(u − φ).

If we use that b(x)g(un) → b(x)g(u) in L1(Ω) by Lemma 2.6 and that 1
n | f (x)|g(un) → 0 in

L1(Ω) thanks to the (1.7) estimate, we can easily pass to the limit in (3.12) to obtain that∫
Ω

a(x, u,∇u)∇Tk(u − φ) +
∫

Ω
b(x)g(u)Tk(u − φ) =

∫
Ω

f (x)Tk(u − φ),

so we can conclude that u is the entropy solution of (P). Finally, observe that due to the
uniqueness of the entropy solution we can assert that the whole original sequence {un} con-
verges in measure to u.

4 The semilinear case

In this section we prove the Theorem 1.2 and we give some additional remarks.
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Proof of Theorem 1.2. First, let us show that the sequence {un} is bounded in H1
0(Ω). Taking

un ∈ H1
0(Ω) ∩ L∞(Ω) as test function in (Pn) and in (P), we deduce that∫

Ω
M(x)∇un∇un +

∫
Ω

[
b(x) + 1

n | f (x)|
]
g(un)un =

∫
Ω

f (x)un

=
∫

Ω
M(x)∇u∇un +

∫
Ω

b(x)g(u)un.

Since g(s)s ≥ 0 for every s ∈ R by (1.5), then the term
∫

Ω
1
n | f (x)|g(un)un is nonnegative

and we can drop it to obtain that∫
Ω

M(x)∇un∇un +
∫

Ω
b(x)g(un)un ≤

∫
Ω

M(x)∇u∇un +
∫

Ω
b(x)g(u)un.

We can rewrite this expression as∫
Ω

M(x)∇
(

un −
u
2

)
∇

(
un −

u
2

)
− 1

4

∫
Ω

M(x)∇u∇u

+
∫

Ω
b(x)[g(un)− g(u)](un − u) +

∫
Ω

b(x)g(un)u −
∫

Ω
b(x)g(u)u ≤ 0.

Observe that we have used here the symmetry of the matrix M(x) to obtain the identity
M(x)∇un∇u = M(x)∇u∇un.

Now, as b(x) ≥ 0 and g is increasing by (1.5), then the term
∫

Ω b(x)[g(un)− g(u)](un − u)
is nonnegative and we can drop it. If also we apply the ellipticity condition (1.8) of M(x), we
obtain that

α
∫

Ω

∣∣∣∇ (
un −

u
2

)∣∣∣2 ≤ 1
4

∫
Ω

M(x)∇u∇u −
∫

Ω
b(x)g(un)u +

∫
Ω

b(x)g(u)u. (4.1)

Arguing as in the beginning of the proof of the Theorem 1.1, we can deduce that {un} is
bounded in some Marcinkiewicz space and thus we can apply Lemma 2.6 to assert that
{b(x)g(un)} is bounded in L1(Ω). Thanks to this and to the fact that u ∈ H1

0(Ω) ∩ L∞(Ω),
b(x) ∈ L1(Ω), M(x) is bounded by (1.9) and g is continuous, we can assure that the right
hand side of (4.1) is bounded.

As a consequence, we obtain that {un − u
2} is bounded in H1

0(Ω) and, since u ∈ H1
0(Ω), we

can deduce that {un} is bounded in H1
0(Ω). Thanks to this bound there exists a subsequence

of {un}, still denoted by {un}, and a function v ∈ H1
0(Ω) such that un ⇀ v in H1

0(Ω) and
un → v a.e. in Ω.

Now, if we bear in mind that b(x)g(un) → b(x)g(v) in L1(Ω) by Lemma 2.6 and that
1
n | f (x)g(un)| ≤ | f (x)| ∈ L1(Ω) by (1.7) estimate, we can easily pass to the limit in∫

Ω
M(x)∇un∇φ +

∫
Ω

[
b(x) + 1

n | f (x)|
]
g(un)φ =

∫
Ω

f (x)φ, ∀φ ∈ H1
0(Ω) ∩ L∞(Ω)

to obtain that∫
Ω

M(x)∇v∇φ +
∫

Ω
b(x)g(v)φ =

∫
Ω

f (x)φ, ∀φ ∈ H1
0(Ω) ∩ L∞(Ω)

and thus it is proven that v = u, i.e., that v is the weak solution of (P). Moreover, due to the
uniqueness of the solution u we can affirm that the whole original sequence {un} converges
weakly in H1

0(Ω) to u.
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Observe that if we take b(x) = 0 in (P), then the assumption u ∈ L∞(Ω) is not necessary
in the proof of this theorem. This allows us to state the following result.

Theorem 4.1. Suppose that a(x, s, ξ) = M(x)ξ with M(x) a symmetric matrix satisfying (1.8)
and (1.9). Assume also that b(x) = 0, that f (x) verifies (1.4) and that g satisfies (1.5). If the
weak solution u ∈ H1

0(Ω) of (P) exists, then {un}, the sequence of weak solutions of (Pn) given by
Theorem 2.1, verifies that

un ⇀ u in H1
0(Ω).

To end this paper, we state a remark related with the case in which f is a nonnegative
function.

Remark 4.2. If f ≥ 0 the proofs are easier and stronger results can be proven. This is mainly
due to two facts: {un} is nonnegative and increasing. The monotony of {un} assures the
existence of its a.e. limit and, by Theorem 1.1, this a.e. limit must be u, the entropy solution
of (P).

Observe that this implies that un ≤ u a.e. in Ω for every n ∈ N and thus the assumption
u ∈ L∞(Ω) on Theorem 1.2 implies that {un} is bounded in L∞(Ω). This allows us not only
to prove that theorem in simpler way, but also to show that

un → u in H1
0(Ω).
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