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Abstract. This paper deals with fundamental properties of Poincaré half-maps defined
on a straight line for planar linear systems. Concretely, we focus on the analyticity
of the Poincaré half-maps, their series expansions (Taylor and Newton–Puiseux) at the
tangency point and at infinity, the relative position between the graph of Poincaré half-
maps and the bisector of the fourth quadrant, and the sign of their second derivatives.
All these properties are essential to understand the dynamic behavior of planar piece-
wise linear systems. Accordingly, we also provide some of their most immediate, but
non-trivial, consequences regarding periodic orbits.
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1 Introduction

The study of the qualitative properties of distinguished solutions of piecewise linear differen-
tial systems rests mainly on the analysis of the features of Poincaré maps, which are defined as
composition of transition maps between the separation manifolds. Sometimes these transition
maps are called Poincaré half-maps. The linearity of the system in each zone invites to its inte-
gration, which automatically causes the emergence of a wide range of cases due to the nature
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of the different spectra of the matrices of the linear systems and the relative position between
the equilibria, if any, and the separation manifolds. The number of cases to be studied is high
even for planar systems with two zones of linearity. Moreover, the direct integration leads to
different nonlinear equations where the flight time appears as a new variable.

Since the publication of the seminal work by Freire et al. [9], a large number of interesting
papers have appeared in order to establish the dynamical behavior in planar piecewise linear
systems with two zones of linearity and, in particular, to give conditions for the existence
and stability of limit cycles and to provide an optimal bound for the number of coexisting
limit cycles (see for instance, [11, 15–21]). None of these papers considers all the possible
cases. Moreover, they are forced to use individualized approaches to study the different kind
of functions that arise due to the distinct spectra of the matrices. This causes that a same
result is usually expressed in different terms and, sometimes, it may be a hard task to obtain
a common and brief statement for it. Thus, the use of individualized techniques for each case
does not allow a unified view of several properties of the Poincaré half-maps and, when it
does, more effort is required to complete the case-by-case study and to achieve independent
statements of these cases.

This paper relies on a novel characterization of Poincaré half-maps for planar linear sys-
tems [2] which allows us to see the properties of these maps from a common point of view and
to prove the results in a simple way, without the need of making particularized case-by-case
studies. Accordingly, we will not have any of the disadvantages mentioned in the previous
paragraphs because this novel characterization does not require integration of the systems
and, therefore, the distinction of the spectra of the matrices is not needed. The strength of this
approach can be seen in [3], where the uniqueness of limit cycles for continuous piecewise
linear systems was provided in a simple and synthesized way.

In the framework of the study of Poincaré half-maps for planar linear systems, the most
relevant properties are those related to the local behavior at tangency points between the flow
and the Poincaré section, the behavior at infinity (obviously, in the case of the focus or center),
and the sign of the derivatives. Some of these properties have been proven just for concrete
cases. Even those which are valid for all situations have been proven in a large case-by-case
study. This manuscript is primarily devoted to simplifying and unifying the proofs of these
properties by considering all possible scenarios simultaneously. In addition, it will be stated
an interesting fact about the relative position between the graphs of Poincaré half-maps and
the bisector of the fourth quadrant. Among other things, from this property it is direct that
Poincaré half-maps inherit the expansion/compression behavior of the flow of the planar
linear system. Additionally, it is proven here that this relative position is also related to the
(constant) sign of its second derivative.

As might be expected from the first two paragraphs of this introduction, all the previously
commented properties have direct applications to planar piecewise linear systems; from the
analysis of stability and bifurcations of equilibria, singularities, or the infinity, to the existence
and characterization of periodic orbits and the obtention of uniform bounds to the number of
limit cycles. In this work, some straightforward conclusions concerning the periodic behavior
are obtained.

The paper is organized as follows. Section 2 presents the integral characterization of
Poincaré half-maps for planar linear systems given in [2]. Two basic consequences of this
characterization for the Poincaré half-maps are their analyticity and their understanding as
solutions of a differential equation. In Section 3, we summarize the results on analyticity of the
Poincaré half-maps given in [2] and obtain the Taylor and Newton–Puiseux series expansions
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at tangency points and infinity by means of the differential equation. Section 4 studies the
relationship between the graphs of Poincaré half-maps and the bisector of the fourth quadrant,
which is used to establish, in Section 5, the sign of the second derivatives of the Poincaré half-
maps. Finally, Section 6 addresses the analysis of the periodic behavior of planar piecewise
linear systems with two zones separated by a straight line. There, some direct consequences
of the properties of Poincaré half-maps obtained in previous sections are stated.

2 Integral characterization for the Poincaré half-maps

Let us consider, for x = (x1, x2)T, the autonomous linear system

ẋ = A x + b (2.1)

where A = (aij)i,j=1,2 is a real matrix and b = (b1, b2)T ∈ R2. Let us choose, without loss of
generality, the Poincaré section Σ = {(x1, x2) ∈ R2 : x1 = 0}.

Notice that if the coefficient a12 vanishes, system (2.1) is uncoupled and a Poincaré half-
map on section Σ cannot be defined. Hence, let us assume in this work that a12 ̸= 0 (observ-
ability condition [6]). On the one hand, observe that, among other configurations, this condi-
tion removes the possibility of star-nodes to appear. On the other hand, under the assumption
a12 ̸= 0, the linear change of variable x = x1, y = a22x1 − a12x2 − b1, with a = a12b2 − a22b1,
allows to write system (2.1) into the generalized Liénard form,(

ẋ
ẏ

)
=

(
T −1
D 0

)(
x
y

)
−
(

0
a

)
, (2.2)

where T and D stand for the trace and the determinant of matrix A, respectively. In the new
coordinates, since x1 = x, Poincaré section Σ remains the same.

The first equation of system (2.2) evaluated on the section Σ is reduced to ẋ|Σ = −y.
Therefore, the flow of the system crosses Σ from the half-plane Σ+ = {(x, y) ∈ R2 : x > 0} to
the half-plane Σ− = {(x, y) ∈ R2 : x < 0} when y > 0, from Σ− to Σ+ when y < 0, and it is
tangent to Σ at the origin.

Since this work is devoted to Poincaré half-maps of system (2.2) corresponding to the
section Σ and due to the fact that there is no possible return to section Σ when a = D = 0, we
assume that a2 + D2 ̸= 0 throughout this work. Note that this condition avoids the existence
of a continuum of equilibria.

We are going to focus on the left Poincaré half-map (the one defined by the flow in the
closed half-plane Σ− ∪ Σ and the intersection points of its orbits with the Poincaré section
Σ). Notice that the definition of the right Poincaré half-map and their corresponding results
may be immediately obtained by the invariance of system (2.2) under the change (x, y, a) ↔
(−x,−y,−a).

The left Poincaré half-map is usually defined in the following way. Let us consider
(0, y0) ∈ Σ with y0 ⩾ 0 and let Φ(t; y0) = (Φ1(t; y0), Φ2(t; y0)) the solution of system (2.2)
that satisfies the initial condition Φ(0; y0) = (0, y0). The existence of a value τ(y0) > 0 such
that Φ1(τ(y0); y0) = 0 and Φ1(t; y0) < 0 for every t ∈ (0, τ(y0)) allows to define the image of
y0 by the left Poincaré half-map as P(y0) = Φ2(τ(y0); y0) ⩽ 0. Moreover, the value τ(y0) is
called the left flight time.

Regarding the definition of the left Poincaré half-map at the origin, P(0) cannot be defined
as above when for every τ > 0 there exists t ∈ (0, τ) such that Φ1(t; 0) > 0. However, it can
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be continuously extended as P(0) = 0 provided that for every ε > 0 there exist y0 ∈ (0, ε)

and y1 ∈ (−ε, 0) such that P(y0) = y1. This finishes the usual definition of the left Poincaré
half-map.

According to the above definition, it is natural to compute the flow of the system by means
of explicit integrations. This leads to many case-by-case studies and forces the nonlinear
appearance of the flight time. Here, we will use a characterization that avoids the computation
of the flow, as it is done in [2]. For the sake of completeness, we give a brief summary of the
main results and ideas of [2] that are going to be used in this paper.

The left Poincaré half-map P and its definition interval I are given in Theorem 19 and
Corollary 21 of [2]. By using the quadratic polynomial function

W(y) = Dy2 − aTy + a2, (2.3)

the left Poincaré half-map is the unique function P : I ⊂ [0,+∞) −→ (−∞, 0] that, for every
y0 ∈ I, satisfies

PV
{∫ y0

P(y0)

−y
W(y)

dy
}

= cT, (2.4)

where c is given, in terms of the parameters, as follows: (i) c = 0 if a > 0, (ii) c =

π
(

D
√

4D − T2
)−1

∈ R if a = 0, and (iii) c = 2π
(

D
√

4D − T2
)−1

∈ R if a < 0. Here,
PV{·} stands for the Cauchy Principal Value at the origin (see, for instance, [14]), which is
defined as

PV
{∫ y0

y1

−y
W(y)

dy
}

= lim
ε↘0

(∫ −ε

y1

−y
W(y)

dy +
∫ y0

ε

−y
W(y)

dy
)

,

for y1 < 0 < y0.
As emphasized in [2], the interval I is essentially related with the roots of the quadratic

polynomial function W. In the next remark, we shall briefly comment some of those relation-
ships and other interesting properties of P which are proven in [2].

Remark 2.1. System (2.2), under the assumed condition a2 + D2 ̸= 0, has invariant straight
lines for several values of the parameters. These straight lines are either the invariant eigen-
spaces of equilibria (saddles, degenerate nodes or non-degenerate nodes) or the straight line
y = Tx + a/T in the case T ̸= 0, D = 0 (what implies a ̸= 0). In those cases, every invariant
straight line intersects the Poincaré section Σ in a point (0, µ), where µ is a root of the quadratic
polynomial function W given in (2.3). Moreover, when I ⊂ [0,+∞) is bounded, then the right
endpoint of I is a real root of W and, in the same way, if P(I) is bounded, then the left
endpoint of P(I) is also a real root of W. In Fig. 2.1 (a) and Fig. 2.1(b), we show two examples
of bounded intervals I and/or P(I), corresponding respectively to saddle and non-degenerate
node configurations.

The interval I can be unbounded. For instance, if 4D − T2 > 0, then the equilibrium
point of system (2.2) is a focus or a center, the intervals I and P(I) are unbounded, and,
obviously, P(y0) tends to −∞ as y0 → +∞. In this case, the intervals are I = [0,+∞) and
P(I) = (−∞, 0], except when the equilibrium is a focus (i.e. T ̸= 0) and it is located in the left
half-plane

{
(x, y) ∈ R2 : x < 0

}
(i.e. a < 0). In fact, when T > 0, the interval P(I) is reduced

to (−∞, ŷ1], where ŷ1 = P(0) (see Fig. 2.1 (c)). Analogously, for T < 0, I = [ŷ0,+∞) with
ŷ0 = P−1(0) (see Fig. 2.1 (d)).

Finally, the polynomial function W is strictly positive in each set [P(y0), 0) ∪ (0, y0], with
y0 ∈ I. Besides that, since W(0) = a2, then W(0) > 0 for a ̸= 0 and W(0) = 0 for a = 0.
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(a) (b)

(c) (d)

Figure 2.1: The left Poincaré half-map P and its interval of definition I for the
cases: (a) saddle, (b) non-degenerate node, (c) unstable focus, and (d) stable
focus.

It is worth mentioning that the integral given in (2.4) diverges when a = 0 and the Cauchy
principal value is necessary to overcome this difficulty. Moreover, in this case, for y1 < 0 < y0,
the Cauchy principal value at the origin is given by

PV
{∫ y0

y1

−y
Dy2 dy

}
= lim

ε↘0

(∫ −ε

y1

−y
Dy2 dy +

∫ y0

ε

−y
Dy2 dy

)
=

1
D

log
∣∣∣∣y1

y0

∣∣∣∣ . (2.5)

When a ̸= 0, the integrating function h(y) = −y/W(y) is continuous and, consequently, the
Cauchy principal value just takes the value of the integral.
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3 Analiticity and series expansions of Poincaré half-maps at the tan-
gency point and its preimage, and at infinity

In this section, by means of the integral characterization and a subsequent differential equa-
tion, we shall compute the first coefficients of the Taylor expansion of the left Poincaré half-
map P. Obviously, the used method does not depend on the spectrum of the matrix of the
system. Before obtaining these coefficients it is necessary to determine the analyticity of the
left Poincaré half-map P.

When P(y0) ̸= 0, it is well-known (see, for example, [7]) that the transversality between
the flow of the system and the separation line Σ ensures the analyticity of P at y0. The
analyticity for the tangency point between the flow and Σ (that is, the origin) is more intricate
and, in the literature, it has been approached with a case-by-case study (see some partial
results at [8]). However, as follows from Corollary 24 of [2], the maps P and P−1 are real
analytic functions in the open intervals int(I) and P(int(I)), respectively, and at least one of
the following statements is true:

(i) the map P is a real analytic function at the left endpoint of its domain,

(ii) the map P−1 is a real analytic function at the right endpoint of its domain.

When the equilibrium of system (2.2) is a center or a focus, the left Poincaré half-map P
can be considered also at infinity. In addition, we shall obtain the first coefficients of the Taylor
expansion of P around the infinity.

A first consequence from the definition of the left Poincaré half-map given in the integral
form (2.4) is easily deduced by computing the derivative with respect to variable y0 (see
Remark 16 of [2]). Hence, one can see that the graph of the left Poincaré half-map P and its
inverse function P−1, oriented according to increasing y0, are particular orbits of the cubic
vector field

X(y0, y1) = −
(
y1W(y0), y0W(y1)

)
= −

(
y1
(

Dy2
0 − aTy0 + a2), y0

(
Dy2

1 − aTy1 + a2)).
In fact, the left Poincaré half-map P and its inverse function P−1 are solutions of the differential
equation

y1W(y0)dy1 − y0W(y1)dy0 = 0. (3.1)

The next proposition is a direct consequence of the results in [2] and allows to obtain the
Taylor expansion of P around the origin when a ̸= 0 and P(0) = 0. Notice that for a = 0, the
existence of the left Poincaré half-map P implies 4D − T2 > 0. From Remark 2.1, the interval
of definition of P is I = [0,+∞) and, for y0 ⩾ 0, expression (2.4) can be written as

PV
{∫ y0

P(y0)

−y
Dy2 dy

}
=

πT
D
√

4D − T2
.

Hence, by using the value for PV given in (2.5), the left Poincaré half-map P is given by

P(y0) = − exp
(

πT√
4D − T2

)
y0, for y0 ⩾ 0. (3.2)
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When a ̸= 0, by denoting I = {y ∈ R : W(y) > 0}, from Theorem 14 of [2], it is deduced
that the set

C0 =

{
(y1, y0) ∈ I2 :

∫ y0

y1

−y/W(y)dy = 0
}

can be written in the form

C0 =
{
(y1, y0) ∈ I2 : (y1 − y0)(y1 − φ0(y0)

}
,

where φ0 is a real analytic function in I which is also an involution, that is, (φ0(φ0(y0))) = y0

for all y0 ∈ I . Now, by means of Corollary 21 of [2], it follows that the left Poincaré half-
map P coincides with the function φ0 restricted to the interval I ∩ [0, ∞], provided 0 ∈ I and
P(0) = 0. By an abuse of notation, we say that the Poincaré half-map P is an involution when
a ̸= 0, 0 ∈ I, and P(0) = 0.

Proposition 3.1. Assume that a ̸= 0 and 0 ∈ I. If P(0) = 0, then left Poincaré half-map P is a real
analytic function in I, it is an involution and its Taylor expansion around the origin writes as

P(y0) = −y0 −
2Ty2

0
3a

− 4T2y3
0

9a2 +
2
(
9DT − 22T3) y4

0

135a3

+
4
(
27DT2 − 26T4) y5

0

405a4 −
2
(
27D2T − 176DT3 + 100T5) y6

0
945a5 +O

(
y7

0
)

.

(3.3)

Proof. From the hypotheses of the proposition and by means of Theorem 14 and Corollary 24
of [2], it is deduced that left Poincaré half-map P is a real analytic function in I and it is an
involution. Hence, the derivative of P at the origin is P′(0) = −1.

Now, taking into account that P is a solution of the differential equation given in (3.1), it
is easy to obtain, via undetermined coefficients, the Taylor expansion given in (3.3) and so the
proof is concluded.

Notice that the Taylor expansion around the origin given in Proposition 3.1 was already
obtained in [23]. Although the calculations are not fully detailed in that work, the authors
rely on the results given in [8], where the study requires different techniques depending on
the situations. Before [23], the same series expansion was obtained in [10], by means of an
inversion of the flight time, but only for the focus case.

When 0 ∈ I and P(0) ̸= 0, the function P is a real analytic function at the origin and it is
possible to obtain its Taylor expansion of P around the origin.

Proposition 3.2. Assume that 0 ∈ I. If P(0) = ŷ1 < 0, then a < 0, T > 0, 4D − T2 > 0, ŷ1 is the
right endpoint of the interval P(I), and the left Poincaré half-map P is a real analytic function in I and
its Taylor expansion around the origin writes as

P(y0) = ŷ1 +
W (ŷ1) y2

0
2a2ŷ1

+
TW (ŷ1) y3

0
3a3ŷ1

−
(
a2 +

(
D − 2T2) ŷ2

1

)
W (ŷ1) y4

0

8a4ŷ3
1

−
T
(
5a2 +

(
7D − 6T2) ŷ2

1W (ŷ1)
)

y5
0

30a5ŷ3
1

+

(
9a4 − 6a3Tŷ1 + 2a2 (9D − 13T2) ŷ2

1 +
(
9D2 − 46DT2 + 24T4) ŷ4

1

)
W (ŷ1) y6

0

144a6ŷ5
1

+O
(
y7

0
)

.

(3.4)
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Proof. The expression given in (3.2) provides the left Poincaré half-map for the case a = 0.
From there, one obtains P(0) = 0 when a = 0.

Suppose that 0 ∈ I and P(0) = ŷ1 < 0. Then a ̸= 0 and expression (2.4) leads us to∫ 0

ŷ1

−y
W(y)

dy = cT.

From Remark 2.1, the polynomial W is strictly positive and, therefore, the left-hand term of
the last expression is also strictly positive. If a > 0, from expression (2.4), c = 0 and this is
impossible. Thus, it is deduced that a < 0, T > 0, and 4D − T2 > 0. Now, from Remark 2.1
again, the intervals I and P(I) are unbounded and P(y0) tends to −∞ as y0 → +∞.

Next, let us prove that ŷ1 is the right endpoint of the interval I. Let us consider y0 ⩾ 0 and
y1 ∈ (ŷ1, 0]. From the inequalities∫ y0

y1

−y
W(y)

dy <
∫ y0

ŷ1

−y
W(y)

dy ⩽
∫ 0

ŷ1

−y
W(y)

dy = cT

one can see that no point in the interval y1 ∈ (ŷ1, 0] belongs to the interval P(I) and so the
right endpoint of interval P(I) is ŷ1.

The analyticity of P is a direct consequence of Theorem 14 and Corollary 21 of [2] and the
Taylor expansion around the origin given in (3.4) follows from the method of undetermined
coefficients applied to the differential equation (3.1).

Remark 3.3. Note that the condition P(0) = ŷ1 < 0 together with the linearity of the system
implies that there exists an unstable focus equilibrium in the left half-plane Σ− (see Fig. 2.1(c))
and so it is immediate that a < 0, T > 0, and 4D − T2 > 0. This is an alternative proof for the
inequalities of Proposition 3.2. On the other hand, the endpoints of intervals I and P(I) were
also determined in Corollary 21 of [2] in a more generic way. For the sake of completeness, in
the previous proof, we have included a different and specific reasoning for this case.

When there exists a point ŷ0 > 0 such that P (ŷ0) = 0, then left Poincaré half-map P is a
non-analytic function at ŷ0. However, in [2] it is proven that the inverse function P−1 is analytic
at the origin and so it is possible, by means of an inversion, to get a Newton–Puiseux series
expansion for the left Poincaré half-map P around ŷ0. Some results about series inversion and
Newton–Puiseux series can be found in [12] and the references therein. Also of interest are
the results included in [1] concerning the expression of the solutions of differential equations
as Newton–Puiseux series expansion and its convergence.

Proposition 3.4. Assume that there exists a value ŷ0 > 0 with P (ŷ0) = 0. Then, a < 0, T < 0,
4D − T2 > 0, ŷ0 is the left endpoint of the interval I, the inverse function P−1 is a real analytic
function, and the left Poincaré half-map P admits the Newton–Puiseux serie expansion around the
point ŷ0 given by

P(y0) = a

√
2ŷ0

W(ŷ0)
(y0 − ŷ0)

1/2 − aT
3

2ŷ0

W(ŷ0)
(y0 − ŷ0)

+
a3

72

(
9D + 2T2

a2 +
9
ŷ2

0

)(√
2ŷ0

W(ŷ0)

)3

(y0 − ŷ0)
3/2 +O

(
(y0 − ŷ0)

2) ,

(3.5)

which is valid for y0 ⩾ ŷ0.
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Proof. Suppose that there exists a point ŷ0 > 0 such that P(ŷ0) = 0. An analogous reasoning
to the first part of the proof of Proposition 3.2 leads to the inequalities a < 0, T < 0, and
4D − T2 > 0 and to the fact that ŷ0 is the left endpoint of the interval I.

The inverse function P−1 satisfies P−1(0) = ŷ0 and, from differential equation (3.1), it
follows that its derivative at the origin vanishes. This implies that P is a non-analytic function
at ŷ0. From Theorem 14 and Corollary 21 of [2], it follows that the inverse function P−1 is an
analytic function at the origin and P−1 admits the Taylor expansion (3.4) by changing ŷ1 by
ŷ0.

Now, the Newton–Puiseux series expansion of P is obtained by the inversion of the Taylor
expansion of P−1. Note that the direct inversion provides two possible series expansions but,
since P(y0) ⩽ 0 for all y0 ∈ I, the valid one is that given in (3.5) and the proof is finished.

An analogous comment to Remark 3.3 can be made about the inequalities of Proposition
3.4 and the left endpoint of I. The scenario described by the hypothesis stated in Proposition
3.4 is illustrated in Fig. 2.1(d).

Remark 3.5. The inversion used to obtain the Newton–Puiseux series expansion of P is equiv-
alent to the computation of the Taylor expansion of Q(z0) := P(ŷ0 + z2

0) around z0 = 0 and
the subsequent change of z0 by

√
y0 − ŷ0. In order to get this Taylor expansion it is enough

to make the change of variable y0 → ŷ0 + z2
0 in the differential equation (3.1) to achieve a

differential equation for the function Q.

Let us recall from Remark 2.1 that when 4D − T2 > 0 the domain I is unbounded with
P(y0) tending to −∞ as y0 → +∞. Thus, the study of the left Poincaré half-map around
the infinity is feasible. In fact, the first two terms of the Taylor expansion of left Poincaré
half-map P around the infinity were already obtained in [9] by means of an expression of P
parameterized by the flight time. In the following proposition, we present a simple method
to get these and others terms.

Proposition 3.6. Assume that 4D − T2 > 0.Then, the Taylor expansion of left Poincaré half-map P
around the infinity writes as

P(y0) = − exp
(

πT√
4D − T2

)
y0 +

aT
D

(
1 + exp

(
πT√

4D − T2

))
− a2

D
sinh

(
πT√

4D − T2

)
· 1

y0

−
a3e

− 2πT√
4D−T2

(
−2 + e

πT√
4D−T2

)(
1 + e

πT√
4D−T2

)2

T

6D2 · 1
y2

0
+O

(
1
y3

0

)
.

Proof. Firstly, we shall prove the equality

lim
y0→+∞

P(y0)

y0
= − exp

(
πT√

4D − T2

)
. (3.6)

If a = 0, then expression (3.2) leads us directly to equality (3.6).
If a ̸= 0, taking into account that W(y) > 0 for y ∈ R (see Remark 2.1), then relationship

(2.4) can be written as ∫ −y0

P(y0)

−y
W(y)

dy +
∫ y0

−y0

−y
W(y)

dy = cT, (3.7)
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for y0 ∈ I, being c = 0 for a > 0 and c = 2π
(

D
√

4D − T2
)−1

for a < 0.
The change of variable Y = 1/y applied to the first integral in expression (3.7) transforms

it into ∫ −1/y0

1/P(y0)

1
a2Y3 − aTY2 + DY

dY +
∫ y0

−y0

−y
W(y)

dy = cT

or, equivalently, into the expression

∫ −1/y0

1/P(y0)

1
DY

dY +
∫ −1/y0

1/P(y0)

a(T − aY)
D (a2Y2 − aTY + D)

dY +
∫ y0

−y0

−y
W(y)

dy = cT.

That is,

P(y0)

y0
= − exp

(
DcT − D

∫ y0

−y0

−y
W(y)

dy −
∫ −1/y0

1/P(y0)

a(T − aY)
a2Y2 − aTY + D

dY
)

.

Now, a direct integration provides

lim
y0→+∞

∫ y0

−y0

−y
W(y)

dy = − πTsign(a)
D
√

4D − T2
(3.8)

and taking into account that

lim
y0→+∞

∫ −1/y0

1/P(y0)

a(T − aY)
a2Y2 − aTY + D

dY = 0,

the equality (3.6) follows.
Thus, the function P̃, defined by

P̃(Y0) =


1

P(1/Y0)
if Y0 ̸= 0 and 1/Y0 ∈ I,

0 if Y0 = 0,

has derivative on the right at the origin and its value is

α1 :=
dP̃
dY0

(
0+
)
= − exp

(
−πT√

4D − T2

)
. (3.9)

Moreover, it is immediate to see that the function P̃ is a solution of differential equation(
a2Y2

0 − aTY0 + D
)

Y0dY1 −
(
a2Y2

1 − aTY1 + D
)

Y1dY0 = 0,

obtained from the differential equation (3.1) by means of the change of variables (Y0, Y1) =

(1/y0, 1/y1) (defined for y0y1 ̸= 0). From here, it is deduced that the function P̃ has derivatives
on the right of all orders at Y0 = 0 and, after a direct computation, one finds

α2 :=
d2P̃
dY2

0

(
0+
)
= −2aT

D
e
− 2πT√

4D−T2

(
e

πT√
4D−T2 + 1

)
,

α3 :=
d3P̃
dY3

0

(
0+
)
=

3a2

D2 e
− 3πT√

4D−T2

(
e

πT√
4D−T2 + 1

)(
−2T2e

πT√
4D−T2 + De

πT√
4D−T2 − D − 2T2

)
,
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and

α4 :=
d4P̃
dY4

0

(
0+
)

=
4a3T
D3 e

− 4πT√
4D−T2

(
1 + e

πT√
4D−T2

)2 (
−8D + 7De

πT√
4D−T2 − 6T2 − 6T2e

πT√
4D−T2

)
. (3.10)

Since the Taylor expansion of left Poincaré half-map P around the infinity is given by

P(y0) =
1
α1

y0 −
α2

2α2
1
+

3α2
2 − 2α1α3

12α3
1

· 1
y0

− 3α3
2 − 4α1α2α3 + α2

1α4

24α4
1

· 1
y2

0
+O

(
1
y3

0

)
, (3.11)

the proof concludes by substituting expressions (3.9)–(3.10) into (3.11).

4 The relative position between the graph of Poincaré half-maps
and the bisector of the fourth quadrant

To study the relative position between the graph of the left Poincaré half-map and the bisector
of the fourth quadrant, it is natural to analyze the sign of the difference y0 − (−P(y0)). In the
next proposition, we show the relationship between this difference and the trace T. Notice
that this relationship has been addressed via a case-by-case treatment (by distinguishing the
spectrum of the matrix of the system) in the main results of chapter 4 of [22]. Here, we provide
a concise proof by using the integral characterization of the left Poincaré half-map.

Proposition 4.1. The left Poincaré half-map P satisfies the relationship

sign (y0 + P(y0)) = −sign(T) for y0 ∈ I \ {0}.

In addition, when 0 ∈ I and P(0) ̸= 0 or when T = 0, the relationship also holds for y0 = 0.

Proof. We will prove this proposition by distinguishing the cases T = 0 and T ̸= 0.
For T = 0, the integral equation given in (2.4) is reduced to

PV
{∫ y0

P(y0)

−y
Dy2 + a2 dy

}
= 0, for y0 ∈ I.

By taking into account that the integrating function is an odd function, it is direct to see that
P(y0) = −y0 for all y0 ∈ I and so the proposition is true for T = 0.

Now, we focus on the proof for the case T ̸= 0 and we will consider the situations a = 0
and a ̸= 0.

When a = 0, the left Poincaré half-map P is given by expression (3.2) and so the equality
sign (y0 + P(y0)) = −sign(T) holds for every y0 ∈ I.

When a ̸= 0, let us consider the interval

J = {u ∈ R : W(y) > 0, ∀ y ∈ [−|u|, |u|]}

and function g : J −→ R defined by

g(u) =
∫ u

−u

−y
W(y)

dy,
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where W is the polynomial function defined in (2.3).
Notice that function g satisfies g(0) = 0, its derivative is

g′(u) =
−2aTu2

W(u)W(−u)

and so sign(g′(u)) = −sign(aT) for every u ∈ J \ {0}. Thus, sign(g(u)) = −sign(aT) for
every u ∈ J ∩ (0,+∞) and sign(g(u)) = sign(aT) for every u ∈ J ∩ (−∞, 0).

Moreover, if J = R (i.e., when 4D − T2 > 0), then, from (3.8),

lim
u→+∞

g(u) = − πTsign(a)
D
√

4D − T2
.

The existence of the left Poincaré half-map P for the case a ̸= 0 implies a > 0 and c = 0

or a < 0 and c = 2π
(

D
√

4D − T2
)−1

∈ R. It is straightforward to see that these conditions
together with the properties of function g lead to the equality

sign(cT − g(u)) = sign(T). (4.1)

Let us consider y0 ∈ int(I) ∩ J. From equality (2.4), one gets

cT =
∫ y0

P(y0)

−y
W(y)

dy =
∫ −y0

P(y0)

−y
W(y)

dy +
∫ y0

−y0

−y
W(y)

dy,

that is, ∫ −y0

P(y0)

−y
W(y)

dy = cT − g(y0).

Thus, from (4.1),

sign
(∫ −y0

P(y0)

−y
W(y)

dy
)
= sign(T) ̸= 0

and, taking into account that −y0 · P(y0) ⩾ 0, equality sign (y0 + P(y0)) = −sign(T) holds
for every y0 ∈ int(I) ∩ J. Therefore, the conclusion follows by using the continuity of the left
Poincaré half-map and the function y1(y0) = −y0.

The next result establishes, as a direct consequence of Proposition 4.1, the relationship
between the graph of the left Poincaré half-map and the bisector of the fourth quadrant.

Corollary 4.2. The following items are true.

1. If T = 0, then the graph of the left Poincaré half-map P of system (2.2) associated to section
Σ ≡ {x = 0}, if it exists, is included in the bisector of the fourth quadrant.

2. If T > 0 (resp. T < 0), then the graph of left Poincaré half-map P of system (2.2) associated to
section Σ ≡ {x = 0}, if it exists, is located below (resp. above) the bisector of the fourth quadrant
except perhaps at the origin.
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5 The sign of the second derivative of Poincaré half-maps

From the differential equation given in (3.1), it is easy to obtain explicit expressions for the
derivatives of P with respect to y0. The first and second derivatives are shown in the next
result. Its proof is a simple computation and so it is omitted.

Proposition 5.1. The first and second derivatives of the left Poincaré half-map P with respect to y0, in
the interval int(I), are given by

dP
dy0

(y0) =
y0W(P(y0))

P(y0)W(y0)

and

d2P
dy2

0
(y0) = −

a2
(

y2
0 − (P(y0))

2
)

W(P(y0))

(P(y0))
3 (W(y0))

2 . (5.1)

As will be stated in the next section, some interesting applications to periodic behavior
of piecewise linear systems come out from the signs of the first and the second derivatives
of P. Note that the sign of the first derivative is obvious from (5.1), because y0P(y0) < 0
for y0 ∈ int(I) and the polynomial W is positive (see Remark 2.1). Besides that, the sign of
the second derivative of left Poincaré half-map P is an immediate consequence of expression
given in (5.1) and Proposition 4.1.

Proposition 5.2. The sign of the second derivative of left Poincaré half-map P is given by

sign
(

d2P
dy2

0
(y0)

)
= −sign(a2T) for y0 ∈ int(I).

Note that a2 is written in the previous expression to include the case a = 0.
In previous works, the sign of the second derivative of the Poincaré half-maps has been

addressed via case-by-case studies (see, for instance [22]), where distinguished analyses must
be employed for different values of the parameters. Nevertheless, in Proposition 5.2, the
integral characterization has allowed to obtain a closed expression for such a sign regardless
the cases. As far as we know, this common expression has not been previously obtained in
the literature.

6 Some immediate consequences in piecewise linear systems

The previous results established some fundamental properties of Poincaré half-maps defined
on a straight line for planar linear systems. These properties are essential to understand the
dynamic behavior of planar piecewise linear systems. This section is devoted to provide some
immediate consequences regarding periodic behavior in piecewise linear systems with two
zones separated by a straight line.

From Freire et. al in [10, Proposition 3.1], we known that any piecewise linear system with
two zones separated by a straight line Σ for which a Poincaré map is well defined can be
written in the following Liénard canonical form{

ẋ = TLx − y

ẏ = DLx − aL
for x < 0,

{
ẋ = TRx − y + b

ẏ = DRx − aR
for x > 0. (6.1)
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Note that the points (0, 0) and (0, b) are the tangency points between Σ and, respectively,
the flow of the left and right systems. When b = 0 these points coincide and the flow of system
(6.1) crosses the separation line transversally except at the origin. In this case, the system is
called sewing. On the contrary, for b ̸= 0 the flow of system (6.1) does not cross the separation
line along the segment

Σs = {(0, µ + (1 − µ)b) ∈ Σ : µ ∈ (0, 1)} ,

which is usually called the sliding region.
In order to analyze the behaviour of system (6.1) we consider two Poincaré half-maps

associated to Σ, to wit, the Forward Poincaré half-map yL : IL ⊂ [0,+∞) −→ (−∞, 0] and the
Backward Poincaré half-map yR : IR ⊂ [b,+∞) → (−∞, b]. The forward one goes in the positive
direction of the flow and maps a point (0, y0), with y0 ⩾ 0, to a point (0, yL(y0)). Analogously,
the backward one goes in the negative direction of the flow and maps a point (0, y0), with
y0 ⩾ b, to (0, yR(y0)). Notice that yL is defined by the left system and yR is defined by the
right system. Naturally, yL = P by taking T = TL, D = DL, and a = aL in system (2.2). In
addition, taking into account the change (t, x) → −(t, x), one has yR(y0) = P(y0 − b) + b by
taking T = −TR, D = DR, and a = −aR.

Evidently, the intersections between the curves y1 = yL(y0) and y1 = yR(y0), for y0 ∈
Int(IL ∩ IR), are in bijective correspondence to crossing periodic solutions of (6.1).

From Proposition 4.1,

TL = 0 (resp. TR = 0) ⇒ yL(y0) = −y0 (resp. yR(y0) = −y0 + 2b), (6.2)

when, of course, the map yL (resp. yR) exists. Therefore, the following result follows immedi-
ately.

Corollary 6.1. Assume that T2
L + T2

R = 0. If b ̸= 0, the system (6.1) does not have crossing periodic
orbits. If b = 0 and Int(IL ∩ IR) ̸= ∅, then it has a continuum of crossing periodic orbits.

It is also possible to give some results for the case T2
L + T2

R > 0. From Corollary 4.2, if
TL > 0 (resp. TL < 0), then the curve y1 = yL(y0), if it exists, is located below (resp. above) the
straight line y1 = −y0 except perhaps at the origin. Analogously, if TR > 0 (resp. TR < 0), the
curve y1 = yR(y0), if it exists, is located above (resp. below) the straight line y1 = −y0 + 2b
except perhaps at the point (b, b). Hence, also taking (6.2) into account, if TL > 0, TR ⩾ 0, and
b ⩾ 0, then

yL(y0) < −y0 ⩽ −y0 + 2b ≤ yR(y0).

Therefore, the graphs of yL and yR have no intersection points and so system (6.1) has no
crossing periodic orbits. The following result about non-existence of periodic orbits follows
immediately via a similar reasoning.

Corollary 6.2. Assume that TLTR ⩾ 0 and that one of the following two non-exclusive hypotheses
holds:

1) TL ̸= 0 and TLb ⩾ 0;

2) TR ̸= 0 and TRb ⩾ 0.

Then, system (6.1) does not have crossing periodic orbits.
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By merging the information of Corollaries 6.1 and 6.2, we get that if TLTR ⩾ 0 and TLb ⩾ 0,
then system (6.1) either does not have crossing periodic orbits or has a continuum of crossing
periodic orbits. In other words, it does not have limit cycles.

Let us add some lines regarding the condition TLTR ⩾ 0 added in Corollary 6.2. Note that
for the case b = 0 it is well known that TLTR ⩽ 0 is a necessary condition for the existence of
crossing periodic orbits (see, for instance, [10]). However, when b ̸= 0 they could exist even
for TLTR > 0. Thus, the previous result allows to remove some cases where crossing periodic
solutions do not exist.

The obtention of the previous results relies only on the relative location of the graphs of
the Poincaré half-maps, which is easily determined in terms of the basic parameters TL, TR,
and b, by using Proposition 4.1. Now, information about the shape of their graphs, revealed by
Proposition 5.2, can be used to bound the number of limit cycles of piecewise linear systems
(isolated crossing periodic solutions) in some generic cases. In fact, from Proposition 5.2, a
simple expression is obtained for the sign of the second derivatives of the Poincaré half-maps,

sign
(

d2yL

dy2
0
(y0)

)
= −sign(a2

LTL) and sign
(

d2yR

dy2
0
(y0)

)
= sign(a2

RTR).

Therefore, the concavity of the functions yL and yR is established by a2
LTL and a2

RTR, respec-
tively. Thus, the following result for limit cycles follows immediately.

Corollary 6.3. If TL TR > 0, then system (6.1) has at most two limit cycles.

The upper bound given by the corollary above is reachable. Indeed, the last example
provided by Han and Zhang in [13] satisfies TL TR > 0 and has two limit cycles near the
origin.

Concerning the series expansions of Poincaré half-maps provided by Propositions 3.1-3.6,
a natural application could consist in obtaining stability properties of some singular invariant
sets of piecewise linear systems under suitable assumptions. For instance, Proposition 3.1 can
provide whether the monodromic singularity at the separation line is attracting, repelling, or
a center; analogously, Proposition 3.6 can provide whether the infinity is attracting, repelling,
or a center in the case it is monodromic; finally, Propositions 3.2 and 3.4 can be used to study
the stability of some fold-fold connections. Mixing the stability properties above, one can
immediately get sufficient conditions for the existence of a limit cycle (forcing, for instance,
the mondromic singularity at the discontinuity line and the infinity, in the monodromic case,
to have the same stability).

7 Conclusions

In this paper we provided fundamental properties of Poincaré half-maps defined on a straight
line for planar linear systems. Our analysis was based on a novel characterization of Poincaré
half-maps [2], presented in Section 2. This characterization has proven to be an effective
method to study these maps from a common point of view and to obtain results in a simple
way, without the need of making particularized case-by-case studies.

We have focused on the analyticity of the Poincaré half-maps, their series expansions,
the relative position between the graph of Poincaré half-maps and the bisector of the fourth
quadrant, and the sign of their second derivatives. In what follows, we summarize the
obtained results. In Section 3, we addressed the series expansion of a Poincaré half-map,
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P : I ⊂ [0,+∞) −→ (−∞, 0], around the extrema of its interval of definition I, namely:
Propositions 3.1 and 3.2 provided the Taylor expansion of P around the origin when 0 ∈ I;
Proposition 3.4 provided the Newton–Puiseux series expansion of P around ŷ0 ∈ I, where
ŷ0 > 0 satisfies P (ŷ0) = 0; and Proposition 3.6 provided the Taylor series expansions of P
around the infinity when 4D − T2 > 0. In Section 4, Proposition 4.1 and Corollary 4.2 es-
tablished a relationship between the graphs of Poincaré half-maps and the bisector of the
fourth quadrant depending only on the sign of the trace T. Finally, in Section 5, Proposition
5.1 provided expressions for the first and second derivative of the Poincaré half-maps and
Proposition 5.2 determined the sign of the second derivative of the Poincaré half-maps.

All these properties are essential to understand the dynamic behavior of planar piecewise
linear systems with two zones separated by a straight line (PPWLS, for short). Thus, in
Section 6 we provided some immediate consequences regarding periodic behavior of such
systems, namely: Corollary 6.1 established non-generic conditions for a PPWLS either not
having periodic orbits and having a continuum of crossing periodic orbits; Corollary 6.2 gives
generic conditions for a PPWLS not having periodic orbits; finally, Corollary 6.3 provided
generic conditions for a PPWLS having at most two limit cycles.

The results obtained in this paper also allow deeper insights regarding periodic solutions
for piecewise linear systems. For instance, in [4], the present results among others were of
assistance in proving that PPWLS without sliding region (that is, b = 0) has at most one limit
cycles. This result was obtained without unnecessary distinctions of spectra of the matrices. In
addition, it is proven that this limit cycle, if exists, is hyperbolic and its stability is determined
by a simple condition in terms of the parameters. Also, in [5], it was provide the existence of
a uniform upper bound, L∗, for the maximum number of limit cycles of PPWLS. The present
Proposition 4.1 helped to show that L∗ ≤ 8.
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