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1 Introduction

Consider differential systems of the form{
x′ = −y + P,

y′ = x + Q,
(1.1)

where P = ∑∞
k=2 Pk(x, y) and Q = ∑∞

k=2 Qk(x, y) where, Pk and Qk are homogeneous polyno-
mials in x and y of degree k . If every orbit in a punctured neighbourhood of O is a nontrivial
cycle then the origin point O(0, 0) is said to be a center. In particular, if every cycle in a
punctured neighbourhood of O has the same period then this origin point is said to be an
isochronous center. Christian Huygens is credited with being one of the first scholars to study
isochronous systems in the XVII century, even before the development of the differential cal-
culus. Huygens investigated the cycloidal pendulum, which has isochronous oscillations in
opposition to the monotonicity of the period of the usual pendulum. It is probably the first
example of a nonlinear isochrone. For more details see [10, 12]. However, it is far from being
completely resolved, beside some specific families of vector fields [4, 7].

By [1], we know that for any analytic system (1.1), the existence of an analytic commu-
tator with linear part (x, y)t is a necessary and sufficient condition for the origin to be an
isochronous center. In [2,3] Algaba and Reyes have studied a particular case of this family are
the plane polynomial systems which have a center focus equilibrium at the origin and whose
angular speed is constant. In these systems, the origin is the only finite equilibrium and if
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it is a center, it will be automatically isochronous. These systems, up to a linear change of
variable, have the following form:

x′ = −y + xH(x, y), y′ = x + yH(x, y), (1.2)

H(0, 0) = 0. They pointed out that if (1.2) has an analytic commutator then it is in the
form of (U, V)t = (xK(x, y), yK(x, y))t, where K and H are polynomials of the same degree.
They also characterize the system x′ = −y + Ps(x, y) + xH(x, y), y′ = x + Qs(x, y) + yH(x, y),
where H(x, y) is a polynomial with degree greater than or equal to s, if it has a polynomial
commutator, then it is in the form of (U, V)t = (us(x, y) + xK(x, y), vs(x, y) + yK(x, y))t, here
Ps, Qs, us, vs are homogeneous polynomials of degree s.

There are only a few families of polynomial differential systems in which a complete
classification of the isochronous centers is known, and almost all of them have polynomial
commutator. The quadratic isochronous centers, characterized by Loud [17]. In Pleshkan
[18], cubic isochronous centers with homogeneous nonlinear part are settled. In Christopher
and Devlin[6], the isochronous centers of the Kukles family are obtained. Commutators of
quadratic centers are computed in Sabatini [19]; commutators of cubic systems with homoge-
neous nonlinear part can be found in Gasull et al. [11]; commutators for the Kukles system
can be seen in Volokitin and Ivanov [20]. The first example of a polynomial isochronous center
without polynomial commutator is found in Devlin [8].

A center of (1.1) is called a Weak Center if the Poincaré–Liapunov first integral can be
written as H = 1

2 (x2 + y2)(1 + h.o.t.). By literature [13]-[16] we know that a center of an
analytic or polynomial differential system (1.1) is a weak center if and only if it can be written
as {

x′ = −yΛ̄ + xΩ,

y′ = xΛ̄ + yΩ,
(1.3)

where Λ̄ = 1 + Λ(x, y) and Ω = Ω(x, y) are analytic functions or polynomials such that
Λ(0, 0) = Ω(0, 0) = 0. The class of differential systems (1.3) is called the Λ–Ω system.
The weak centers contain the uniform isochronous centers and the holomorphic isochronous
centers [13], they also contain the class of centers studied by Alwash and Lloyd [5], but they
do not coincide with all classes of isochronous centers [13], because in general weak centers
are not isochronous.

In [14, 16] Llibre et al. put forward such conjecture.

Conjecture. The polynomial differential system of degree m{
x′ = −y(1 + µ(a2x − a1y)) + x((a1x + a2y) + Φm−1(x, y)),

y′ = x(1 + µ(a2x − a1y)) + y((a1x + a2y) + Φm−1(x, y)),
(1.4)

where (µ + m − 2)(a2
1 + a2

2) ̸= 0, and Φm−1(x, y) is a homogeneous polynomial of degree
m − 1 has a weak center at the origin if and only if system (1.4) after a linear change of
variables (x, y) → (X, Y) is invariant under the transformations (X, Y, t) → (−X, Y,−t). They
have proved the conjecture holds for m = 2, 3, 4, 5, 6. And remarked that the only difficulty
for proving conjecture for the Λ–Ω systems of degree m with m > 6 is the huge number of
computations for obtaining the conditions that characterize the centers. In [21, 22] we use a
method different from Llibre [14] and more simply, without huge number of computation, get
the necessary and sufficient conditions for the origin point of Λ–Ω systems:{

x′ = −y(1 + µ(a2x − a1y)) + x(ν(a1x + a2y) + Ψm−1 + Ψ2m−1),

y′ = x(1 + µ(a2x − a1y)) + y(ν(a1x + a2y) + Ψm−1 + Ψ2m−1)
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and {
x′ = −y(1 + µ(a2x − a1y)) + x(ν(a1x + a2y) + Ψ2 + Ψn),

y′ = x(1 + µ(a2x − a1y)) + y(ν(a1x + a2y) + Ψ2 + Ψn),

where m > 2, n ≥ 5 and Ψk is a homogeneous polynomial of degree k, to be a center. Of
special note is that the function Ω in the above two systems is a polynomial of missing some
terms. For the polynomial differential system of higher degree, especially when the polyno-
mial has no missing any term, it is difficult to derive the necessary conditions for the singular
point being a center by either the Lyapunov’s power series method or Poincaré’s successor
function method. Although according to Hilbert’s finite basis theory, the necessary conditions
must be obtained in finite steps, how much this finite number is very difficult to know [9]. To
avoid finding this finite number, we will find the central conditions by determining when it
has an analytic commutator.

In the following we will discuss the center problem for the Λ–Ω system (1.3) with Ω no
missing any terms. Specifically, consider Λ–Ω differential systems:{

x′ = −y(1 + µ(a1y − a2x)) + x(λ(a1x + a2y) + H(x, y)),

y′ = x(1 + µ(a1y − a2x)) + y(λ(a1x + a2y) + H(x, y))
(1.5)

and {
x′ = −y(1 + µ(a1y − a2x) + ϕ2(x, y)) + x(λ(a1x + a2y) + ψ2(x, y) + H(x, y)),

y′ = x(1 + µ(a1y − a2x) + ϕ2(x, y)) + y(λ(a1x + a2y) + ψ2(x, y) + H(x, y)),
(1.6)

where λ, µ, a1, a2 are real numbers such that µ(a2
1 + a2

2) ̸= 0, H(x, y) = ∑∞
k=2 hk(x, y) or

H(x, y) = ∑n
k=3 hk(x, y), hk(x, y) is a homogeneous polynomial of degree k. We will give

the necessary and sufficient conditions for these two families of differential systems to have
a polynomial commutator or analytic commutator, apply the obtained results to judge the
origin point of their to be a center (isochronous center, weak center).

2 Analytic commutator

As a2
1 + a2

2 ̸= 0, taking X = a1x + a2y, Y = a1y − a2x, the system (1.5) becomes{
X′ = −Y(1 + µY) + X(λX + H(X, Y)),

Y′ = X(1 + µY) + Y(λX + H(X, Y)).

For convenience, let us consider{
x′ = −y(1 + µy) + x(λx + H(x, y)) = P(x, y),

y′ = x(1 + µy) + y(λx + H(x, y)) = Q(x, y),
(2.1)

where µ ̸= 0, H = ∑∞
i=2 hi(x, y), hi(x, y) is homogeneous polynomials of degree i. By [2], if

system (2.1) has an analytic commutator, then either it has the form

(U, V)t = (x + u2 + xK(x, y), y + v2 + yK(x, y))t (2.2)

or
(U, V)t = (u2 + xK(x, y), v2 + yK(x, y))t,
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where K = ∑∞
i=2 ki(x, y), ki(x, y) is homogeneous polynomials of degree i. In this paper, we

are only interested in the center problem for system (2.1), therefore, we will only discuss when
does (2.1) have a commutator in the form of (2.2)?

Lemma 2.1. If xhn−1 + ykn−1 = 0, then

u2hn−1 − P2kn−1 − x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2) = µ(n − 3)(x2 + y2)kn−1, (2.3)

where u2 = 2µxy, v2 = µ(y2 − x2), P2 = µ(x2 − y2), Q2 = 2µxy.

Proof. As xhn−1 + ykn−1 = 0, xhn−1 x = −hn−1 − ykn−1 x, xhn−1 y = −kn−1 − ykn−1 y, thus

x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2)

= − u2(hn−1 + ykn−1 x)− v2(kn−1 + ykn−1 y)− kn−1 xP2 − kn−1 yQ2

= µ(x2 + y2)kn−1 − µ(x2 + y2)(xkn−1 x + ykn−1 y)

= (2 − n)µ(x2 + y2)kn−1, u2hn−1 − P2kn−1

= 2µxyhn−1 − µ(x2 − y2)kn−1 = −µ(x2 + y2)kn−1.

Add the above two equations, it follows that equation (2.3) is valid.

Lemma 2.2. For n-th degree homogeneous polynomial functions hn(x, y) and kn(x, y), if they satisfy

xhn + ykn = 0, (2.4)

and
x(nhn + ykn x − xkn y) = (n − 3)µ(x2 + y2)kn−1, (n = 3, 4, . . . ) (2.5)

then

hn =
n−3

∑
j=0

(−1)j+1µj+1λn−jC
j
n−3xn−1−jyj+1, (n = 3, 4, 5, . . . .) (2.6)

and

kn =
n−3

∑
j=0

(−1)jλn−jµ
jCj

n−3xn−jyj, (n = 3, 4, 5, . . . ), (2.7)

where λi (i = 3, 4, . . . ) are real numbers.

Proof. Based on the assumptions, when n = 3 we have

xh3 + yk3 = 0, 3h3 + yk3 x − xk3 y = 0.

Putting x = cos θ, y = sin θ, the above equations become

cos θh3(cos θ, sin θ) + sin θk3(cos θ, sin θ) = 0,

dk3(cos θ, sin θ)

dθ
= −3 tan θk3(cos θ, sin θ),

solving these equations we deduce that

k3(cos θ, sin θ) = λ3 cos3 θ.

Similarly, when n = 4 we obtain

dk4(cos θ, sin θ)

dθ
= −4 tan θk4(cos θ, sin θ)− µ sec θk3(cos θ, sin θ),
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solving this linear equation we have

k4(cos θ, sin θ) = cos4 θ(λ4 − λ3µ tan θ).

Suppose that

kn(cos θ, sin θ) = cosn θ
n−3

∑
j=0

(−1)jCj
n−3λn−jµ

j tanj θ. (2.8)

Next we will prove that (2.8) is also true when n is replaced by n + 1.
In fact, by assuming we obtain

dkn+1(cos θ, sin θ)

dθ
= −(n + 1) tan θkn+1 − (n − 2)µ sec θkn(cos θ, sin θ).

Substituting (2.8) into the above yields

dkn+1(cos θ, sin θ)

dθ
= −(n + 1) tan θkn+1 − (n − 2) cosn−1 θ

(
n−3

∑
j=0

(−1)jCj
n−3λn−jµ

j+1 tanj θ

)
,

solving this linear equation we get

kn+1 = cosn+1 θ

(
λn+1 − (n − 2)

∫
cos−2 θ

(
n−3

∑
j=0

(−1)jCj
n−3λn−jµ

j+1 j tanj θ

)
dθ

)

= cosn+1 θ

(
λn+1 − (n − 2)

n−3

∑
j=0

(−1)jCj
n−3λn−j

1
j + 1

µj+1 tanj+1 θ

)

= cosn+1 θ
n−2

∑
j=0

(−1)jCj
n−2λn+1−jµ

j tanj θ.

Therefore, by mathematical induction, the relation (2.8) is valid for any n ≥ 3. So, the relations
(2.6) and (2.7) are valid.

Theorem 2.3. The system (2.1) has an analytic commutator in the form of (2.2), if and only if

λ = µ,

u2 = 2µxy, v2 = µ(y2 − x2),

h2 = −λ2xy, k2 = λ2x2,

hn =
n−3

∑
j=0

(−1)j+1λn−jC
j
n−3xn−1−jyj+1, (n = 3, 4, 5, . . . )

kn =
n−3

∑
j=0

(−1)jλn−jC
j
n−3xn−jyj, (n = 3, 4, 5, . . . ),

where λi (i = 2, 3, 4, . . . ) are real numbers.
Moreover, the origin point of (2.1) is a center and isochronous center.
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Proof. By [2], the vector (2.2) is an commutator of system (2.1) if and only if the Lie bracket
vanishes, that is, (

Ux Uy

Vx Vy

)
·
(

P
Q

)
−
(

Px Py

Qx Qy

)
·
(

U
V

)
= 0, (2.9)

expanding it(
1 + u2 x +

∞

∑
i=2

(xki)x

)(
− y + P2 +

∞

∑
i=2

xhi

)
+

(
u2 y +

∞

∑
i=2

(xki)y

)(
x + Q2 +

∞

∑
i=2

yhi

)

=

(
P2 x +

∞

∑
i=2

(xhi)x

)(
x + u2 +

∞

∑
i=2

xki

)
+

(
− 1 + P2 y +

∞

∑
i=2

(xhi)y

)(
y + v2 +

∞

∑
i=2

yki

)
, (2.10)

(
v2 x +

∞

∑
i=2

(yki)x

)(
− y + P2 +

∞

∑
i=2

xhi

)
+

(
1 + v2 y +

∞

∑
i=2

(yki)y

)(
x + Q2 +

∞

∑
i=2

yhi

)

=

(
1 + Q2 x +

∞

∑
i=2

(yhi)x

)(
x + u2 +

∞

∑
i=2

xki

)
+

(
Q2 y +

∞

∑
i=2

(yhi)y

)(
y + v2 +

∞

∑
i=2

yki

)
, (2.11)

where P2 = λx2 − µy2, Q2 = (λ + µ)xy.
From the terms of degree 2 of (2.10) and (2.11) equal to zero follows that{

v2 = P2 + yu2 x − xu2 y,

u2 = −Q2 + xv2 y − yv2 x.
(2.12)

Solving (2.12) we get
u2 = (λ + µ)xy, v2 = λy2 − µx2. (2.13)

By the terms of degree 3 of (2.10) and (2.11) equal to zero we obtain{
u2 xP2 + u2 yQ2 − P2 xu2 − P2 yv2 = x(2h2 + yk2 x − xk2 y),

v2 xP2 + v2 yQ2 − Q2 xu2 − Q2 yv2 = y(2h2 + yk2 x − xk2 y).
(2.14)

The first equation of above multiplied by y minus the second equation multiplied by x, we
deduce that

P2(yu2 x − xv2 x) + Q2(yu2 y − xv2 y) = u2(yP2 x − xQ2 x) + v2(yP2 y − xQ2 y),

which yields µ(λ − µ) = 0, in view of µ ̸= 0, then λ = µ. Therefore,

u2 = 2µxy, v2 = µ(y2 − x2), P2 = µ(x2 − y2), Q2 = 2µxy. (2.15)

Substituting (2.15) into (2.14) which follows that

2h2 + yk2 x − xk2 y = 0. (2.16)

From the terms of degree 4 of equations (2.10) and (2.11) equal to zero follows that

u2h2 − P2k2 = x(3h3 + h2 xu2 + h2 yv2 − k2 xP2 − k2 yQ2 + yk3 x − xk3 y), (2.17)

v2h2 − Q2k2 = y(3h3 + h2 xu2 + h2 yv2 − k2 xP2 − k2 yQ2 + yk3 x − xk3 y). (2.18)
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Equation (2.17) multiplied by y minus (2.18) multiplied by x which implies that

h2(yu2 − xv2) = k2(yP2 − xQ2),

substituting (2.15) into the above equation we get

xh2 + yk2 = 0. (2.19)

Solving equations (2.16) and (2.19) we deduce that

h2 = −λ2xy, k2 = λ2x2, (2.20)

where λ2 is a constant. Substituting (2.20) into (2.17) we get

3h3 + yk3 x − xk3 y = 0. (2.21)

Similarly, by the terms of degree n + 1 of equations (2.10) and (2.11) equal to zero we
deduce that

u2hn−1 − P2kn−1 = x(nhn + hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2 + ykn x − xkn y), (2.22)

v2hn−1 − Q2kn−1 = y(nhn + hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2 + ykn x − xkn y), (2.23)

from these equations follow that
xhn−1 + ykn−1 = 0. (2.24)

Using (2.24) and Lemma 2.1 we get

u2hn−1 − P2kn−1 − x(hn−1 xu2 + hn−1 yv2 − kn−1 xP2 − kn−1 yQ2) = µ(n − 3)(x2 + y2)kn−1.

Substituting this equation into (2.22) which yields that

x(nhn + ykn x − xkn y) = (n − 3)µ(x2 + y2)kn−1. (2.25)

Similarly, using the terms of degree n + 2 of (2.10) and (2.11) equal to zero we obtain

xhn + ykn = 0. (2.26)

By equations (2.25) and (2.26) and Lemma 2.1 imply that kn, hn can be expressed by (2.6) and
(2.7).

By [1, 2], the origin point of (2.1) is a center and isochronous center.
In summary, the proof is finished.

Corollary 2.4. If in the system (2.1), H(x, y) = ∑n
i=2 hi(x, y), hi(x, y) (i = 2, 1, . . . , n) are homoge-

neous polynomials of degree i, and it has a polynomial commutator in the form of (2.2), if and only
if,

λ = µ; u2 = 2µxy, v2 = µ(y2 − x2); h2 = −λ2xy, k2 = λ2x2; hj = k j = 0 (j = 3, 4, . . . , n).

Proof. By the proof of Theorem 2.3 we get that

λ = µ, u2 = 2µxy, v2 = µ(y2 − x2), h2 = −λ2xy, k2 = λ2x2

and
x(jhj + yk j x − xk j y) = (j − 3)µ(x2 + y2)k j−1 (j = 3, 4, . . . , n, n + 1)

and
xhj + yk j = 0, (j = 3, 4, . . . , n, n + 1).

Taking j = n + 1, we get kn = 0 and hn = 0, substituting thus into the above equations
with j = n which implies that kn−1 and hn−1 = 0, as so on we can deduce k j = 0 and
hj = 0, (j = 3, 4, . . . , n). Thus the proof is completed.
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3 Polynomial commutator

In this section we will discuss when does the system (1.6) with λ = µ ̸= 0 and h3 ̸= 0, have a
polynomial commutator in the form(

U
V

)
=

(
x + u2 + u3 + xk3(x, y)
y + v2 + v3 + yk3(x, y)

)
, (3.1)

where ul(x, y) = ∑i+j=l uijxiyj, vl(x, y) = ∑i+j=l vijxiyj, (l = 2, 3); k3 = ∑i+j=3 kijxiyj.
Without losing generality, suppose that µ = 1, otherwise taking X = µx, Y = µy.
First, let us consider system{

x′ = −y(1 + y) + P3(x, y) + x(x + h3(x, y)) = P(x, y),

y′ = x(1 + y) + Q3(x, y) + y(x + h3(x, y)) = Q(x, y),
(3.2)

where P3 = ∑i+j=3 pijxiyj, Q3 = ∑i+j=3 qijxiyj, h3 = ∑i+j=3 hijxiyj.

Theorem 3.1. The system (3.2) with P3 · h3 ̸= 0, has a polynomial commutator in the form of (3.1), if
and only if

p2
03 − p30(p12 + 2p30) = 0, (3.3)

p21 p30 + p12 p03 + 6p30 p03 = 0, (3.4)

Q3 = p03x3 − p12x2y + p21xy2 − p30y3, (3.5)

u2 = 2xy, v2 = y2 − x2, (3.6)

u3 = −(p21 + 2p03)x3 − p12x2y − 3p03xy2 − p30y3,

v3 = (2p30 + p12)x3 − p21x2y + 3p30xy2 − p03y3,
(3.7)

h3 = (p12 + 3p30)x(−(p12 + 2p30)x2 + (2p12 + 3p30)y2)− (p21 + 3p03)y(p12x2 + p30y2), (3.8)

k3 = (p12+2p30)x2((p21+3p03)x−3(p12+2p30)y)+ p30y2(3(p21+3p03)x−(p12+3p30)y). (3.9)

Moreover, the origin point of (3.2) is a center and isochronous center.

Proof. By (2.9), the vector (3.1) is a commutator of (3.2), if and only if

(1 + u2 x + u3 x + (xk3)x)(−y + P2 + P3 + xh3) + (u2 y + u3 y + (xk3)y)(x + Q2 + Q3 + yh3)

= (P2 x + P3 x + (xh3)x)(x + u2 + u3 + xk3)

+ (−1 + P2 y + P3 y + (xh3)y)(y + v2 + v3 + yk3), (3.10)

(v2 x + v3 x + (yk3)x)(−y + P2 + P3 + xh3) + (1 + v2 y + v3 y + (yk3)y)(x + Q2 + Q3 + yh3)

= (1 + Q2 x + Q3 x + (yh3)x)(x + u2 + u3 + xk3)

+ (Q2 y + Q3 y + (yh3)y)(y + v2 + v3 + yk3), (3.11)

where P2 = x2 − y2, Q2 = 2xy.
Similar to the proof of Theorem 2.3, from the terms of degree 2 of equations (3.10) and

(3.11) equal to zero follows that (2.12) and (2.13) are valid. By the terms of degree 3 of
equations (3.10) and (3.11) equal to zero we deduce that{

v3 + xu3 y − yu3 x − 2P3 = 0,

u3 + yv3 x − xv3 y + 2Q3 = 0.
(3.12)
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Equating the same power of x and y of (3.12) which yields that

u12 = u30 + p21 − q30, u21 = u03 − p12 − q03, (3.13)

p21 − q12 + 3(p03 − q30) = 0, p12 + q21 + 3(p30 + q03) = 0. (3.14)

v30 = −u03 + 2p30 + p12 + q03, v21 = u30 + 2q30,

v12 = −u03 − 2q03, v03 = u30 + p21 − q30 + 2p03.
(3.15)

By the terms of degree 4 of equations (3.10) and (3.11) equal to zero we get

u2 xP3+u2 yQ3+u3 xP2+u3 yQ2−u3P2 x −v3P2 y−u2P3 x −v2P3 y = x(3h3+yk3 x −xk3 y), (3.16)

v2 xP3+v2 yQ3+v3 xP2+v3 yQ2−u3Q2 x−v3Q2 y−u2Q3 x−v2Q3 y = y(3h3+yk3 x−xk3 y). (3.17)

Equation (3.16) multiplied by y minus (3.17) multiplied by x which implies that

P3(yu2 x − xv2 x) + Q3(yu2 y − xv2 y) + P2(yu3 x − xv3 y) + Q2(yu3 x − xv3 y)

= u3(yP2 x − xQ2 x) + v3(yP2 y − xQ2 y) + u2(yP3 x − xQx x) + v2(yP3 y − xQ3 y). (3.18)

Comparing the coefficients of the same power of x and y on both sides of the equation (3.18)
and (3.16) we obtain

u03 = p12 + q03 + q21, u30 = −p21 + q30 − 3p03, u30 = −3p21 − 2q30 + 2q12,

u03 = q03, 2u03 = −6p30 − 5p12 − 4q03 − 5q21, 2u30 = 2p21 + 3p03 − 4q12 − 7q30,

v30 = 2p30 − q21, u12 − 2v03 = −p03, 2v21 − 3u30 = 3p21 + 6q30 − 2q12,

2u21 − 3v12 − 6u03 = −2p12 + 3q03, 3v12 − 5v30 − 4u21 = −4p30 + 4p12 + 5q21 − 3q03,

3u30 + 4v03 − 4v21 − 5u12 = −3p21 + 5p03 + 4q12.

According to the above equations and (3.13) and (3.15) we get

p03 − q30 = 0, p30 + q03 = 0, q12 − p21 = 0, p12 + q21 = 0,

u30 = −p21 − 2p03, u21 = −p12, u12 = −3p03, u03 = −p30,

v30 = p12 + 2p30, v21 = −p21, v12 = 3p03, v03 = −p03.

Consequently, the relations (3.5) and (3.7) are valid.
Using (3.5)–(3.7) and (3.16) we deduce that

3h3 + yk3 x − xk3 y = 0. (3.19)

By this equation we get

k3 = −(h21 + 2h03)x3 + 3h30x2y − 3h03xy2 + (h12 + 2h30)y3. (3.20)

From the terms of degree 5 of equations (3.10) and (3.11) equal to zero which follows that

u2h3 − P2k3 + u3 xP3 + u3 yQ3 − P3 xu3 − P3 yv3 = x(h3 xu2 + h3 yv2 − k3 xP2 − k3 yQ2), (3.21)

v2h3 − Q2k3 + v3 xP3 + v3 yQ3 − Q3 xu3 − Q3 yv3 = y(h3 xu2 + h3 yv2 − k3 xP2 − k3 yQ2). (3.22)
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Equation (3.21) multiplied by y minus (3.22) multiplied by x which implies that

h3(yu2 − xv2)− k3(yP2 − xQ2) + P3(yu3 x − xv3 x) + Q3(yu3 y − xv3 y)

= u3(yP3 x − xQ3 x) + v3(yP3 y − xQ3 y). (3.23)

Comparing the coefficients of the same power of x and y on both sides of equations (3.21) and
(3.23) and using (3.5)–(3.7) and (3.20) we get

4h03 + h21 = −2p21 p30 − p12 p03 − p21 p12,

2h12 + 5h30 = 2p21 p03 + 3p12 p30 + p2
12 + 6p2

03,

h21 + 5h03 = −3p30 p03 − p12 p21 − p03 p12 − 3p30 p21,

3h12 + 7h30 = 6p2
03 − 3p2

30 + p2
12 + 2p12 p30 + 2p21 p03,

h03 = −3p30 p03 − p30 p21,

h12 + 2h30 = −3p2
30 − p12 p30,

h30 = 6p2
30 + 6p2

03 + 5p30 p12 + 2p21 p03 + p2
12,

h12 + 4h30 = 9p2
30 + 12p2

03 + 9p30 p12 + 4p21 p03 + 2p2
12.

Simplifying the above equations to obtain

h30 = 6p2
30 + 6p2

03 + 5p30 p12 + 2p21 p03 + p2
12; (3.24)

h21 = 2p21 p30 − p12 p03 − p21 p12 + 12p30 p03, (3.25)

h12 = −15p2
30 − 12p2

03 − 11p30 p12 − 4p21 p03 − 2p2
12, (3.26)

h03 = −3p30 p03 − p21 p30. (3.27)

By the terms of degree 6 of equations (3.10) and (3.11) equal to zero we get

2(u3h3 − P3k3) = x(h3 xu3 + h3 yv3 − k3 xP3 − k3 yQ3), (3.28)

2(v3h3 − Q3k3) = y(h3 xu3 + h3 yv3 − k3 xP3 − k3 yQ3). (3.29)

Equation (3.28) multiplied by y minus (3.29) multiplied by x we deduce that

h3(yu3 − xv3) = k3(yP3 − xQ3). (3.30)

Equating the coefficients of the same power of x and y on both sides of the equation (3.28) we
obtain

(p21 + 5p03)h30 − (p12 + 3p30)h21 − 2p30h03 = 0,

p12h30 + (p12 + 2p30)h12 + (p21 + 3p03)h03 = 0,

2p21h30 + (p21 − p03)h12 + (p12 − 3p30)h03 = 0,

(2p12 + 3p30)h30 + (p12 + 2p30)h12 = 0,

2p03h30 + p03h12 + p30h03 = 0.

As h3 ̸= 0, the determinant of the coefficient matrix of four equations of the above is equal to
zero, that is

W1 = p30(p12 + 3p30)(p21 p30 + p12 p03 + 6p30 p03) = 0. (3.31)
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Equating the coefficients of the same power of x and y on both sides of the equation (3.30) we
get

(p12 + 2p30)h30 + p03h21 + 2p03h03 = 0,

p03h30 − p30h21 + 2(p12 + p30)h03 = 0,

2(p12 + p30)h30 + (p12 + 2p30)h12 − p03h03 = 0,

2p03h30 + p03h12 + p30h03 = 0.

The determinant of the coefficient matrix of the above equations is equal to zero, that is

W2 = −(p30(p12 + 2p30)− p2
03)

2 = 0. (3.32)

By (3.31) and (3.32) and P3 · h3 ̸= 0, which implies that p30 · p03 · (p12 + 2p30) ̸= 0 and the
relations (3.3) and (3.4) are valid and

h12 = −2p12 + 2p30

p12 + 2p30
h30, h21 = − p12 p30

p03(p12 + 2p30
h30, h03 = − p03

p12 + 2p30
h30.

Using (3.4) and (3.5) and (3.24)–(3.27) we get

h30 = −(p12 + 2p30)(p12 + 3p30), h21 = −p12(p21 + 3p03),

h12 = (p12 + 3p30)(3p30 + 2p12), h03 = −p30(p21 + 3p03),

k30 = (p21 + 3p03)(p12 + 2p30), k21 = −3(p12 + 2p30)(p12 + 3p30),

k12 = 3p30(p21 + 3p03), k03 = −p30(p12 + 3p30).

Therefore, the functions u3, v3, h3, k3 are expressed by (3.7)–(3.9), respectively.
By [1] [2], the origin point of (3.2) is a center and isochronous center.

Consider Λ–Ω system{
x′ = −y(1 + y + ϕ2(x, y)) + x(x + ψ2(x, y) + h3(x, y)),

y′ = x(1 + y + ϕ2(x, y)) + y(x + ψ2(x, y) + h3(x, y)),
(3.33)

where ϕ2 = a20x2 + a11xy + a02y2, ψ2 = b20x2 + b11xy + b02y2, aij, bij are real numbers.
By Theorem 3.1, taking P3 = −yϕ2 + xψ2, Q3 = xϕ2 + yψ2, which follows the following

corollary.

Corollary 3.2. The system (3.33) has a polynomial commutator in the form of(
U
V

)
=

(
x + u2 + u3 + xk3(x, y)
y + v2 + v3 + yk3(x, y)

)
if and only if

a20 + a02 = 0, b20 + b02 = 0, a2
20 − b2

20 + b20a11 = 0, b11b20 − a11a20 + 4a20b20 = 0.

u2 = 2xy, v2 = y2 − x2,

u3 = −(b11 + a20)x3 + (b20 + a11)x2y − 3a20xy2 − b20y3,

v3 = (b20 − a11)x3 − (b11 − a20)x2y + 3b20xy2 − a20y3,

h3 = (2b20 − a11)((a11 − b20)x3 + (b20 − 2a11)xy2) + (b11 + 2a20)((a11 + b20)x2y − b20y3),

k3 = (2a20 + b11)((b20 − a11)x3 + 3b20xy2)− (2b20 − a11)(3(b20 − a11)x2y + b20y3).

Moreover, the origin point of (3.33) is a center and isochronous center and weak center.
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4 Examples

In Theorem 2.3, taking λ = µ = λi = 1 (i = 2, 3, . . . ) which yields the following example.

Example 4.1. Λ–Ω-differential system{
x′ = −y(1 + y) + x(x − xy − x2y ∑∞

j=3(x − y)j−3),

y′ = x(1 + y) + y(x − xy − x2y ∑∞
j=3(x − y)j−3)

(4.1)

has a commutator (
U
V

)
=

(
x + 2xy + x(x2 + x3 ∑∞

j=3(x − y)j−3)

y + y2 − x2 + y(x2 + x3 ∑∞
j=3(x − y)j−3)

)

and the origin point of (4.1) is a center and isochronous center and weak center.

In Theorem 3.1 taking p30 = 1, p21 = −5, p12 = −1, p03 = 1 which implies the following
example.

Example 4.2. Differential system{
x′ = −y(1 + y) + x3 − 5x2y − xy2 + y3 + x(x − 2(x + y)(x2 − y2)),

y′ = x(1 + y) + x3 + x2y − 5xy2 − y3 + y(x − 2(x + y)(x2 − y2))
(4.2)

has a commutator(
U
V

)
=

(
x + 2xy + 3x3 + x2y − 3xy2 − y3 − 2x(x + y)3

y + y2 − x2 + x3 + 5x2y + 3xy2 − y3 − 2y(x + y)3)

)
(4.3)

and the origin point of (4.2) is a center and isochronous center.

In Corollary 3.1 taking a20 = 1, a11 = 0, a02 = −1, b20 = 1, b11 = −4, b02 = −1 we deduce
the following example.

Example 4.3. Λ–Ω differential system{
x′ = −y(1 + y + x2 − y2) + x(x + x2 − y2 − 4xy − 2(x + y)(x2 − y2)),

y′ = x(1 + y + x2 − y2) + y(x + x2 − y2 − 4xy − 2(x + y)(x2 − y2))
(4.4)

has a commutator (4.3) and the origin point of (4.4) is a center and weak center.

The above three examples have been verified and they are correct.
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