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Abstract. A coupled damped Klein–Gordon–Schrödinger equations are considered
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1 Introduction

The aim of this paper is to study the following KGS system defined in Ω which is a bounded
domain in R2

iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω) ∈ Ω × (0,+∞)

ϕtt − ∆ϕ + ϕ + λ(x)ϕt = −Re∇ψχ(ω) ∈ Ω × (0,+∞)

ψ = ϕ = 0, on Γ × (0,+∞)

(1.1)

with locally distributed damping and where Γ is a smooth boundary and ω is an open subset
of Ω such that meas(ω) > 0 and satisfying the geometric control condition. Let α > 0 and
χ(ω) to represent the characteristic function, that is χ = 1 in ω and χ = 0 in Ω \ ω. We also
consider b, λ ∈ L∞(Ω) to be nonnegative functions such that

b(x) ≥ b0 > 0 a.e. in ω and λ(x) ≥ λ0 > 0 a.e. in ω,

in order for the nonlinearity ψ to exist where the damping terms

iαb(x)ψ, λ(x)ϕt
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are effective and reciprocally. If the damping is effective in the whole domain, i.e. b(x) ≥ b0 >

0 a.e. in Ω and λ(x) ≥ λ0 > 0 a.e. in Ω we can consider χω ≡ 1 a.e. in Ω. The variable (com-
plex) ψ stands for the dimensionless low frequency electron field, whereas (real) ϕ denotes
the dimensionless low frequency density. This system describes the nonlinear interaction be-
tween high frequency electron waves and low frequency ion plasma waves in a homogeneous
magnetic field, adapted to model the UHH (Upper Hybrid Heating) plasma heating scheme.

UHH is the dominant branch of the general Electron Cyclotron Resonance Heating (ECRH)
scheme, which, for tokamaks and stellarators, constitutes a basic method of plasma build-up
and heating. Moreover, ECRH is an attractive method to study transport mechanisms, since
it allows for a very localised power deposition, thus influencing temperature and current
profiles. The UHH scheme consists in injecting electromagnetic waves in the range 100 −
200GHz, from the high field side towards the core of the device. Within this frequency range,
the incident wave takes on the character of a longitudinal oscillation for the resonant electrons,
which become highly energetic. With respect to the physical mechanism involved in the
energy damping of the waves, UHH comprises of two stages:

1. Collisionless damping. The energy of the waves is transferred to the resonant electrons,
through collisionless mechanisms, e.g. Landau damping. Subsequently, the electrons
gain excessive kinetic energy, thus heated.

2. Collisional damping. The excessive electron energy is distributed over electrons and
non-resonant ions, through Coulomb collisions, producing bulk heating of the plasma
(equipartition).

Collisional damping is very crucial for the success of UHH. If collisions are infrequent, non-
thermal distributions will occur, which may result in a reduction in the power delivered to
the plasma. Therefore, it is important to determine the operational conditions for the device,
under which UHH becomes effective, namely the collisions manage to distribute the excessive
electron energy over the species at an exponential rate. The term Re∇ψ is a consequence of
the different low frequency coupling that was considered, i.e. the polarization drift instead of
the ponderomotive force. The system focuses on the vital role of collisions by considering the
non-homogeneous polarization drift for the low frequency coupling (see [12]).

By setting θ = ϕt + ϵϕ where ϵ is a real positive constant to be specified later, the system
(1.1) becomes

iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω), (1.2)

ϕt + ϵϕ = θ, (1.3)

θt + (λ(x)− ϵ)θ − ∆ϕ + (1 − ϵ(λ(x)− ϵ))ϕ = −Re∇ψχ(ω) (1.4)

satisfying the following initial conditions

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x). (1.5)

Therefore, one may set the energy equation of the problem by

E(t) :=
1
2

{
∥ψ∥2

L2(Ω) + κ∥∇ψ∥2
L2(Ω) +

∫
ω

ϕ|ψ|2 + ∥ϕ∥2
L2(Ω) + ∥∇ϕ∥2

L2(Ω) + ∥ϕt∥2
L2(Ω)

}
. (1.6)
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Assumption 1.1. We denote by ω the intersection of Ω with a neighborhood of ∂Ω in R2 and we will
call it a neighborhood of the boundary of Ω. We assume that b, λ ∈ L∞(Ω) are nonnegative functions
such that

b(x) ≥ b0 > 0, a.e. in ω, λ(x) ≥ λ0 > 0, a.e. in ω.

In addition, if b(x) ≥ b0 > 0 a.e. in Ω then we can consider χω ≡ 1 in Ω, and if λ(x) ≥ λ0 >

0 a.e. in Ω, then we can consider χω ≡ 1 in Ω.

Definition 1.2 (Geometric control condition). Let ω geometrically control Ω, i.e there exists
T0 > 0, such that every geodesic of Ω travelling with speed 1 and issued at t = 0, which enters
the set ω in a time t < T0. So, the couple (ω, T0) satisfies the geometric control condition (GCC,
in short) if every geodesic of Ω, traveling with speed 1 and issued at t = 0 enters the open set
ω before the time T0.

Assumption 1.3. We assume that ω satisfies the geometric control condition. The standard example
is when ω is a neighbourhood of Γ(x0) where

Γ(x0) := {x ∈ Γ; (x − x0) · ν(x) > 0}

and ν(x) is the unit outward normal at x ∈ Γ.

As a consequence of the previous assumption it follows that there exists a couple (ω, T0), with
T0 > 0, such that the following observability inequalities occur:

∥ψ0∥2
L2(Ω) ≤

∫ T

0

∫
ω
|ψ(x, t)|2dxdt (1.7)

for the following problem 
iψt + ∆ψ = 0 ∈ Ω × (0, T),

ψ = 0 on Γ × (0, T),

ψ(0) = ψ0 ∈ L2(Ω)

(1.8)

and

∥ϕ1∥2
L2(Ω) + ∥∇ϕ0∥2

L2(Ω) ≤ C
∫ T

0

∫
ω
|ϕt(x, t)|2dxdt (1.9)

with regards to the following problem
ϕtt − ∆ϕ = 0 ∈ Ω × (0, T),

ϕ = 0 on Γ × (0, T),

ϕ(0) = ϕ0 ∈ H1
0(Ω),

ϕt(0) = ϕ1 ∈ L2(Ω)

(1.10)

for some positive constant C = C(ω, T0) and for all T > T0. The proof of (1.8) can be found in
[13] and [18] while the proof of (1.10) is established in [3] and [15].

The aim of this work is to generalize the previous results of [21] by considering the damped
structure iαb(x)ψ instead of iαψ for the Schrödinger equation following the ideas of [1, 2].
Due to the right-hand side of the wave equation, i.e. −Re∇ψχ(ω) the energy functional of
the system depends upon the integral

∫
ϕ|ψ|2 which introduces a time that is required by the

damping to smooth out the differences between the kinetic energies of the resonant electrons
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and non resonant ions. The presence of the damping terms in both equations of the system
does not necessary guarantee that the energy E(t) associated to the system is a non increasing
function of the parameter t. Indeed in [12] where b(x), λ(x) are effective in the whole of Ω and
in [21] where λ(x) is effective in ω the energy exponential rate depends upon the parameters
of the system and t∗.

Our main task is to investigate the parametric energy decay for the system. Specifically, we
seek necessary conditions, dependent on the parameters of the system b0, λ0, so that energy
decay occurs at an exponential rate and therefore improve previous results by focusing on the
ω. This ensures that, under specific plasma conditions, the energy of the coupled ion-electron
wave is effectively dissipated to the plasma. In fact in Section 3 we will prove that the energy
ia a non increasing function. For this purpose, we make use of the observability inequality for
both, the wave and the Schrödinger equations. It is important to mention that the use of the
observability inequality instead of the multiplier technique allows us to consider sharp regions
ω satisfying the geometric control condition. Indeed, the inequalities given in (1.7) and (1.9)
are proved by means of microlocal analysis and produce sharp regions when compared with
the multiplier method. The main results of this paper are the following:

Theorem 1.4. Let (ψ0, ϕ0, θ0) ∈ {H1
0(Ω)∩ H2(Ω)}2 × H1

0(Ω) and assuming that (λ0 − ϵ) > 2
3ακb0

,
(λ0 − ϵ), (1 − ϵ(λ0 − ϵ)) > 0 hold then there exists a unique regular solution of (1.2)–(1.4) such that

ψ ∈ L∞(0, ∞; H1
0(Ω) ∩ H2(Ω)), ψt ∈ L∞(0, ∞; L2(Ω)),

ϕ ∈ L∞(0, ∞; H1
0(Ω) ∩ H2(Ω)), ϕt ∈ L∞(0, ∞; H1

0(Ω)),

ϕtt ∈ L∞(0, ∞; L2(Ω)).

Theorem 1.5. Let (ψ0, ϕ0, θ0) ∈ (H1
0(Ω) ∩ H2(Ω))× H1

0(Ω) and the assumptions of Theorem 1.4
hold, then there exists positive constant C, ν, µ such that the following decay rate holds

Eµ(t) ≤ Ce−νtE(0), ∀ t ≥ 0

for every regular solution of the problem (1.1).

Let us recall the following known results. From Poincaré’s inequality we have

∥u∥L2(Ω) ≤ c∥∇u∥L2(Ω), for all u ∈ H1
0(Ω),

and the Gagliardo–Nirenberg inequality for dimension n = 2

∥u∥L4(Ω) ≤ c∥u∥
1
2
L2(Ω)

∥∇u∥
1
2
L2(Ω)

for all u ∈ H1
0(Ω). (1.11)

Notation: Denote by Hs(Ω) both the standard real and complex Sobolev spaces on Ω. For
simplicity reasons sometimes we use Hs, Ls for Hs(Ω), Ls(Ω), and ∥ · ∥, (·, ·) for the norm
and the inner product of L2(Ω) and ∥ · ∥ω, (·, ·)ω for the norm and the inner product of L2(ω)

respectively as well as
∫

dx denotes the integration over the domain Ω. Finally, C is a general
symbol for any positive constant.

2 Existence and uniqueness

In this section we derive a priori estimates for the solutions of the system (1.1). Let {ων}
be a basis of H1

0(Ω) ∩ H2(Ω) formed by the real eigenfunctions of ∆ such that the sequence
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{ων} gives a Hilbert basis of L2 (i.e. an orthonormal basis of L2) and let Vm be a subset of
H1

0(Ω) ∩ H2(Ω) generated by the first m vectors. Then, let gim ∈ C and him, kim ∈ R with

ψm(t) =
m

∑
i=1

gim(t)ωi, ϕm(t) =
m

∑
i=1

him(t)ωi, θm(t) =
m

∑
i=1

kim(t)ωi

such that {(ψm(t), ϕm(t), θm(t))} is the solution to the following Cauchy problem:

i(ψt,m, u) + κ(∆ψm, u) + iα(b(x)ψm, u) = (ϕmψmχ(ω), u), ∀ u ∈ Vm,

(ϕt,m, z) = (θm, z)− ϵ(ϕm, z), ∀ z ∈ Vm,

(θt,m, v) + ((λ(x)− ϵ)θm, v)− (∆ϕm, v) + ((1 − ϵ(λ(x)− ϵ))ϕm, v)

= −Re(∇ψmχ(ω), v) ∀ v ∈ Vm,

ψm(0) = ψ0m → ψ0, ϕm(0) = ϕ0m → ϕ0 ∈ H1
0(Ω) ∩ H2(Ω),

θ(0) = θ0m → θ0 ∈ H1
0(Ω).

(2.1)

Let Y = (ψm, ϕm, θm) then (2.1) also reads

(ψt,m, u) = iκ(∆ψm, u) + α(b(x)ψm, u)− i(ϕmψmχ(ω), u), ∀ u ∈ Vm,

(ϕt,m, z) = (θm, z)− ϵ(ϕm, z), ∀ z ∈ Vm,

(θt,m, v) = −((λ(x)− ϵ)θm, v) + (∆ϕm, v)− ((1 − ϵ(λ(x)− ϵ))ϕm, v)

−Re(∇ψmχ(ω), v) ∀ v ∈ Vm,

ψm(0) = ψ0m → ψ0, ϕm(0) = ϕ0m → ϕ0 ∈ H1
0(Ω) ∩ H2(Ω),

θ(0) = θ0m → θ0 ∈ H1
0(Ω).

(2.2)

Then the considered matrix is the identity and therefore one may write Yt = F(Y) with
smooth F. Hence the Cauchy–Lipschitz theorem applies straightforward. Since, the approxi-
mate system (2.1) is a finite system of ordinary differential equations which has a solution in
[0, tm[ the extension of the solution to the whole interval [0, T], for all T > 0, is a consequence
of the first estimate we are going to obtain. Let us consider u = ψm in the first equation of
(2.1). Then by taking the imaginary part we have

1
2

d
dt
∥ψm∥2 + α

∫
b(x)|ψm|2 = 0 (2.3)

and because ∫
b(x)|ψm|2 ≥

∫
ω

b(x)|ψm|2 ≥ b0

∫
ω
|ψm|2 (2.4)

almost everywhere in ω we have

1
2

d
dt
∥ψm∥2 + αb0∥ψm∥2

ω ≤ 0. (2.5)

Finally, multiplying by 2 and integrating over (0, t) for t ∈ [0, tm) concludes in

∥ψm∥2 + 2αb0

∫ t

0
∥ψm(s)∥2

ωds ≤ ∥ψm0∥2. (2.6)

Then, since ψm0 → ψ0 in H1
0(Ω) ∩ H2(Ω) we have

(ψm) is bounded in L∞(0, ∞; L2(Ω)) (2.7)
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and for C1 = C(∥ψ0∥) > 0 we also have∫ ∞

0
∥ψm(s)∥2

ωds ≤ C1 = C(∥ψ0∥). (2.8)

Next, taking u = −ψt,m in the first equation of (2.1) and considering the real part produces

κ

2
d
dt
∥∇ψm∥2 + αIm

∫
b(x)ψmψt,m = −Re

∫
ω

ϕmψmψt,m (2.9)

and similarly with (2.4) we have

κ

2
d
dt
∥∇ψm∥2 + αb0 Im

∫
ω

ψmψt,m ≤ −Re
∫

ω
ϕmψmψt,m. (2.10)

Now, substituting u = αb0ψm in the first equation of (2.1), integrating over ω and taking the
real part we have

αb0 Im
∫

ω
ψmψt,m = ακb0∥∇ψm∥2

ω + αb0

∫
ω

ϕm|ψm|2

and substituting the expression into (2.10) we obtain

κ

2
d
dt
∥∇ψm∥2 + ακb0∥∇ψm02

ω + αb0

∫
ω

ϕm|ψm|2 ≤ −Re
∫

ω
ϕmψmψt,m. (2.11)

Therefore, by taking into consideration that

d
dt

∫
ω

ϕm|ψm|2 =
∫

ω
ϕt,m|ψm|2 + 2

∫
ω

ϕmψmψt,m

equation (2.11) becomes

1
2

d
dt
{κ∥∇ψm∥2 +

∫
ω

ϕm|ψm|2}+ ακb0∥∇ψm∥2
ω + αb0

∫
ω

ϕm|ψm|2 ≤ 1
2

Re
∫

ω
ϕt,m|ψm|2. (2.12)

Continuing with the second equation of the system (2.1), let v = θm

1
2

d
dt
{∥θm∥2 + ∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2

ω}+ (λ0 − ϵ)∥θm∥2
ω + ϵ∥∇ϕm∥2

+ ϵ(1 − ϵ(λ0 − ϵ))∥ϕm∥2
ω ≤ −Re

∫
ω
∇ψmθm.

(2.13)

Then, adding equations (2.12) and (2.13) produces

1
2

d
dt
{κ∥∇ψm∥2 +

∫
ω

ϕm|ψm|2 + ∥θm∥2 + ∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2
ω}

+ ακb0∥∇ψm∥2
ω + αb0

∫
ω

ϕm|ψm|2 + (λ0 − ϵ)∥θm∥2
ω + ϵ∥∇ϕm∥2

+ ϵ(1 − ϵ(λ0 − ϵ))∥ϕm∥2
ω ≤ −Re

∫
ω
∇ψmθm +

1
2

Re
∫

ω
ϕt,m|ψm|2,

(2.14)

where

1
2

Re
∫

ω
ϕt,m|ψm|2 =

1
2

Re
∫

ω
θm|ψm|2 −

ϵ

2
Re

∫
ω

ϕm|ψm|2
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and with the use of ∥u∥4 ≤ c∥u∥1/2 ∥∇u∥1/2 we have∣∣∣∣∫
ω

θm∇ψm

∣∣∣∣ ≤ ακb0

2
∥∇ψm∥2

ω +
1

2ακb0
∥θm∥2

ω∣∣∣∣1
2

∫
ω

θm|ψm|2
∣∣∣∣ ≤ ∥θm∥ω ∥ψm∥2

4,ω ≤ (λ0 − ϵ)

4
∥θm∥2

ω +
ακb0

4
∥∇ψm∥2

ω + C.

Therefore, equation (2.14) becomes

1
2

d
dt

{
κ∥∇ψm∥2 +

∫
ω

ϕm|ψm|2 + ∥θm∥2 + ∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2
ω

}
+

3ακb0

4
∥∇ψm∥2

ω + (αb0 + ϵ)
∫

ω
ϕm|ψm|2 +

(
3(λ0 − ϵ)

4
− 1

2ακb0

)
∥θm∥2

ω

+ ϵ∥∇ϕm∥2 + ϵ(1 + ϵ(λ0 − ϵ))∥ϕm∥2
ω ≤ C

(2.15)

for 3(λ0−ϵ)
4 − 1

2ακb0
> 0. Set β0 = min{ 3ακb0

4 , (αb0 + ϵ), ( 3(λ0−ϵ)
4 − 1

2ακb0
), ϵ, (1 − ϵ(λ0 − ϵ))}, with

β0 > 0 and

H0(t) = κ∥∇ψm∥2 +
∫

ω
ϕm|ψm|2 + ∥θm∥2 + ∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2

ω.

Hence we have

d
dt

H0(t) + β0H0(t) ≤ C. (2.16)

Using Gronwall’s Lemma we obtain

H0(t) ≤
C
β0

(1 − e−β0t) + H0(t)e−β0t

and

H0(t) ≤ H0(t)e−β0t +
C
β0

.

Finally, using (1.11) we estimate the following integral∫
ω

ϕm|ψm|2 ≤ κ

2
∥∇ψm∥2 +

1
2
∥∇ϕm∥2 + C

then

H0(t) ≥
κ

2
∥∇ψm∥2 + ∥θm∥2 +

1
2
∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2

ω − C

and finally gives

κ

2
∥∇ψm∥2 + ∥θm∥2 +

1
2
∥∇ϕm∥2 + (1 − ϵ(λ0 − ϵ))∥ϕm∥2

ω ≤ C.

Therefore, we have

(ψm) is bounded in L∞(0, ∞; H1
0(Ω)),

(θm) is bounded in L∞(0, ∞; L2(Ω)),

(ϕm) is bounded in L∞(0, ∞; H1
0(Ω)).

(2.17)
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Moving to the next estimate we take the time derivative of the first equation of (2.1) and by
choosing u = ψt,m we obtain

i(ψtt,m, ψt,m) + κ(∆ψt,m, ψt,m) + iα(b(x)ψt,m, ψt,m) = (ϕt,mψmχ(ω), ψt,m) + (ϕmψt,mχ(ω), ψt,m).

Taking into consideration the imaginary part we have

1
2

d
dt
∥ψt,m∥2 + α

∫
b(x)|ψt,m|2 ≤

∫
ϕt,mψmψt,m

where since ∥ψm∥∞ ≤ c∥∆ψm∥1/2∥ψm∥1/2 we obtain∣∣∣∣∫
ω

ϕt,mψmψt,m

∣∣∣∣ ≤ ∥ϕt,m∥ ∥ψm∥∞∥ψt,m∥ω ≤ αb0

2
∥ψt,m∥2

ω +
ϵκ

4
∥∆ψm∥2 + C(∥ϕt,m∥, ∥ψm∥).

Therefore, we have

1
2

d
dt
∥ψt,m∥2 +

αb0

2
∥ψt,m∥2

ω ≤ ϵκ

4
∥∆ψm∥2 + C(∥ϕt,m∥, ∥ψm∥). (2.18)

Moving to the next energy estimate by choosing u = ∆ψt,m + ϵ∆ψm for the first equation of
(2.1) and taking the real part we get

1
2

d
dt

{
κ∥∆ψm∥2 + 2α Im

∫
b(x)ψm∆ψm − 2 Re

∫
ω

ϕmψm∆ψm

}
+ κϵ∥∆ψm∥2

+ 2αϵ Im
∫

b(x)ψm∆ψm − 2ϵ Re
∫

ω
ϕmψm∆ψm = α Im

∫
b(x)ψt,m∆ψm

− Re
∫

ω
ϕt,mψm∆ψm − Re

∫
ω

ϕmψt,m∆ψm + αϵ Im
∫

b(x)ψm∆ψm − ϵ Re
∫

ϕmψm∆ψm.

(2.19)

Next, choosing v = −∆θ in the second equation of (2.1) produces

1
2

d
dt

{
∥∆ϕm∥2 + (1 + ϵ2)∥∇ϕm∥2 + ∥∇θm∥2 − 2

∫
λ(x)ϕt,m∆ϕm

}
+ ϵ

{
∥∆ϕ∥2 + (1 + ϵ2)∥∇ϕ∥2 + ∥∇θm∥2 − 2

∫
λ(x)ϕt,m∆ϕm

}
≤ − Re

∫
ω

∆ψm∇θm − ϵ
∫

λ(x)ϕt,m∆ϕm.

(2.20)

Adding (2.18) with (2.19) and (2.20) produces

1
2

d
dt

H1(t) + ϵH1 = α Im
∫

b(x)ψt,m∆ψm

− Re
∫

ω
ϕt,mψm∆ψm − Re

∫
ω

ϕmψt,m∆ψm + αϵ Im
∫

b(x)ψm∆ψm

− ϵ Re
∫

ϕmψm∆ψm − Re
∫

ω
∆ψm∇θm − ϵ

∫
λ(x)ϕt,m∆ϕm

+

(
ϵ − αb0

2

)
∥ψt,m∥2 + C∥∇ϕm∥2∥∇ψm∥2

where

H1(t) = ∥ψt,m∥2 + κ∥∆ψm∥2 + 2α Im
∫

b(x)ψm∆ψm − 2 Re
∫

ω
ϕmψm∆ψm + ∥∆ϕm∥2

+ (1 + ϵ2)∥∇ϕm∥2 + ∥∇θm∥2 − 2
∫

λ(x)ϕt,m∆ϕm.
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Set

F1(t) = α Im
∫

b(x)ψt,m∆ψm − Re
∫

ω
ϕt,mψm∆ψm − Re

∫
ω

ϕmψt,m∆ψm

+ αϵ Im
∫

b(x)ψm∆ψm − ϵ Re
∫

ϕmψm∆ψm − Re
∫

ω
∆ψm∇θm

− ϵ
∫

λ(x)ϕt,m∆ϕm +
ϵκ

4
∥∆ψm∥2 +

(
ϵ − αb0

2

)
∥ψt,m∥2

+ C(c0, R, ϵ, κ, α, b0, ∥θm∥, |∇ϕ∥).

(2.21)

Evaluating the terms in H1 and F1 we have∣∣∣∣∫
ω

ϕt,mψm∆ψm

∣∣∣∣ ≤ ∥ψm∥∞∥ϕt,m∥ ∥∆ψm∥ ≤ κϵ

8
∥∆ψm∥2 + C(κ, ϵ, ∥ψm∥, ∥ϕt,m∥),∣∣∣∣∫

ω
∆ψm∇θm

∣∣∣∣ ≤ κϵ

8
∥∆ψm∥2 +

2
κϵ

∥∇θm∥2,∣∣∣∣∫ b(x)ψm∆ψm

∣∣∣∣ ≤ ∥b(x)∥∞∥ψm∥ ∥∆ψm∥ ≤ ϵ1∥∆ψm∥2 + C(ϵ1)(∥ψm∥, ∥b(x)∥∞),∣∣∣∣∫ b(x)ψt,m∆ψm

∣∣∣∣ ≤ ∥b(x)∥∞∥ψt,m∥ ∥∆ψm∥ ≤ κϵ

8
∥∆ψm∥2 + C(κ, ϵ, ∥b(x)∥∞)∥ψt,m∥2∣∣∣∣∫ ϕmψm∆ψm

∣∣∣∣ ≤ ∥ϕm∥4∥ψm∥4∥∆ψm∥ ≤ ϵ2∥∆ψm∥2 + C(ϵ2)(∥ψm∥, ∥ϕm∥, ∥∇ψm∥, ∥∇ϕm∥),∣∣∣∣∫ ϕmψt,m∆ψm

∣∣∣∣ ≤ ∥ϕm∥∞∥ψt,m∥ ∥∆ψm∥

≤ κϵ

8
∥∆ψm∥2 +

ϵ

2
∥∆ϕm∥2 +

αb0

4
∥ψt,m∥2 + C(κ, ϵ, α, b0, c, ∥ϕm∥),∣∣∣∣∫ λ(x)ϕt∆ϕm

∣∣∣∣ ≤ ∥λ(x)∥∞∥ϕt,m∥ ∥∆ϕm∥ ≤ ϵ3∥∆ϕm∥2 + C(ϵ3)(∥λ(x)∥∞, ∥ϕt,m∥).

Therefore there exists a constant β1 > 0 such that

β1H1(t) ≤ F1 + C(κ, ϵ, α, b0, ϵ1, ϵ2, ϵ3, ∥λ(x)∥∞, ∥b(x)∥∞, ∥ϕm∥, ∥ψm∥, ∥∇ψm∥, ∥∇ϕm∥, ∥ϕt,m∥)

and
d
dt

H1(t) + β1H1(t) ≤ C. (2.22)

Employing Gronwall’s Lemma we finally obtain

∥ψt,m∥2 + ∥∆ψm∥2 + ∥∆ϕm∥2 + ∥∇θm∥2 ≤ C. (2.23)

Hence,

(ψm) is bounded in L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω)),

(θm) is bounded in L∞(0, ∞; H1
0(Ω)),

(ϕm) is bounded in L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω))

(ψt,m) is bounded in L∞(0, ∞; L2(Ω)).

(2.24)
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Therefore we may extract subsequences {ψν} ⊂ {ψm}, {ϕν} ⊂ {ϕm} and {θν} ⊂ {θm} such
that

ψν ⇀ ψ for the weak star topology of L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω)),

θν ⇀ θ for the weak star topology of L∞(0, ∞; H1
0(Ω)),

ϕν ⇀ ϕ for the weak star topology of L∞(0, ∞; H1
0(Ω) ∩ H2

0(Ω))

ψt,ν ⇀ ψt for the weak star topology of L∞(0, ∞; L2(Ω)).

(2.25)

These convergencies are sufficient to pass to the limit (on a standard manner) in (2.1) which
results in

iψt + κ∆ψ + iαb(x)ψ = ϕψχ(ω) in L∞(0, ∞; L2(Ω)),

ϕtt − ∆ϕ + ϕ + λ(x)ϕt = −Re∇ψχ(ω) in L∞(0, ∞; L2(Ω)).
(2.26)

From [22, Lemma 4.1, Chapter II] we may derive that

ϕ ∈ C(0, ∞; H1
0(Ω) ∩ H2

0(Ω)) and ϕt ∈ C(0, ∞; L2(Ω))

and since ψt =
1
i (−κ∆ψ − iαb(x)ψ + ϕψχ(ω)) ∈ L∞(0, ∞; L2(Ω) using results in [16] we then

obtain that
ψ ∈ C(0, ∞; H1

0(Ω) ∩ H2
0(Ω)).

Let (ψ1, ϕ1) and (ψ2, ϕ2) be two solutions of the problem. Then by setting z = ψ1 − ψ2 and
w = ϕ1 − ϕ2 the uniqueness of the solutions follows using the same above analysis.

This concludes the proof of Theorem 1.4.

3 Uniform decay rates

In order to prove the energy decay of the system we derive some useful estimates.

Theorem 3.1. Assume that Theorem 1.4 holds and let C∗ > 0 denote a constant such that |E(0)| ≤ C∗.
Then there exists a t∗ > 0 such that for every t ≥ t∗, E(0) > 0.

Proof. Taking into consideration the assumptions of Theorem 1.4 and the result ∥ψ∥ ≤ ϵ∗ for
all t ≥ t∗ > 0 we evaluate the integral of the energy functional, that is∣∣∣∣∫

ω
ϕ|ψ|2dx

∣∣∣∣ ≤ c∥ϕ∥∥ψ∥2
4 ≤ 1

2
∥ϕ∥2 +

c2(ϵ∗)2

2
∥∇ψ∥2.

Therefore we have

E(t) ≥ 1
2

[
∥ψ∥2+

(
κ − c2(ϵ∗)2

2

)
∥∇ψ∥2 + ∥∇ϕ∥2 + ∥ϕt∥2

]
, for t ≥ t∗ (3.1)

which completes the proof by choosing κ > c2(ϵ∗)2

2 .

Proceeding with the analysis we take the inner product of (1.2) with ψt + αψ, adding
equation (2.3) and following similar steps as the ones for the a priori estimates we have

1
2

d
dt

{
∥ψ∥2 + κ∥∇ψ∥2 +

∫
ω

ϕ|ψ|2
}
+ καb0∥∇ψ∥2

ω + α
∫

b(x)|ψ|2 + αb0

∫
ω

ϕ|ψ|2

=
1
2

∫
ω

ϕt|ψ|2. (3.2)
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Next, taking the inner product of (1.1) with ϕt gives

1
2

d
dt
{∥ϕt∥2 + ∥∇ϕ∥2 + ∥ϕ∥2}+

∫
λ(x)|ϕt|2 = Re

∫
ω
∇ψϕt. (3.3)

Adding equations (2.5), (3.2) and (3.3) results in

Et(t) + ab0∥ψ∥2
ω + καb0∥∇ψ∥2 + α

∫
b(x)|ψ|2 +

∫
λ(x)|ϕt|2

+ αb0

∫
ω

ϕ|ψ|2 =
1
2

∫
ω

ϕt|ψ|2 + Re
∫

ω
∇ψϕt.

(3.4)

From equation (2.3) we have
1
2

d
dt
∥ψ∥2

ω + α∥ψ∥2
ω ≤ 0

from which we get
∥ψ∥ω ≤ ∥ψ(0)∥ωe−αt = ϵ∗ (3.5)

and therefore since
lim
t→∞

sup ∥ψ∥ω = 0.

Next, evaluating the integrals∣∣∣∣αb0

∫
ω

ϕ|ψ|2
∣∣∣∣ ≤ ϵ∗cαb0

2κ
∥ϕ∥2

ω +
καb0

2
∥∇ψ∥2

ω,∣∣∣∣Re
∫

ω
∇ψϕt

∣∣∣∣ ≤ 1
2ϵ

∫
λ(x)|ϕt|2 +

ϵ

2λ0
∥∇ψ∥2

ω,∣∣∣∣1
2

∫
ω

ϕt|ψ|2
∣∣∣∣ ≤ ϵ∗

8ϵ

∫
λ(x)|ϕt|2 +

ϵ

2λ0
∥∇ψ∥2

ω.

Therefore

Et(t) ≤ −
(

καb0

2
− ϵ

λ0

)
∥∇ψ∥2

ω − α
∫

b(x)|ψ|2 −
(

1 − 1
2ϵ

− ϵ∗

8ϵ

) ∫
λ(x)|ϕt|2

+
ϵ∗cαb0

2κ
∥ϕ∥2

ω − αb0∥ψ∥2
ω.

(3.6)

For µ > 0 let us define the perturbed energy

Eµ(t) = E(t) + µp(t) (3.7)

where
p(t) = (ψ(t), ψ(t)) + (ϕt(t), ϕ(t))ω. (3.8)

Lemma 3.2. For µ, C > 0 we have that

|Eµ(t)− E(t)| ≤ µCE(t), for all t ≥ t∗.

Proof. We have

|p(t)| ≤ ∥ψ∥2 +
1
2
∥ϕt∥2 +

c1

2
∥∇ϕ∥2 ≤ C∗E(t)

which completes the proof.
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Next, by taking the time derivative of p(t) we obtain

pt(t) = 2 Re(ψt, ψ) + (ϕtt, ϕ)ω + (ϕt, ϕt)ω

≤ 2 Re(ψt, ψ) + (ϕtt, ϕ)ω +
1

λ0

∫
ω

λ(x)|ϕt|2

≤ 2 Re(ψt, ψ) + (ϕtt, ϕ) +
1

λ0

∫
λ(x)|ϕt|2

which with the help of (1.1) we can deduce that

pt(t) ≤ − 2α
∫

b(x)|ψ|2 − ∥∇ϕ∥2 − ∥ϕ∥2 +
1

λ0

∫
λ(x)|ϕt|2 −

∫
λ(x)ϕtϕ − Re

∫
ω
∇ψϕ. (3.9)

Adding equations (3.6)–(3.9) gives

Et,µ = Et(t) + µpt(t)

≤ −
(

καb0

2
− ϵ

λ0

)
∥∇ψ∥2

ω − α(2µ + 1)
∫

b(x)|ψ|2

−
(

1 − 1
2ϵ

− ϵ∗

8ϵ
− µ

λ0

) ∫
λ(x)|ϕt|2

+
ϵ∗cαb0

2κ
∥ϕ∥2

ω − µ∥∇ϕ∥2 − µ∥ϕ∥2 − µ
∫

λ(x)ϕtϕ − Re µ
∫

ω
∇ψϕ − αb0∥ψ∥2

ω,

(3.10)

where ∣∣∣∣µ ∫
ω
∇ψϕ

∣∣∣∣ ≤ cµ

2
∥∇ψ∥2

ω +
µ

2
∥∇ϕ∥2,∣∣∣∣µ ∫

λ(x)ϕtϕ

∣∣∣∣ ≤ cµ∥λ∥∞

2

∫
λ(x)|ϕt|2 +

µ

2
∥∇ϕ∥2

which concludes in

Et,µ = Et(t) + µpt(t)

≤ −
(

καb0

2
− ϵ

λ0
− cµ

2

)
∥∇ψ∥2

ω − α(2µ + 1)
∫

b(x)|ψ|2

−
(

1 − 1
2ϵ

− ϵ∗

8ϵ
− µ

λ0
− cµ∥λ∥∞

2

) ∫
λ(x)|ϕt|2 − µ

(
1 − ϵ∗cαb0

2κµ

)
∥ϕ∥2.

Therefore we will require the following expressions to be nonnegative
καb0

2 − ϵ
λ0

− cµ
2 > 0,

1 − 1
2ϵ −

ϵ∗

8ϵ −
µ
λ0

− cµ∥λ∥∞
2 > 0,

1 − ϵ∗cαb0
2κµ > 0.

Therefore, choosing κ sufficiently large enough such that the following inequality holds

2κλ0 > ϵ∗acb0(2 + λ0∥λ∥∞)

we may deduce that there exists a k such that

Et,µ(t) ≤ −k
[∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|2
]

(3.11)

and hence Eµ(t) would be a non increasing function.
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Remark 3.3. The time t∗ introduced in the energy decay analysis which is present through the
constant ϵ∗ has a specific physical meaning. This is the time so that the non-collisional integral∫

ϕ|ψ|2 is absorbed by the collisional terms (see (3.1)). Therefore, t∗ roughly signifies the time
required by the collisional damping to smooth out the excessive difference of the kinetic
energies of the resonant electrons and the non-resonant ions (equipartition). It is important
to note that equation (3.6) is a non increasing function due to the positive term ∥ϕ∥ω which
depends heavily on the t∗.

Lemma 3.4. For all T > T0 there exists a positive constant C = C(t) such that if (ψ, ϕ) is the regular
solution of the system (1.1) where (ψ0, ϕ0, ϕ1) ∈ {H1

0(Ω) ∩ H2(Ω)}2 × H1
0(Ω) we have

Eµ(0) ≤ C
∫ T

0

[∫
b(x)|ψ|2 +

∫
λ(x)|ϕt|2

]
dt. (3.12)

Proof. We will prove this lemma by contradiction. Assume (3.12) is not true and let (ψk(0),
ϕk(0), ϕt,k(0)) be a sequence of initial data where the corresponding solutions (ψk, ϕk, ϕt,k) with
Eµ,k(0), uniformly bounded in k satisfy

lim
k→+∞

Eµ,k(0)∫ T
0

[∫
b(x)|ψk|2 +

∫
λ(x)|ϕt,k|2

]
dt

= +∞. (3.13)

Since Eµ,k(t) is non increasing and Eµ,k(0) remains bounded we may obtain a subsequence,
denoted again as (ψk, ϕk) for which we have

ψk ⇀ ψ weak star in L∞(0, T; H1
0(Ω)),

ϕk ⇀ ϕ weak star in L∞(0, T; H1
0(Ω)),

ϕt,k ⇀ ϕt weak star in L∞(0, T; L2(Ω)),

ψt,k ⇀ ψt weak star in L∞(0, T; L2(Ω)).

(3.14)

By compactness results, see [14] we get

ψk → ψk strongly in L∞(0, T; L2(Ω)),

ϕk → ϕk strongly in L∞(0, T; L2(Ω)).
(3.15)

Now, taking into consideration (3.13) and (3.14) we obtain

lim
k→+∞

∫ T

0

∫
b(x)|ψk|2dxdt = 0,

lim
k→+∞

∫ T

0

∫
λ(x)|ϕt,k|2dxdt = 0.

(3.16)

Setting

ck := [Eµ,k(0)]1/2 and ϕ̂k =
1
ck

ϕk, ψ̂k =
1
ck

ψk

we infer that

Êµ,k(t) :=
Eµ,k(t)

c2
k

for which we have
Êk(0) = 1. (3.17)
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Taking into consideration the following system

iψ̂t,k + κ∆ψ̂k + iαb(x)ψ̂k = ϕ̂kψkχ(ω),

ϕ̂tt,k − ∆ϕ̂k + ϕ̂k + λ(x)ϕ̂t,k = −Re∇ψ̂kχ(ω),

ψ̂k = ϕ̂k = 0 ∈ Γ × (0, T),

ψ̂k(0) = ψ̂0k, ϕ̂k(0) = ϕ̂0k, ϕ̂t,k(0) = ϕ̂1k in Ω,

ϕ̂t,k → 0 ∈ L2(0, T; L2(ω))

(3.18)

and since Eµ,k(0) = 1 we may deduce that for a subsequence (ψ̂k, ϕ̂k) it is true that

ψ̂k ⇀ ψ̂ weak star in L∞(0, T; H1
0(Ω)),

ψ̂k → ψ̂ strongly in L∞(0, T; L2(Ω)),

ψ̂t,k → ψ̂t weak star in L∞(0, T; L2(Ω)),

ϕ̂k ⇀ ϕ̂ weak star in L∞(0, T; H1
0(Ω)),

ϕ̂t,k ⇀ ϕ̂t weak star in L∞(0, T; L2(Ω)),

ϕ̂k → ϕ̂ strongly in L∞(0, T; L2(Ω)).

(3.19)

From the (3.19), we obtain

lim
k→+∞

∫ T

0

∫
b(x)|ψ̂k|2dxdt = 0,

lim
k→+∞

∫ T

0

∫
λ(x)|ϕ̂t,k|2dxdt = 0,

(3.20)

and therefore by (3.20) and by the compact embedding H1
0(Ω) ↪→ L2(Ω)

lim
k→+∞

∫ T

0

∫
ω
|∇ψ̂k|2dxdt = 0,

lim
k→+∞

∫ T

0

∫
ω
|ϕ̂kψk|2dxdt = 0.

(3.21)

Taking into consideration (3.20) and letting the limit k → +∞ for the system (3.18) we get for
the wave equation 

ϕ̂tt − ∆ϕ̂ + ϕ̂ = 0 in Ω × (0, T),

ϕ̂ = 0 ∈ Γ × (0, T),

ϕt = 0 a.e. ∈ ω × (0, T)

(3.22)

and for the Schrödinger equation{
iψ̂t + κ∆ψ̂ = 0, in Ω × (0, T),

ψ̂ = 0 on Γ × (0, T).
(3.23)

Setting ϕ̂t = v equation (3.22) in the distributional sense becomes
vtt − ∆v = 0 ∈ D′(Ω × (0, T)),

v = 0 ∈ Γ × (0, T),

v = 0 a.e. ∈ ω × (0, T).

(3.24)
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From standard uniqueness results from equation (3.24) we may conclude that v ≡ 0, that is
ϕ̂t ≡ 0. Therefore for a.e. t ∈ (0, T) {

−∆ϕ̂ = 0 ∈ Ω,

ϕ̂ = 0 ∈ Γ
(3.25)

which multiplying by ϕ̂ implies that ϕ̂ ≡ 0. Following a similar procedure for the Schrödinger
equation the uniqueness theorem concludes that ψ̂ = 0 a.e. ∈ Ω.

In order to achieve a contradiction it is enough to prove that Êµ,k(0) → 0 as k → +∞.

Êµ,k(0)=
1
2

{∫
((2µ + 1)|ψ̂(x, 0)|2 + κ|∇ψ̂(x, 0)|2 + |ϕ̂(x, 0)|2 + |∇ϕ̂(x, 0)|2 + |ϕ̂t(x, 0)|2)

+
∫

ω
ϕ(x, 0)|ψ̂(x, 0)|2 + 2µ

∫
ω

ϕ̂t(x, 0)ϕ̂(x, 0)
}

≤ 1
2

{∫
((2µ + 1)|ψ̂(x, 0)|2 +

(
κ +

c
2

)
|∇ψ̂(x, 0)|2 + 3

2
|ϕ̂(x, 0)|2

+ (µc + 1)|∇ϕ̂(x, 0)|2 + (µ + 1)|ϕ̂t(x, 0)|2)} = Eµ,ψ̂k
(0) + Eµ,ϕ̂k

(0).

(3.26)

Our aim is to prove that Eµ,ψ̂k
(0) → 0 and Eµ,ϕ̂k

(0) → 0 with the help of (1.7) and (1.9). For
this purpose let ψ̂k = vk + wk where ψ̂k is the solution of the system (3.18) and vk, wk are the
solutions of the following systems respectively,

ivt,k + κ∆vk = 0 ∈ Ω × (0, T),

vk = 0 ∈ Γ × (0, T),

vk(0) = ψ̂0,k ∈ Ω

(3.27)

and 
iwt,k + κ∆wk = −iαb(x)ψ̂k + ϕ̂kψkχ(ω),∈ Ω × (0, T),

wk = 0 ∈ Γ × (0, T),

wk(0) = 0 ∈ Ω.

(3.28)

Similarly for the wave equation we obtain ϕ̂k = zk + uk which produces the following problems
ztt,k + ∆zk = 0 ∈ Ω × (0, T),

zk = ϕ̂0k ∈ Γ × (0, T),

zk(0) = ϕ̂0,k ∈ Ω,

zt,k(0) = ϕ̂1k ∈ Ω

(3.29)

and 
utt,k + ∆uk = −λ(x)ϕ̂t,k − Re∇ψ̂kχ(ω) ∈ Ω × (0, T),

uk = 0 ∈ Γ × (0, T),

uk(0) = 0 ∈ Ω,

ut,k(0) = 0 ∈ Ω.

(3.30)
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Therefore, it follows that

Êµ,k ≤ Eµ,ψ̂k
(0) + Eµ,ϕ̂k

(0) = Eµ,vk(0) + Eµ,zk(0) ≤ c1

∫ T

0

∫
ω
|vk|2 + c2

∫ T

0

∫
ω
|zt,k|2

≤ c1

(∫ T

0

∫
b(x)|ψ̂k|2 +

∫ T

0

∫
ω
|wk|2

)
+ c2

(∫ T

0

∫
λ(x)|ϕ̂t,k|2 +

∫ T

0

∫
ω
|xk|2

)
.

(3.31)

From equation (3.28) we have the following integral form

ŵk(t) = S(t)ŵk(0) +
∫ T

0
S(t − τ)F(τ)dτ, (3.32)

where S(t) is the semigroup generated by

A : D(A) = H1
0(Ω) ∩ H2(Ω) ⊂ L2(Ω) → L2(Ω),

y → Ay = −i∆y

and F(t) = ϕ̂k(t)ψk(t)χ(ω)− iαb(x)ψ̂k(t). Thus, taking into consideration that ∥S(t)∥L(L2(Ω)) ≤
C we have

∥wk∥2 ≤ c1∥w0,k∥2 + c2

(∫ T

0
∥F(τ)∥dτ

)2

≤ C(∥w0k∥2 + ∥F∥2
L1(0,T;L2(Ω)))

which with the help of the embedding L∞(0, T; L2(Ω)) → L1(0, T; L2(Ω)) and wk(0) = 0
produces ∫ T

0

∫
ω
|wk|2 ≤ ∥wk∥2

L∞(0,T;L2(Ω))

≤ C∥F∥2
L1(0,T;L2(Ω)) ≤ C

∫ T

0

∫
|ϕ̂kψkχ(ω)− iαb(x)ψ̂k|2.

(3.33)

Moving onto the wave equation we have the following integral form expression for the system
(3.29)

Uk(t) = S(t)U0k +
∫ T

0
S(t − τ)F(τ)dτ

where

Uk =

(
uk
ut,k

)
with A =

(
0 −I
−∆ 0

)
and F =

(
0

−λ(x)ϕ̂k − Re∇ψ̂kχ(ω)

)
.

Evaluating the following integral∫ T

0

∫
ω
|ut,k|2 ≤ ∥ut,k∥2

L∞(0,T;L2(Ω))

≤ C∥F∥2
L1(0,T;L2(Ω)) ≤ C

∫ T

0

∫
| − λ(x)ϕ̂k − Re∇ψ̂kχ(ω)|2.

(3.34)

Therefore, from equation (3.31) we obtain

Êµ,k(t) ≤ C
(∫ T

0

∫
b(x)|ψ̂k|2 +

∫ T

0

∫
|ϕ̂kψkχ(ω)− iαb(x)ψ̂k|2

+
∫ T

0

∫
λ(x)|ϕ̂t,k|2 +

∫ T

0

∫
| − Re∇ψ̂kχ(ω)− λ(x)ϕ̂t,k|2

)
,

(3.35)

which taking into consideration (3.20) and (3.21) produces Êµ,k(0) → 0 as k → +∞ and
therefore contradicts the expression (3.17).
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Proof of Theorem 1.5. Continuing with the proof of Theorem 1.5 and by taking T0 > 0 large
enough from (3.11) we may deduce that

Eµ(T0)− Eµ(0) ≤ −k
[∫ T0

0
b(x)|ψ|2 +

∫
λ(x)|ϕt|2

]
(3.36)

and from Lemma 3.4 we also have

Eµ(0) ≤ C
∫ T0

0
D(t)

where

D(t) :=
∫

b(x)|ψ|2 +
∫

λ(x)|ϕt|2.

Therefore, we get

Eµ(T0) ≤ Eµ(0) ≤ C
∫ T0

0
D(t) ≤ −C

k
Eµ(T0) +

C
k

Eµ(0),

so (
1 +

C
k

)
Eµ(T0) ≤

C
k

Eµ(0).

Hence,

Eµ(T0) ≤ νEµ(0), 0 < ν < 1.

Proceeding in a similar way from T to 2T and eventually to nT we have

Eµ(nT) ≤ νnEµ(0), ∀ T > T0.

Finally, let t > T0 then t = nT0 + r for 0 ≤ r ≤ T0 and

Eµ(t) ≤ Eµ(t − r) = Eµ(nT0) ≤ νnEµ(0) = ν
t−r
T0 Eµ(0) = e

t−r
T0

ln νEµ(0).

Moreover, by Lemma 3.2 we have

Eµ(t) ≤ 2E(t) for t ≥ 0

therefore

Eµ(t) ≤ 2E(0)e
t−r
T0

ln ν for t ≥ 0

which completes the proof of Theorem 1.5.
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