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1 Introduction

Ermakov in [13] in now classical work introduced a canonical nonlinear equation which has
subsequently been established as the base member of two and, in general, multi-component
nonlinear systems with diverse applications in both nonlinear physics and continuum me-
chanics [33]. Thus, in [16,17], what are now termed Ermakov–Ray–Reid systems were derived
which admit a distinctive integral of motion together with concomitant nonlinear superposi-
tion principles. These two-component coupled systems arise notably in nonlinear optics as
detailed in [14, 30, 31]. In [1], what constitutes a Ermakov–Ray–Reid system was derived in
an application of a variational approach to the analysis of elliptic cloud evolution in a Bose-
Einstein condensate.

In [24], a classical 2+1-dimensional rotating shallow water system with an underlying
circular paraboloidal bottom topography was shown to admit an integrable subsystem of
Ermakov–Ray–Reid type. The latter system in that context describes the time-evolution of
the semi-axes of the elliptical moving shoreline on the paraboloidal basin. It is, in addi-
tion, Hamiltonian and this integral of motion allied with the admitted Ermakov invariant
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allows exact solution of the Ermakov–Ray–Reid system. The procedure adopted in [24] had
its genesis in that applied in [18] to construct the general solution of an eight dimensional
nonlinear dynamical system descriptive of the time-evolution of upper ocean warm-core el-
liptical eddies. Therein, representation of this system in terms of modulated versions of the
divergence, spin, shear and normal deformation rates rendered the elliptic warm-core ring
system analytically tractable. Importantly, a relevant class of exact solutions with a Ermakov
connection therein termed pulsrodons was isolated which characteristically both rotate and
pulsate periodically. Lyapunov stability of such pulsrodons and their duals was subsequently
addressed via a Lagrangian treatment in [15]. In [34] pulsrodonic phenomena was exhibited
in a 2+1-dimensional nonlinear system governing rotating homentropic magnetogasdynamics
in a bounded region. In a related development [35], a 2+1-dimensional version of a non-
isothermal gasdynamic system with origin in work of Dyson [12] on spinning gas clouds was
investigated. It was established therein via an elliptic vortex ansatz that the system admits a
Hamiltonian reduction to a particular Ermakov–Ray–Reid system when the adiabatic index
σ = 2.

The preceding attest to the diverse physical applications of the two-component Ermakov–
Ray–Reid systems. In the present context, such a system will be shown in an appendix to
arise via reduction of a three-component hybrid Ermakov–Painlevé I system.

In [36], it was established that a symmetry reduction of a classical 2+1-dimensional N-layer
hydrodynamic system leads naturally to a novel multi-component Ermakov-type system. Im-
portantly, the latter was shown to be iteratively reducible to a system of N− 2 linear equations
augmented by a canonical Ermakov–Ray–Reid system. Moreover sequences of such systems
were shown to be linked via Darboux transformations. Novel links between multi-component
Ermakov systems and classes of many-body problems were subsequently established in [19].
In [29], Ermakov-type systems in two-dimensions were constructed and multi-wave solutions
of a 2+1-dimensional modulated sine-Gordon equation thereby derived. Ermakov systems of
arbitrary order and dimension were constructed in [42] which inherit key characteristics of
the canonical Ermakov–Ray–Reid system.

The connection between the classical Painlevé I–VI equations and symmetry reduction of
solitonic systems is well-documented (see e.g. [9] and literature cited therein). Indeed, the
generic properties of solitonic equations associated with admittance of linear representations
[2] and Bäcklund transformations [37, 41] are likewise possessed by these Painlevé equations.
It is remarked that such a Bäcklund transformation admitted by Painlevé II and its iteration
have application not only in soliton theory but also in the analytic treatment of important
boundary value problems for the celebrated Nernst–Planck system of ion transport [7, 10, 26].

In [20], wave packet representations inserted into a multi-component nonlinear
Schrödinger system which incorporated a de-Broglie–Bohm quantum potential term
resulted in novel hybrid Ermakov–Painlevé II reductions. Therein, a pair of Ermakov–Painlevé
II equations was derived as a reduction of a nonlinear elastodynamic system governing the
coupled stress associated with a class of shear motions. Hybrid Ermakov–Painlevé II-IV sys-
tems have subsequently been the subject of extensive investigation in [21, 22, 25, 38]. In par-
ticular, physical applications of Ermakov–Painlevé II equations have been shown to arise in
such diverse areas as cold plasma physics [28], Korteweg capillarity theory [27] and in multi-
ion Nernst-Planck systems. In the latter context, Dirichlet-type boundary value problems
were analysed in [3] for a Ermakov–Painlevé II reduction of such a three-ion electrolytic sys-
tem. Hybrid Ermakov–Painlevé IV systems were originally derived via symmetry reduction
of a multi-component resonant derivative nonlinear Schrödinger system in [21]. In subse-
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quent work [25], Bäcklund transformations were applied to generate classes of exact solutions
of the Ermakov–Painlevé IV system via the classical Painlevé IV equation. The forms of
the prototype Ermakov–Painlevé II–IV equations have been set down explicitly in [4]. Two-
point boundary value problems of Dirichlet-type for the single component base Ermakov–
Painlevé IV equation were analysed in [5]. In addition, therein it was established that admitted
Ermakov invariants can be used in the systematic generation of a coupled Ermakov–Painlevé
IV system in terms of seed solutions of the canonical Painlevé IV equation.

The nonlinear coupled systems as introduced in [16, 17] that have come to be known as
Ermakov–Ray–Reid systems adopt the form

ẍ + ω(t)x =
1

x2y
Φ(y/x),

ÿ + ω(t)y =
1

xy2 Ψ(x/y)

and admit the distinctive integral of motion

I =
1
2
(xẏ− yẋ)2 +

∫ y/x
Φ(z)dz +

∫ x/y
Ψ(w)dw

together with concomitant nonlinear superposition principles. The latter which are charac-
teristic of the system are not of the type generic in soliton theory which are generated via
invariance under Bäcklund transformations. The classical single component Ermakov equa-
tion of [13], namely

ρ̈ + ω(t)ρ = δ/ρ3

admits the nonlinear superposition principle

ρ =
√

c1α2(t) + 2c2α(t)β(t) + c3β2(t)

wherein α(t), β(t) are two linearly independent solutions of

σ̈ + ω(t)σ = 0

with corresponding constant WronskianW = αβ̇− βα̇ with constants c1 such that

c1c3 − c2
2 = δ/W2 .

This result and its extensions are readily derived via Lie group methods [32, 40]. The preced-
ing nonlinear superposition principle may be applied in the systematic reduction via recipro-
cal transformations of Ermakov-modulated solitonic systems to their canonical unmodulated
counterparts [39].

In [6], the Ermakov–Ray–Reid system was reduced to its associated autonomous form via
application of a novel class of involutory transformations. It was demonstrated thereby that
the system admits an underlying linear structure albeit not of the type generic to solitonic
systems.

Painlevé I has been derived in [8] via the classical Lie group procedure as a symmetry
reduction of the solitonic Boussinesq equation. The latter arises in diverse physical appli-
cations such as long wave propagation in shallow water hydrodynamics, nonlinear lattice
theory and plasma physics. Here a proto-type Ermakov–Painlevé I equation is introduced
and a homogeneous Dirichlet-type boundary value problem analysed. In addition, a novel
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Ermakov–Painlevé I system is set down which is reducible via an involutory transforma-
tion to the autonomous Ermakov–Ray–Reid system augmented by a single component hybrid
Ermakov–Painlevé equation. Hamiltonian such systems are delimited.

The paper is organised as follows. The next section is devoted to the search of classical so-
lutions to a homogeneous Dirichlet problem for a Ermakov–Painlevé I equation. Furthermore,
the order of the zeros at the endpoints is analysed and an upper bound for the distance be-
tween distinct solutions is obtained. The main tool is the method of upper and lower solutions,
combined with a Cantor diagonal argument. Finally, a two-component Ermakov–Painlevé I
system with underlying Hamiltonian structure is set down and an associated Ermakov–Ray–
Reid system constructed in the Appendix.

2 A Dirichlet problem

Here, a classical solution ρ(t) of the Ermakov–Painlevé I equation

ρ′′(t) =

[
5
(

ρ′(t)
ρ(t)

)2

− t
ρ(t)4

4

]
ρ(t)− 3

2ρ(t)3 (2.1)

is sought over the interval (0, 1) subject to the boundary conditions

ρ(0) = ρ(1) = 0. (2.2)

It is seen that the EPI equation (2.1) is invariant under ρ → −ρ and in the sequel attention is
restricted to solutions ρ(t) > 0 of the boundary value problem determined by (2.1)–(2.2).

Theorem 2.1. Boundary value problem (2.1)–(2.2) has at least one solution ρ ∈ C[0, 1] ∩ C2(0, 1)
such that ρ(t) > 0 for t ∈ (0, 1).

To establish this result, let us recall that the transformation w = ρ−4 yields the standard
Painlevé I equation

w′′(t) = 6w(t)2 + t.

The strategy shall consist in proving the existence of a monotone sequence 0 < w1 < w2 . . .
such that

w′′n(t) = 6wn(t)2 + t, t ∈ (0, 1)

wn(0) = wn(1) = n
(2.3)

and set ρ as the limit of the sequence {w−1/4
n }. However, it is not clear a priori whether or not

the limit function w(t) := limn→∞ wn(t) is continuous and satisfies w(t) < ∞ for all t ∈ (0, 1).
In order to circumvent this impediment, we shall give a location result with the aid of the
method of upper and lower solutions. The following elementary result suffices in this regard
(see e.g. [11, Ch. 2]):

Lemma 2.2. Let f : [0, 1]× [0,+∞) → R be continuous and let R, S > 0. Assume that the smooth
functions α, β satisfy

α′′(t) > f (t, α(t)), β′′(t) < f (t, β(t)) t ∈ (0, 1)

α(0) ≤ R ≤ β(0), α(1) ≤ S ≤ β(1),
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and 0 ≤ α(t) < β(t) for all t ∈ (0, 1). Then the Dirichlet boundary value problem

u′′(t) = f (t, u(t)), u(0) = R, u(1) = S

has at least one solution u with α(t) < u(t) < β(t) for t ∈ (0, 1). If furthermore f is nondecreasing
with respect to its second variable, then the boundary value problem has no other (positive) solutions.

The next lemma provides an ordered couple (αn, βn) of positive lower and upper solutions
for (2.3).

Lemma 2.3. There exist unique αn, βn with 0 < αn(t) < βn(t) < n for t ∈ (0, 1) such that

α′′n(t) = 6αn(t)2 + 1, β′′n(t) = 6βn(t)2

αn(0) = αn(1) = βn(0) = βn(1) = n.

Moreover, mn := mint∈[0,1] β(t) satisfies mn = β
( 1

2

)
and

c ≤ mn ≤ C

for constants C > c > 0 independent of n.

Proof. Let u(t) :=
(
t− 1

2

)2
and v(t) ≡ n, then, for t ∈ (0, 1),

u′′(t) ≡ 2 > 6u(t)2 + 1, v′′(t) ≡ 0 < 6v(t)2 < 6v(t)2 + 1

and 0 ≤ u(t) < v(t). From Lemma 2.2, the existence and uniqueness of αn between u and
v follows. Next, the pair (αn, n) is adopted as an ordered couple of a lower and an upper
solution for the problem β′′ = 6β2 which, in turn, provides the existence and uniqueness of
βn, with αn < βn < n.

Next, multiplication of the equality β′′n = 6β2
n by β′n and integration yields

β′n(t)
2 = 4βn(t)3 + A

for some constant A. By virtue of convexity, it follows that βn achieves a unique minimum
value mn < n at some t0 ∈ (0, 1). It is deduced that A = −4m3

n and

β′n(t) =

{
−2
√

βn(t)3 −m3
n, t ≤ t0

2
√

βn(t)3 −m3
n, t > t0.

Thus, for t ≤ t0 we obtain

−
∫ t

0

β′n(s)ds√
βn(s)3 −m3

n
= 2t

and setting u := βn(s)
mn

it follows that

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2t.

Analogously, for t > t0 it is seen that

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2(1− t).
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In particular, letting t→ t0 it follows that 2t0 = 2(1− t0), that is, t0 = 1
2 . Furthermore,

m−1/2
n

∫ n/mn

1

du√
u3 − 1

= 1,

whence

m1/2
n =

∫ n/mn

1

du√
u3 − 1

≤
∫ ∞

1

du√
u3 − 1

< ∞.

This gives the inequality mn ≤ C and, for n ≥ C + 1

m1/2
n =

∫ n/mn

1

du√
u3 − 1

≥
∫ 1+ 1

C

1

du√
u3 − 1

,

so mn ≥ c for some constant c > 0 independent of n.

Remark 2.4. With regard to the preceding, the fact that the minimum mn is achieved at t0 = 1
2

follows directly by noticing that βn is symmetric, that is, βn(t) = βn(1− t). Indeed, this is due
to uniqueness since βn(1− t)′′ = β′′n(1− t) = 6βn(1− t)2 and βn(1− 0) = βn(1− 1) = n. A
similar argument holds for αn.

As a corollary, we obtain:

Lemma 2.5. Boundary value problem for Painlevé I (2.3) has a unique positive solution wn with
αn < wn < βn.

Next, we shall prove a monotonicity property.

Lemma 2.6. The sequences {αn}, {βn} and {wn} are strictly nondecreasing.

Proof. The claim is here proved just for {wn}. The other cases are analogous. Assume that
wn+1 − wn achieves its absolute minimum at some t̂. If wn+1(t̂) < wn(t̂), then t̂ ∈ (0, 1) and

0 ≤ (wn+1 − wn)
′′(t̂) = 6(wn+1 + wn)(t̂)(wn+1 − wn)(t̂) < 0,

a contradiction. Furthermore, because (wn+1 − wn)′(t̂) = 0, it is deduced that the equality
wn+1(t̂) = wn(t̂) cannot hold either, due to the uniqueness of solutions of the initial value
problem for the equation w′′ = 6w2 + t.

As a consequence of the preceding lemma, we may define the functions α, β, w : [0, 1] →
[0,+∞] as the respective pointwise limits of the sequences {αn}, {βn} and {wn}. It is clear that
α ≤ w ≤ β; however, it remains to prove that w(t) is finite and satisfies the Painlevé I equation
for t ∈ (0, 1). With this in mind, it is noted that the monotone and bounded sequence {mn}
converges to a value m = β

( 1
2

)
∈ (0,+∞) and, for t ∈

(
0, 1

2

)
, the implicit formula

m−1/2
n

∫ n/mn

βn(t)/mn

du√
u3 − 1

= 2t.

implies, when passing to the limit, that

m−1/2
∫ ∞

β(t)/m

du√
u3 − 1

= 2t.

This shows that β(t) is finite and the same conclusion is obtained for t ∈
( 1

2 , 1
)
; thus, w(t) <

+∞ for all t ∈ (0, 1). Moreover, the previous identity also implies that β is smooth and satisfies
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the equality β′′(t) = 6β(t)2. Next, fix n0 > m and a < b the (unique) values in (0, 1) such that
αn0(a) = αn0(b) = m. This implies that wn(t) > m for all n ≥ n0 and t /∈ [a, b]. In particular,
if the absolute minimum of wn is achieved at tn ∈ (0, 1), then tn ∈ [a, b] and we may take a
subsequence tnj → t∗ ∈ [a, b]. Thus, from the identity

w′n(t) =
∫ t

tn

(6wn(s)2 + s) ds

and by the monotone convergence theorem we obtain:

w′nj
(t)→

∫ t

t∗
(6w(s)2 + s) ds.

Now writing wnj(t) = wnj(t∗) +
∫ t

t∗
w′nj

(s) ds, it is immediately verified that w is smooth and
satisfies the Painlevé I equation for all t ∈ (0, 1). Hence ρ := w−1/4 is positive and satisfies
(2.1) for t ∈ (0, 1). It remains to prove that ρ(0+) = ρ(1−) = 0. To this end, for arbitrary
M > 0 fix n0 > M and δ > 0 such that αn0(t) > M when t < δ or t > 1− δ. Since {αn}
is increasing, it follows that α(t) > M when t < δ or t > 1 − δ; accordingly, it has been
established that α(0+) = α(1−) = +∞ and, consequently, ρ is extended continuously to a
solution of (2.1)–(2.2).

2.1 Order of the zeros

This section is devoted to investigation of the behaviour of the classical positive solutions of
(2.1)–(2.2) in the neighbourhood of the endpoints of the interval. With this in mind, set as
before w := ρ−4 satisfying the Painlevé I equation and let tmin ∈ (0, 1) be the value in which
the absolute minimum wmin of w is achieved. For t ∈ (0, tmin), the inequalities 6w(t)2 <

w′′(t) < 6w(t)2 + 1 yield

6w(t)2w′(t) > w′′(t)w′(t) > 6w(t)2w′(t) + w′(t)

and, upon integration,

4w(t)3 − 4w3
min < w′(t)2 < 4w(t)3 + 2w(t)− [4w3

min + 2wmin].

Using the identity
√

A + B−
√

A = B√
A+B+

√
A

for A, A + B > 0, we may write

2w(t)3/2 − R(t) < −w′(t) < 2w(t)3/2 + S(t)

where, due to the continuity of the solution ρ, the positive functions R and S can be made
arbitrarily small when t is close to 0. In fact, given r ∈ (0, 1) it suffices to fix δ0 > 0 such that
R(t), S(t) < 2rw(t)3/2 for all t < δ0. This implies, for 0 < t < δ < δ0,

1− r <
(

w−1/2
)′

(t) < 1 + r,

whence
(1− r)(δ− t) < w−1/2(δ)− w−1/2(t) < (1 + r)(δ− t)

and letting t→ 0 we obtain:

(1− r)δ ≤ w−1/2(δ) ≤ (1 + r)δ
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that is √
(1− r)δ ≤ ρ(δ) ≤

√
(1 + r)δ.

Since r is arbitrary, we conclude that ρ(δ) ∼
√

δ for small values of δ. Analogously, it is
verified that ρ(ξ) ∼

√
1− ξ when ξ is close to 1. The previous conclusions allow a more

precise computation of the solution near the endpoints of the interval. Indeed, it is observed
that the functions R and S behave respectively as

R(t) = R0(t)w(t)−3/2, S(t) = S0(t)w(t)−1/2

for some bounded positive functions R0 and S0, so for 0 < t < δ sufficiently small it is
obtained: √

1−O(δ4) ≤ ρ(δ)√
δ
≤
√

1 + O(δ6).

In particular, this shows that ρ(t) ∼
√

t + O(t5/2) as t ∼ 0 and, analogously, ρ(t) ∼
√

1− t +
O((1− t)5/2) as t ∼ 1.

2.2 The uniqueness problem

In this section, it is established that the solution given via Theorem 2.1 is maximal, that is, any
other possible solution ρ̃ of (2.1)–(2.2) such that ρ̃ 6= ρ satisfies ρ̃(t) < ρ(t) for all t ∈ (0, 1).
Furthermore, if ρ̃ is the limit of a sequence of solutions of (2.1) that are strictly positive in
[0, 1], then ρ̃ = ρ. Accordingly, the solution obtained in the preceding sections is the only one
that can be defined as the limit of approximate solutions of the non-homogeneous Dirichlet
problem.

The proof of the previous assertions is deduced in a straightforward manner from the
following:

Lemma 2.7. Let ρ1, ρ2 ∈ C2(0, 1) be distinct strictly positive solutions of (2.1). Then ρ1 and ρ2 cross
each other at most in one value t ∈ (0, 1).

Proof. Due to the uniqueness for the initial value problem, it is clear that all possible cross
points are isolated. Suppose that a < b are two consecutive cross points and, for example, that
ρ1 < ρ2 in (a, b), then the corresponding functions wj := ρ−4

j satisfy w1 > w2 and

(w1 − w2)
′′ = 6(w1 + w2)(w1 − w2) > 0

over (a, b), which contradicts the fact that w1 = w2 for t = a, b.

Proposition 2.8. Let ρ be a positive solution of (2.1)–(2.2) such that ρ is the limit of a sequence {ρn}
of solutions of (2.1) with ρn > 0 on [0, 1]. If ρ̃ is any distinct positive solution of (2.1)–(2.2), then
ρ̃(t) < ρ(t) for all t ∈ (0, 1).

Proof. Suppose that ρn(t) < ρ̃(t) for some t ∈ (0, 1). Then, because ρn(0) and ρn(1) are strictly
positive, it follows that ρn crosses ρ̃ in more than one point, a contradiction. This shows that
ρn(t) ≥ ρ̃(t) for all t and, consequently, ρ ≥ ρ̃. Furthermore, if ρ(t) = ρ̃(t) for some t, then
ρ′(t) = ρ̃′(t), whence ρ ≡ ρ̃.

In view of the latter result, it might be conjectured that the positive solution of (2.1)–(2.2) is,
indeed, unique. However, our conclusions do not exclude the existence of “small” solutions.
The next result provides a lower bound for such small solutions.
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Proposition 2.9. Let ρ be a positive solution of (2.1)–(2.2) and let β be defined as before. Then
ρ(t) > β(t)−1/4 for all t ∈ (0, 1).

Proof. Observe, at the outset, that β is the unique positive solution of the problem v′′(t) =

6v(t)2 satisfying v(0+) = v(1−) = +∞. Indeed, it is seen as before that v achieves its unique
minimum at t = 1

2 , with

v
( 1

2

)1/2
=
∫ ∞

1

du√
u3 − 1

= β
( 1

2

)1/2
.

Since, furthermore, v′
( 1

2

)
= 0 = β′

( 1
2

)
, it is deduced that v ≡ β. Next, suppose that ρ(t0) ≤

β(t0)−1/4 for some t0 ∈ (0, 1), then w := ρ−4 satisfies

w′′(t) = 6w(t)2 + t > 6w(t)2, w(0+) = w(1−) = +∞.

On the other hand, setting k ≥ 1 large enough, it is verified that

(β + kw)′′(t) = 6β(t)2 + 6kw(t)2 + kt < 6[β(t) + kw(t)]2.

Thus, (w, β + kw) is an ordered couple of a lower and an upper solution for the problem
v′′ = 6v2 and a diagonal argument proves the existence of a solution v with w(t) < v(t) <

β(t) + kw(t) for all t ∈ (0, 1). A contradiction then arises from the fact that v ≡ β.

As a consequence, a somewhat sharp bound for the distance between distinct solutions is
readily computed. Let w be the solution of the Painlevé I equation constructed in the proof of
Theorem 2.1 and define wmin as the minimum value of w. As previously, w is a lower solution
for the problem v′′ = 6v2 and setting c > 0 it is seen that

(w + c)′′(t) = 6w(t)2 + t < 6[w(t) + c]2,

provided that t < 6[c2 + 2w(t)c]. Thus, taking

c :=

√
w2

min +
1
6
− wmin

it follows that w(t) < β(t) < w(t) + c for all t ∈ (0, 1). For instance, a rough estimation shows
that, since β

( 1
2

)
is approximately equal to 5.9, then the optimal value of c is smaller than

0.015. In particular, this yields the bound

β(t)−1/4 < ρ(t) < [β(t)− c]−1/4 t ∈ (0, 1)

for all possible solutions of (2.1)–(2.2).

Appendix. A Hamiltonian hybrid Ermakov–Painlevé I system

Just as the classical Ermakov equation of [13] constitutes the base one-component reduction
of the Ermakov–Ray–Reid system of [16, 17], so the nonlinear Ermakov–Painlevé I equation,
which is the subject of the present paper, may be embedded in a two-component hybrid
Ermakov–Painlevé I system. Ermakov–Painlevé II–IV systems and their properties have been
placed in a general solitonic context in [23]. Here, by way of illustration, a two-component
Ermakov–Painlevé I system with underlying Hamiltonian structure is set down and an asso-
ciated Ermakov–Ray–Reid system constructed.
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Here, a Ermakov–Painlevé I system is introduced according to

ẍ +

[
−5
(

ρ̇

ρ

)2

+
tρ4

4
+

3
2ρ4

]
x =

1
x2y

Φ(y/x),

ÿ +

[
−5
(

ρ̇

ρ

)2

+
tρ4

4
+

3
2ρ4

]
y =

1
xy2 Ψ(x/y)

wherein ρ is governed by the single component EPI equation

ρ̈ +

[
−5
(

ρ̇

ρ

)2

+
tρ4

4
+

3
2ρ4

]
ρ = 0 .

Thus,
ρẍ− ρ̈x =

ρ

x2y
Φ(y/x), ρÿ− ρ̈y =

ρ

xy2 Ψ(x/y) .

whence, on introduction of the involutory transformation

x∗ = x/ρ , y∗ = y/ρ ,

dt∗ = ρ−2dt

ρ∗ = 1/ρ

 R

with R2 = I, reduction is made to the canonical autonomous Ermakov–Ray–Reid system

x∗t∗t∗ =
1

x∗2y∗
Φ(y∗/x∗), y∗t∗t∗ =

1
x∗y∗2

Ψ(x∗/y∗) .

If the Ermakov–Painlevé I system has the J-parametric representation

ẍ +

[
−5
(

ρ̇

ρ

)2

+
tρ4

4
+

3
2ρ4

]
x =

2
x3 J(y/x) +

y
x4 J′(y/x)

ÿ +

[
−5
(

ρ̇

ρ

)2

+
tρ4

4
+

3
2ρ4

]
y = − 1

x3 J′(y/x)

augmented by the canonical single component EPI equation, then application of the involutory
transformation R produces the parametrisation of the canonical Hamiltonian Ermakov–Ray–
Reid system as set down in a nonlinear optics context in [31]

x∗t∗t∗ =
2

x∗3
J(y∗/x∗) +

y∗

x∗4
J′(y∗/x∗) ,

y∗t∗t∗ = −
1

x∗3
J′(y∗/x∗) .

The latter admits the Hamiltonian integral of motion

H∗ = 1
2
[
x∗2t∗ + y∗2t∗

]
+

1
x∗2

J(y∗/x∗) .

which, together with the Ermakov invariant I∗ allows the systematic integration of the canoni-
cal Hamiltonian system. It is remarked that such Ermakov–Ray–Reid systems with underlying
Hamiltonian structure occur in diverse physical applications.
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