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Abstract. We consider the Rayleigh equation ẍ + λ(ẋ2/3 − 1)ẋ + x = 0 depending on
the real parameter λ and construct a Poincaré–Bendixson annulus Aλ in the phase plane
containing the unique limit cycle Γλ of the Rayleigh equation for all λ > 0. The novelty
of this annulus consists in the fact that its boundaries are algebraic curves depending on
λ. The polynomial defining the interior boundary represents a special Dulac–Cherkas
function for the Rayleigh equation which immediately implies that the Rayleigh equa-
tion has at most one limit cycle. The outer boundary is the diffeomorphic image of the
corresponding boundary for the van der Pol equation. Additionally we present some
equations which are linearly topologically equivalent to the Rayleigh equation and pro-
vide also for these equations global algebraic Poincaré–Bendixson annuli.
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1 Introduction

The British physicist and Nobel prize winner J. W. Strutt, better known as Lord Rayleigh,
published fundamental results to a broad spectrum of physical phenomena. In his monograph
“Theory of Sounds” [18] he used the linear differential equation with constant coefficients

d2x
dt2 + k

dx
dt

+ n2x = 0

for the description of acoustic oscillations of a clarinet. The nonlinear modification of this
equation

d2x
dt2 + λ

[(dx
dt

)2/
3 − 1

]
dx
dt

+ x = 0, (1.1)
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where λ is a real parameter, is known under the name Rayleigh equation [3, 17]. Its corre-
sponding system

dx
dt

= −y,

dy
dt

= x + λy − λ
y3

3
,

(1.2)

which is invariant under the transformation t → −t, y → −y, λ → −λ has been studied by
several authors [1, 2, 8, 9, 13, 15, 21–23].

The existence of a limit cycle (isolated closed orbit) of a planar autonomous system is
established usually by the construction of an annulus A in the phase plane with the follow-
ing properties: (i). A contains no equilibrium of the system under consideration. (ii). The
boundary of A consists of two simple closed curves (in what follows called ovals) such that
any trajectory of the considered system meeting the boundary of A will enter A either for
increasing or for decreasing t. An annulus with the properties (i) and (ii) is called a Poincaré–
Bendixson annulus since the application of the Poincaré–Bendixson theorem [5, 16] to that
annulus provides the existence of at least one limit cycle in A. The crucial problem in that ap-
proach is the construction of the ovals forming the boundary of A. In numerous publications
(see e.g. [5, 6, 14, 16, 19, 20]) these ovals consist of piecewise smooth curves constructed in a
sophisticated way. In this paper we are concerned with the construction of such ovals which
are differentiable curves having only a finite number of points where the trajectories of the
underlying system touch the ovals. We call such ovals as crossing ovals. Recently, two papers
have been published [7, 10] in which a procedure for the construction of algebraic crossing
ovals for planar polynomial systems is described. For both papers it is characteristic that they
need the approximation of at least one orbit by a polynomial in t. In what follows, we present
an approach to construct algebraic crossing ovales for the Rayleigh system (1.2) and some of
its topologically equivalent systems, which is completely different from that one presented in
the cited papers [7, 10].

The structure of our paper is as follows: in Section 2 we describe a method for the con-
struction of an algebraic crossing oval for a class of polynomial systems. For this reason we in-
troduce the concept of Dulac–Cherkas functions including one method for their construction.
Section 3 is devoted to the construction of a crossing oval by means of a diffeomorphically
equivalent system. In Section 4 we derive some linearly diffeomorphically equivalent systems
to the Rayleigh system (1.2) and present the corresponding Poincaré–Bendixson annuli.

2 Construction of an interior boundary for a Poincaré–Bendixson
annulus of the Rayleigh system (1.2)

Our approach to construct an interior boundary for a Poincaré–Bendixson annulus for system
(1.2) is based on the use of a Dulac–Cherkas function. For this reason we introduce in the next
subsection the definition of a Dulac–Cherkas function and compose some of its properties.

2.1 Definition and properties of Dulac–Cherkas functions

We consider the planar differential system

dx
dt

= P(x, y, λ),
dy
dt

= Q(x, y, λ) (2.1)
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under the assumption

(A) Let G be an open subset of R2, let Λ be some open interval, let P, Q ∈ C 1 0
(x,y) λ

(G × Λ, R).

We denote by X the vector field defined by (2.1). First we recall the definition of a Dulac
function.

Definition 2.1. Suppose the assumption (A) to be valid. A function B belonging to the class
C 1 0
(x,y) λ

(G × Λ, R) is called a Dulac function of system (2.1) in G for λ ∈ Λ if the expression

div(BX) ≡ ∂(BP)
∂x

+
∂(BQ)

∂y
≡ (grad B, X) + B div X

does not change sign in G and vanishes only on a set Nλ ⊂ G of measure zero for λ ∈ Λ.

The class of Dulac functions has been generalized by L. A. Cherkas in 1997 (see [4]). The
corresponding generalized Dulac function, which is called Dulac–Cherkas function nowadays,
is defined as follows.

Definition 2.2. Suppose the assumption (A) to be valid. A function Ψ ∈ C1 0
(x,y) λ

(G × Λ, R) is
called a Dulac–Cherkas function of system (2.1) in G for λ ∈ Λ if there exists a real number
κ ̸= 0 such that

Φ := (grad Ψ, X) + κΨ div X > 0 (< 0) in G for λ ∈ Λ. (2.2)

Remark 2.3. Condition (2.2) can be relaxed by assuming that Φ may vanish in G on a set Nλ

of measure zero, and that no oval of this set is a limit cycle.

Remark 2.4. In case κ = 1, Ψ is a Dulac function.

For the sequel we introduce the subset Wλ of G defined by

Wλ := {(x, y) ∈ G : Ψ(x, y, λ) = 0}. (2.3)

From the Definition 2.2 we get immediately

Lemma 2.5. Suppose the assumption (A) to be valid. Let Ψ be a Dulac–Cherkas function of system
(2.1) in G for λ ∈ Λ. Then any oval of Wλ having only a finite number of points where (grad Ψ, X)

vanishes is a crossing oval for system (2.1) and can be used as a boundary for a Poincaré–Bendixson
annulus.

The following theorem is a special case of a more general result established in [11].

Theorem 2.6. Suppose the assumption (A) to be valid. Let G be a simply connected region, let Ψ be
a Dulac–Cherkas function of (2.1) in G for λ ∈ Λ such that Wλ contains exactly one oval Oλ in G.
Then in the case κ < 0 system (2.1) has for λ ∈ Λ at most one limit cycle in G, and if it exists, it
surrounds Wλ and is hyperbolic.

This theorem implies

Corollary 2.7. Under the assumptions of Theorem 2.6 the oval Oλ can be used as interior boundary
for a Poincaré–Bendixson annulus of system (2.1) provided it is a crossing oval.

The problem how to construct a Dulac–Cherkas function for the Rayleigh system (1.2) will
be treated in the next subsection. We note that the presented procedure can be applied to a
more general class of planar polynomial systems.
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2.2 Construction of Dulac–Cherkas functions for system (1.2)

We consider system (1.2) in R2 for λ > 0. The corresponding vector field X reads

X(x, y, λ) := (−y, x + λy − λy3/3). (2.4)

We look for a Dulac–Cherkas function in the form

Ψ(x, y, λ) := Ψ0(y, λ) + Ψ1(y, λ)x + Ψ2(y, λ)x2, (2.5)

where we assume that for all λ > 0 the function Ψ2 is not identically zero.
Using (2.4) and (2.5) we obtain for the function Φ defined in (2.2) the representation

Φ(x, y, λ, κ) =
3

∑
k=0

Φk(y, λ, κ)xk, (2.6)

where the functions Φk are defined by the relations

Φ0 := −Ψ1y + Ψ′
0λ(y − y3/3) + κλΨ0(1 − y2), (2.7)

Φ1 := −2Ψ2y + Ψ′
0 + Ψ′

1λ(y − y3/3) + κλΨ1(1 − y2), (2.8)

Φ2 := Ψ′
1 + Ψ′

2λ(y − y3/3) + κλΨ2(1 − y2), (2.9)

Φ3 := Ψ′
2, (2.10)

where the symbol ′ indicates the differentiation with respect to y. One approach to guarantee
that Φ is a definite function in R2 for λ > 0 is to require Φk to be identically zero for 1 ≤ k ≤ 3
and that Φ0 is definite. Applying this approach we get from (2.10) the linear differential
equation

Ψ′
2 = 0, (2.11)

such that it holds
Ψ2(y, λ, κ) ≡ c2 ̸= 0. (2.12)

Taking into account (2.11) and (2.12) we obtain from (2.9)

Ψ′
1 + κc2λ(1 − y2) = 0 (2.13)

whose solution reads
Ψ1(y, λ) = −κc2λ(y − y3/3) + c1. (2.14)

Taking into account (2.14), (2.13) and (2.12) we get from (2.8)

Ψ′
0 = 2c2y + (1 + κ)κc2λ2(1 − y2)(y − y3/3)− κc1λ(1 − y2). (2.15)

Setting
κ = −1, c1 = 0 (2.16)

we have by (2.14)
Ψ1(y, λ) = c2λ(y − y3/3) (2.17)

and the differential equation (2.15) reads

Ψ′
0 = 2c2y (2.18)
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whose solution has the form
Ψ0(y, λ) = c2y2 + c0. (2.19)

Using (2.16)–(2.19) we obtain from (2.7)

Φ0(y, λ,−1) =
2
3

λc2

(
y4 +

3c0

2c2
y2 − 3c0

2c2

)
. (2.20)

Now we have to determine c0 and c2 such that Φ0(y, λ,−1) is a definite function and that the
corresponding Dulac–Cherkas function Ψ has the property that its zero-level set Wλ contains
an oval surrounding the origin. Setting c0 = − 8

3 c2, where by (2.12) c0 ̸= 0 holds, we have

Φ0(y, λ,−1) =
2
3

λc2(y4 − 4y2 + 4) (2.21)

which has for λ > 0 the same sign for all y and vanishes only at y = ±
√

2. Thus it holds

Lemma 2.8. The polynomial

Ψ(x, y, λ) := c2

(
x2 + y2 − 8

3
+ λx

(
y − y3

3

))
(2.22)

is a Dulac–Cherkas function for system (1.2) in R2 for λ > 0.

2.3 Construction of an interior boundary for a Poincaré–Bendixson annulus of
system (1.2)

The set Wλ of the Dulac–Cherkas function Ψ in (2.22) is defined by

Wλ :=
{
(x, y) ∈ R2 : x2 + y2 − 8

3
+ λx

(
y − y3

3

)
= 0

}
. (2.23)

First we note that W0 is the circle x2 + y2 = 8/3. From (2.23) we get further that for all λ > 0
the set Wλ is symmetric with respect to the origin and that the intersection of Wλ with the
straight lines y = ±

√
3 is empty for any λ > 0. For the following we denote by S2

√
3 in R2 the

strip symmetric to the x-axis and with thickness 2
√

3. We obtain from (2.23) the result

Lemma 2.9. The set Wλ defined in (2.23) consists in R2 for λ > 0 of three different branches: the
oval Iλ surrounding the origin and located in the strip S2

√
3, the unbounded branch W1

λ located in the
first quadrant in the region y >

√
3 and the symmetric branch W3

λ in the third quadrant in the region
y < −

√
3 .

Figure 2.1 shows the branches of Wλ for λ = 1.3.
In order to prove that the oval Iλ is a crossing oval, we note that we have by (2.2)

(grad Ψ, X)
∣∣
Ψ=0= Φ

∣∣
Ψ=0= Φ0

∣∣
Ψ=0.

According to (2.21) there exist four points on Iλ, where the vector field X touches the oval Iλ.
Therefore, Iλ is a crossing oval and we get from Corollary 2.7

Theorem 2.10. The oval Iλ represents for λ > 0 an interior boundary for a Poincaré–Bendixson
annulus of system (1.2).
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Figure 2.1: Three branches of the set Wλ including the oval Iλ for λ = 1.3.

3 Construction of an outer boundary for a Poincaré–Bendixson an-
nulus of the Rayleigh system (1.2)

For the construction of an outer boundary of a Poincaré–Bendixson annulus for the Rayleigh
system (1.2) a similar but more sophisticated procedure could be applied as it has been used
for the van der Pol system in our paper [12]. In what follows we describe another approach
based on the concept of diffeomorphically equivalent systems. In the following subsection
we present the definition of topological equivalence of phase portraits and some important
consequence.

3.1 Definition of topological equivalence and some important consequences

Our basic assumption reads as follows

(Ã) Let G1 and G2 be open subsets of R2, let Λ be some open interval, let P1, Q1 ∈ C 1 0
(x,y) λ

(G1 ×
Λ, R), P2, Q2 ∈ C 1 0

(x,y) λ
(G2 × Λ, R).

Consider the topological structure of the trajectories of the system

dx
dt

= P1(x, y, λ),
dy
dt

= Q1(x, y, λ) (3.1)

in G1 and the topological structure of the trajectories of the system

dx
dτ

= P2(x, y, λ),
dy
dτ

= Q2(x, y, λ) (3.2)

in G2.

Definition 3.1. Suppose assumption (Ã) to be valid. Let Λ1 be a subinterval of Λ. The
systems (3.1) and (3.2) are called topologically equivalent for λ ∈ Λ1 if for λ ∈ Λ1 there is a
homeomorphism hλ mapping G1 onto G2 and which maps the trajectories of system (3.1) onto
the trajectories of system (3.2) and there is a strictly increasing homeomorphism gλ mapping
R onto itself such that τ = gλ(t). If hλ is a diffeomorphism then the systems are called
diffeomorphically equivalent.
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The following result is a consequence of the well known fact that the composition of a
local diffeomorphism with a diffeomorphism is still a local diffeomorphism.

Theorem 3.2. Suppose that the assumption (Ã) is valid and that the systems (3.1) and (3.2) are
diffeomorphically equivalent for λ ∈ Λ1. Let Oλ be a crossing oval for system (3.1) for λ ∈ Λ1. Then
the image of Oλ under the diffeomorphism dλ is a crossing oval for system (3.2) for λ ∈ Λ1.

In order to be able to apply Theorem 3.2 for the construction of an outer boundary for a
Poincaré–Bendixson annulus for the Rayleigh system (1.2) we use the following lemma.

Lemma 3.3. The van der Pol system

du
dt

= − v,

dv
dt

= u − λ(u2 − 1)v
(3.3)

is for λ > 0 diffeomorphically equivalent to the Rayleigh system (1.2).

Proof. Applying the diffeomorphism dλ mapping R2 onto itself defined by

x = − v + λ

(
u3

3
− u

)
,

y = u
(3.4)

we get from (3.3)

dx
dt

= − y,

dy
dt

= x + λy − λ
y3

3
,

(3.5)

which coincides with the Rayleigh system (1.2).

3.2 Construction of an outer boundary for a Poincaré–Bendixson annulus of the
Rayleigh system (1.2)

In the paper [12] we have proved the following result

Theorem 3.4. For λ > 0, the oval

Vλ :=
{
(u, v) ∈ R2 : v2 + λvu

(
2 − u2

3

)
+ (1 + λ2)u2 − 7

12
λ2u4 +

λ2

18
u6 − 8 − 3λ − 18λ2 = 0

}
(3.6)

is a crossing oval forming an outer boundary of a global algebraic Poincaré–Bendixson annulus for the
van der Pol system (3.3).

According to Lemma 3.3, the van der Pol system (3.3) is for λ > 0 diffeomorphically equiv-
alent to the Rayleigh system (1.2), where the corresponding diffeomorphism dλ is defined in
(3.4). By Theorem 3.2, the image of the crossing oval Vλ for the van der Pol system (3.3) under
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the diffeomorphism dλ is for λ > 0 a crossing oval Oλ of the Rayleigh system (1.2). From (3.4)
and (3.6) we get

Oλ :=
{
(x, y) :

(
− x + λ

(
y3

3
− y

))2

+ λ

(
− x + λ

(
y3

3
− y

))(
2y − y3

3

)
+ (1 + λ2)y2 − 7

12
λ2y4 +

1
18

λ2y6 − 8 − 3λ − 18λ2 = 0.
} (3.7)

It can be verified that the derivative of Oλ along system (1.2) is negative on Oλ except at four
points. Thus we have the result

Theorem 3.5. The algebraic oval Oλ defined in (3.7) is for λ > 0 an algebraic crossing oval of the
Rayleigh system (1.2) forming the outer boundary of a Poincaré–Bendixson annulus. Together with
the algebraic oval Iλ it determines a global algebraic Poincaré–Bendixson annulus Aλ containing the
unique limit cycle Γλ of the Rayleigh system (1.2).

Figure 3.1 shows the Poincaré–Bendixson annulus Aλ with the limit cycle Γλ of system
(1.2) for λ = 0.1 and λ = 1.3.

Figure 3.1: Annulus Aλ with the limit cycle Γλ of system (1.2) for λ = 0.1 (left)
and λ = 1 (right).

4 Global algebraic Poincaré–Bendixson annuli for systems diffeo-
morphically equivalent to the Rayleigh system

If we apply for λ > 0 the linear diffeomorphism

u =
√

λx, v =
√

λy (4.1)

to the Rayleigh system (1.2) we obtain the system

du
dt

= − v,

dv
dt

= u + λv − v3

3
,

(4.2)
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which is diffeomorphically equivalent to system (1.2) for λ > 0. Thus, system (4.2) has for
λ > 0 a unique limit cycle Γ̄λ. According to Theorem 3.2 we obtain a global algebraic Poincaré–
Bendixson annulus for system (4.2) by applying the diffeomorphism (4.1) to the ovals Iλ and
Oλ. It holds

Theorem 4.1. The algebraic ovals

Īλ :=
{
(u, v) ∈ S2

√
3λ : u2 + v2 + uv

(
λ − v2

3

)
− 8

3
λ = 0

}
(4.3)

and

Ōλ :=
{
(u, v) ∈ R2 :

(
− u +

(
v3

3
− λv

))2

+

(
− u +

(
v3

3
− λv

)
v
(

2λ − v2

3

)
+ (1 + λ2)v2 − 7

12
λv4 +

1
18

v6 − 8λ − 3λ2 − 18λ3 = 0
} (4.4)

form a global algebraic Poincaré–Bendixson annulus Āλ containing the unique limit cycle Γ̄λ of system
(4.2).

If λ tends to zero we get from (4.3) and (4.4) that both ovals shrink to the origin which
reflects the property of system (4.2) that the limit cycle Γ̄λ bifurcates from the origin when λ

passes zero (Andronov–Hopf bifurcation). This distinguishes system (4.2) from the Rayleigh
system where the limit cycle Γλ bifurcates from the circle x2 + y2 = 2 when λ passes zero.

Figure 4.1 shows the Poincaré–Bendixson annulus Āλ with the limit cycle Γ̄λ of system 4.2
for λ = 0.1 and λ = 1.

Figure 4.1: Annulus Āλ with the limit cycle Γ̄λ of system (4.2) for λ = 0.1 (left)
and λ = 1 (right).

If we apply for λ > 0 the linear diffeomorphism

x = λu, y = v, t = λτ (4.5)

to the Rayleigh system (1.2) and use the notation ε = 1/λ2 we obtain the topologically equiv-
alent system

du
dτ

= − v,

ε
dv
dτ

= u + v − v3

3

(4.6)
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which is a singularly perturbed system in case of small ε. Thus, the unique limit cycle Γ̂ε

represents a relaxation oscillation for small ε. If we apply the linear diffeomorphism (4.5) to
the ovals Iλ and Oλ we obtain a global algebraic Poincaré–Bendixson annulus Âε for system
(4.6).

Theorem 4.2. The algebraic ovals

Îε :=
{
(u, v) ∈ S2

√
3 : u2 + εv2 + uv

(
1 − v2

3

)
− 8

3
ε = 0

}
(4.7)

and

Ôε :=
{
(u, v) ∈ R2 :(
− u + v

(
v2

3
− 1

))
(−u + v) + (1 + ε)v2 − 7

12
v4 +

1
18

v6 − 8ε − 3
√

ε − 18 = 0
}

(4.8)

form a global algebraic Poincaré–Bendixson annulus Âε containing the unique limit cycle Γ̂ε of system
(4.2).

Figure 4.2 shows the Poincaré–Bendixson annulus Âε with the limit cycle Γ̂ε of system (4.6)
for ε = 0.1 and ε = 2.

Figure 4.2: Annulus Âε with limit cycle Γ̂ε of system (4.6) for ε = 0.1 (left) and
ε = 2 (right).
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