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Abstract. In this paper we investigate the behaviour of the solutions of the following
k-dimensional cyclic system of difference equations with maximum:

xi(n + 1) = max

{
Ai,

xp
i (n)

xq
i+1(n − 1)

}
, i = 1, 2, . . . , k − 1,

xk(n + 1) = max

{
Ak,

xp
k (n)

xq
1(n − 1)

}

where n = 0, 1, . . . , Ai > 1, for i = 1, 2, . . . , k, whereas the exponents p, q and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k are positive real numbers.

Keywords: difference equations with maximum, cyclic system, equilibrium, eventually
equal to equilibrium.
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1 Introduction

Undoubtedly, there is a growing interest in the study of difference equations and systems
of difference equations. Among others, the study of difference equations and systems of
difference equations with maximum, have attracted some attention in the last few decades
(see, for instance, [1, 5–9, 11–17, 20, 22, 24, 26, 28, 29, 35–51, 54–58] and the related references
therein). For some differential equations with maximum see, for example, [18, 19].

At the beginning were usually studied the difference equations and systems containing
several arguments of the form Ak(n)/x(n − k) where k = 0, 1, . . . , and Ak(n) is a given se-
quence of real numbers (see, for example, [5, 7, 9, 15–17, 26, 28, 29, 56–58]), whereas equations
and systems containing several arguments of the form xp(n − k), where p is a real number,
have been usually studied recently (see, for example, [1, 6, 12–14, 35–49, 51, 52, 54, 55]).
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The motivation for the study of such difference equations and systems of difference equa-
tions stems from the study of the equations of the form

x(n) = a +
xp(n − k)
xq(n − l)

, n = 1, 2, . . . ,

where the parameters a, p, q, and the initial values x(j), j = −max{k, l}, . . . , 0, are real or
nonnegative numbers and k and l are positive integers, and their generalizations (see, for
example, [2–4, 21, 23, 25, 27, 30–36] and the references cited therein).

In [10] was initiated studying cyclic systems of difference equations. The study was con-
tinued, for instance, in [11, 24, 46, 49, 52–55].

In [55] was studied the behaviour of the solutions of the following cyclic system of differ-
ence equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n − 1)

}
, i = 1, 2, . . . , k,

where n = 0, 1, . . . , the coefficients Ai, i = 1, 2, . . . , k are positive constants, and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k are real positive numbers. Moreover, for k = 2 under some
conditions it were found solutions which converge to periodic six solutions.

In this paper we continue the investigation of cyclic systems of difference equations by
studying the behaviour of the solutions of the following generalized cyclic system of difference
equations with maximum:

xi(n + 1) = max
{

Ai,
xp

i (n)
xq

i+1(n − 1)

}
, i = 1, 2, . . . , k, (1.1)

where n = 0, 1, . . . , for the coefficients Ai we assume that Ai > 1, i = 1, 2, . . . , k, the exponents
p, q and the initial values xi(−1), xi(0), i = 1, 2, . . . , k are positive real numbers, and since the
system is cyclic we have Aλk+i = Ai, xλk+i(n) = xi(n), λ positive integer, i = 1, 2, . . . , k. To
do this we use some methods and ideas in the literature mentioned above. Finally, using the
results obtained for the general system (1.1), we derive some further results for system (1.1)
for k = 2.

2 Main results

Lemma 2.1. Consider the system of algebraic equations

xi = max

{
Ai,

xp
i

xq
i+1

}
, i = 1, 2, . . . , k, (2.1)

where
Aλk+i = Ai, xλk+i = xi, i = 1, 2, . . . k, λ is a positive integer, (2.2)

and
Ai > 1, i = 1, 2, . . . k, (2.3)

then
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(i) if
0 < p ≤ 1, q > 0, (2.4)

then system (2.1) has a unique solution, which is

(A1, A2, . . . , Ak).

(ii) If
p > 1, 0 < q < p − 1, (2.5)

then system (2.1) has no solutions.

(iii) Suppose that
p > 1, q > p − 1. (2.6)

If there exist m positive integers

r1, r2, . . . , rm ∈ {1, 2, . . . , k}, r1 < r2 < · · · < rm, m ∈ {1, 2, . . . , k}, (2.7)

such that

Ai < A
( q

p−1 )
k+rj−i

rj , for any i ∈ {rj, rj + 1, . . . , k}, and for any j ∈ {1, 2, . . . , m}, (2.8)

and

Ai < A
( q

p−1 )
rj−i

rj , for any i ∈ {1, 2, . . . , rj − 1}, and for any j ∈ {1, 2, . . . , m}, (2.9)

and for any r ∈ {1, 2, . . . , k}, r ̸= rj, j ∈ {1, 2, . . . , m}, there exists an integer i ∈ {1, 2, . . . , k},
such that

Ai > A
( q

p−1 )
k+r−i

r , for i > r, (2.10)

or

Ai > A
( q

p−1 )
r−i

r , for i < r, (2.11)

holds, then system (2.1) has 2m − 1 solutions.

(iv) If
q = p − 1 > 0, (2.12)

then all solutions of (2.1) are the following

(x1, x2, . . . , xk) = (a, a, . . . , a), for any a ≥ Aw = max{A1, A2, . . . , Ak}. (2.13)

Proof. From (2.1) and (2.3), we get

xi > 1, for any i ∈ {1, 2, . . . , k}. (2.14)

(i) Suppose that (2.4) holds, then, from (2.14), we have

xp
i

xq
i+1

< xp
i ≤ xi, for any i ∈ {1, 2, . . . , k}. (2.15)
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Using (2.1) and (2.15), we have

xi = Ai, for any i ∈ {1, 2, . . . , k}.

(ii) Now, suppose that (2.5) holds. We prove that system (2.1) has no solution.
On the contrary, we assume that there exists a solution of system (2.1). From (2.1), we have

xi ≥
xp

i

xq
i+1

, for any i ∈ {1, 2, . . . , k}, (2.16)

and so from (2.5), (2.14), and (2.16), we get

xi+1 ≥ x
p−1

q
i > xi, for any i ∈ {1, 2, . . . , k},

and obviously,
xk+1 > xk > xk−1 > · · · > x1. (2.17)

From (2.2) and (2.17), we get x1 > x1. So, system (2.1) has no solution.

(iii) Now, suppose that (2.6) holds.
From (2.3) and (2.6) it is obvious that (2.8) and (2.9) hold for rj = w, where

Aw = max{A1, A2, . . . , Ak}.

So, m ≥ 1.
First, we prove that, for every solution of (2.1), there exists a b ∈ {1, 2, . . . , k} such that

xb = Ab. (2.18)

On the contrary, suppose that

xi =
xp

i

xq
i+1

= x
q

p−1
i+1 , for any i ∈ {1, 2, . . . , k}. (2.19)

From (2.2) and (2.19), we get

x1 = x
( q

p−1 )
k

k+1 = x
( q

p−1 )
k

1 ,

and since k is a positive integer and (2.14) holds, we get q = p − 1 which contradicts with
(2.6). So (2.18) is true.

To continue, we prove that

xi ≤ x
q

p−1
i+1 , for any i ∈ {1, 2, . . . , k}. (2.20)

From (2.1), we get (2.16) and so from (2.6), relation (2.20) is obvious.
In addition, from (2.1),

Ai ≤ xi, for any i ∈ {1, 2, . . . , k}. (2.21)

In what follows, we prove that if there exist i, r ∈ {1, 2, . . . , k}, such that either (2.10) or
(2.11) holds, then

xr =
xp

r

xq
r+1

. (2.22)
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On the contrary, suppose that
xr = Ar. (2.23)

If (2.10) holds, then, from (2.6), (2.20), and (2.21), we have

Ai ≤ xi ≤ x
q

p−1
i+1 ≤ · · · ≤ x

( q
p−1 )

k−i

k ≤ x
( q

p−1 )
k−i+1

1 ≤ · · · ≤ x
( q

p−1 )
k−i+r

r = A
( q

p−1 )
k+r−i

r ,

which contradicts with (2.10). So, necessarily, if (2.10) holds, then relation (2.22) is true.
Now, suppose that (2.11) holds, then, from (2.6), (2.20), and (2.21), we have

Ai ≤ x
q

p−1
i+1 ≤ x

( q
p−1 )

2

i+2 ≤ · · · ≤ x
( q

p−1 )
r−i

r = A
( q

p−1 )
r−i

r ,

which contradicts with (2.11). So, necessarily, if (2.11) holds, then relation (2.22) is true.
Finally, suppose that there exist exactly m positive integers such that (2.7), (2.8) and (2.9)

hold. For any j ∈ {1, 2, . . . , m}, we prove that both equations

xrj = Arj . (2.24)

and

xrj =
xp

rj

xq
rj+1

, (2.25)

are possible.
Since for any i ∈ {1, 2, . . . , k}, i ̸= rj, j ∈ {1, 2, . . . , m}, relation either (2.10) or (2.11) holds,

from (2.22) we get

xi = x
q

p−1
i+1 , for any i ∈ {1, 2, . . . , k}, i ̸= rj, j ∈ {1, 2, . . . , m}. (2.26)

From (2.26),

xrm−1 = x
q

p−1
rm , xrm−2 = x

( q
p−1 )

2

rm , . . . , xrm−1+1 = x
( q

p−1 )
rm−rm−1−1

rm ,

xrm−1−1 = x
q

p−1
rm−1 , xrm−1−2 = x

( q
p−1 )

2

rm−1 , . . . , xrm−2+1 = x
( q

p−1 )
rm−1−rm−2−1

rm−1 ,
...

xr2−1 = x
q

p−1
r2 , xr2−2 = x

( q
p−1 )

2

r2 , . . . , xr1+1 = x
( q

p−1 )
r2−r1−1

r2 ,

xr1−1 = x
q

p−1
r1 , . . . , x1 = x

( q
p−1 )

r1−1

r1 , xk = x
( q

p−1 )
r1

r1 , . . . , xrm+1 = x
( q

p−1 )
k−(rm−r1)−1

r1 ,

(2.27)

and so from (2.1) and (2.27) for l = 1, 2, . . . , m − 1 we get,

xrl = max
{

Arl ,
xp

rl

xq
rl+1

}
= max

Arl ,
xp

rl(
x
( q

p−1 )
rl+1−rl−1

rl+1

)q

 .

Now, we prove that xrl can be equal either to Arl or to
xp

rl(
x
(

q
p−1 )

rl+1−rl−1

rl+1

)q .

If xrl = Arl then, from (2.1), (2.6), (2.7) we get

xp
rl(

x
( q

p−1 )
rl+1−rl−1

rl+1

)q ≤
Ap

rl(
A
( q

p−1 )
rl+1−rl−1

rl+1

)q
. (2.28)
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Using (2.6), (2.7) and (2.9) for i = rl and j = l + 1 we have

Arl < A
( q

p−1 )
rl+1−rl

rl+1

and from (2.5)

Ap−1
rl < A

(p−1)( q
p−1 )

rl+1−rl

rl+1 = A
q (p−1)

q ( q
p−1 )

rl+1−rl

rl+1 =
(

A
( q

p−1 )
rl+1−rl−1

rl+1

)q
.

Then,
Ap

rl(
A
( q

p−1 )
rl+1−rl−1

rl+1

)q
< Arl . (2.29)

Therefore, from (2.28) and (2.29) we

xp
rl(

x
( q

p−1 )
rl+1−rl−1

rl+1

)q
< Arl .

If xrl =
xp

rl(
x
(

q
p−1 )

rl+1−rl−1

rl+1

)q then, from (2.1), (2.6), (2.7) and (2.9) for i = rl and j = l + 1, we get

xrl = x
( q

p−1 )
rl+1−rl

rl+1 ≥ A
( q

p−1 )
rl+1−rl

rl+1 > Arl ,

and so, for any j ∈ {1, 2, . . . , m − 1}, both equations (2.24) and (2.25) are possible.
From (2.1) and the last equality of (2.27) we get

xrm = max

{
Arm ,

xp
rm

xq
rm+1

}
= max

Arm ,
xp

rm(
x
( q

p−1 )
k−rm+r1−1

r1

)q

 .

Finally, we prove that xrm can be equal either to Arm or to xp
rm(

x
(

q
p−1 )

k−rm+r1−1

r1

)q .

If xrm = Arm , then, from (2.1), (2.6), (2.7), we get

xp
rm(

x
( q

p−1 )
k−rm+rl−1

r1

)q ≤ Ap
rm(

A
( q

p−1 )
k−rm+r1−1

r1

)q
. (2.30)

Using (2.6), (2.7) and (2.8) for i = rm and j = 1, we have

Arm < A
( q

p−1 )
k−rm+r1

r1

and so, arguing as to prove (2.29)

Ap
rm(

A
( q

p−1 )
k−rm+r1−1

r1

)q
< Arm . (2.31)
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Therefore, from (2.30) and (2.31), we take

xp
rm(

x
( q

p−1 )
k−rm+r1−1

r1

)q
< Arm .

If xrm =
xp

rm(
x
(

q
p−1 )

k−rm+r1−1

r1

)q then, from (2.1), (2.6), (2.7) and (2.8) for i = rm and j = 1, we get

xrm = x
( q

p−1 )
k−rm+r1

r1 ≥ A
( q

p−1 )
k−rm+r1

r1 > Arm

and so for any j ∈ {1, 2, . . . , m} both equations (2.24) and (2.25) are possible.
From (2.7), (2.8), (2.9), (2.24), (2.25), and (2.26), and since, for every solution of (2.1) there

exists at least one r such that (2.18) holds, we have that system (2.1) has 2m − 1 solutions.

(iv) Finally, suppose that (2.12) holds. From (2.1) and (2.12), we get

xi ≥
xp

i

xp−1
i+1

, for any i ∈ {1, 2, . . . , k},

and so
xi+1 ≥ xi, for any i ∈ {1, 2, . . . , k}. (2.32)

From (2.2) and (2.32), we have

xk+1 = x1 ≥ xk ≥ xk−1 ≥ · · · ≥ x2 ≥ x1,

which means that
x1 = x2 = · · · = xk.

Then, from (2.1) and (2.12), if we set xi = a, i = 1, 2, . . . , k, we get

a = max{Ai, a}, i = 1, 2, . . . , k.

Therefore, if a ≥ Aw, we get that all the solutions of (2.1), if (2.12), holds are given by (2.13).
This completes the proof of the Lemma 2.1.

In the following proposition we give a result concerning the global behavior of the so-
lutions of (1.1). Since the proof is similar to the proof of Proposition 2.2 of [55], we omit
it.

Proposition 2.2. Consider the system of difference equations (1.1). If (2.4) holds, then every solution
of (1.1) is eventually equal to the unique equilibrium (A1, A2, . . . , Ak).

In the following lemma we prove some results concerning the solutions of (1.1), which can
be used in order to study the behavior of these solutions.

Lemma 2.3. Consider the system of difference equations (1.1) where

p > 1 and q > 0. (2.33)

For a solution of (1.1), suppose that there exist a j ∈ {1, 2, . . . , k}, a positive integer Sj ≥ 2, and a
constant a > 0, such that

xj(n) = a, for any n ≥ Sj, (2.34)

then
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(i) If
xj−1(Sj + 1) > a

q
p−1 , (2.35)

then the solution of (1.1) is unbounded.

(ii) If
xj−1(Sj + 1) < a

q
p−1 , (2.36)

then there exists an integer Sj−1 ≥ Sj + 1, such that

xj−1(n) = Aj−1, for any n ≥ Sj−1. (2.37)

(iii) If
xj−1(Sj + 1) = a

q
p−1 , (2.38)

then
xj−1(n) = a

q
p−1 , for any n ≥ Sj + 1. (2.39)

Proof. (i) From (1.1) and (2.34), we get

xj−1(Sj + 2) ≥
xp

j−1(Sj + 1)

xq
j (Sj)

=
xp

j−1(Sj + 1)

aq ,

xj−1(Sj + 3) ≥
xp

j−1(Sj + 2)

xq
j (Sj + 1)

≥
xp2

j−1(Sj + 1)

aq(1+p)
,

and working inductively we have

xj−1(Sj + m) ≥
xpm−1

j−1 (Sj + 1)

aq(1+p+p2+···+pm−2)
=

xpm−1

j−1 (Sj + 1)

aq pm−1−1
p−1

= a
q

p−1

(
xj−1(Sj + 1)

a
q

p−1

)pm−1

, m ≥ 2. (2.40)

From (2.33), (2.35), and (2.40), we get

lim
n→∞

xj−1(n) = ∞,

and so, the solution of (1.1) is unbounded.

(ii) Now, suppose that (2.36) holds.
First, we prove that there exists a positive integer Sj−1 ≥ Sj + 1, such that

xj−1(Sj−1) = Aj−1. (2.41)

If
xj−1(Sj + 1) = Aj−1,

then (2.41) holds for Sj−1 = Sj + 1.
Now, suppose that

xj−1(n) > Aj−1, for any n ≥ Sj + 1, (2.42)

then, from (1.1) and (2.34), and working as to prove (2.40), we have

xj−1(Sj + m) = a
q

p−1

(
xj−1(Sj + 1)

a
q

p−1

)pm−1

, m ≥ 2. (2.43)
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From (2.33), (2.36) and (2.43), we have that there exists a positive integer n0 ≥ Sj + 2, such that

xj−1(n) < Aj−1, for any n ≥ n0,

which contradicts with (2.42). So, in any case, there exists a positive integer Sj−1 ≥ Sj + 1,
such that (2.41) holds.

Now, we prove that (2.37) holds for any n ≥ Sj−1 .
From (1.1) and (2.36), we get

Aj−1 < a
q

p−1 . (2.44)

From (2.34), (2.41) and (2.44), we have

xp
j−1(Sj−1)

xq
j (Sj−1 − 1)

=
Ap

j−1

aq <
Ap

j−1

Ap−1
j−1

= Aj−1,

and so, from (1.1), we have
xj−1(Sj−1 + 1) = Aj−1,

and working inductively we get (2.37).

(iii) Finally, suppose that (2.38) holds.
From (1.1) and (2.38), we get

Aj−1 ≤ a
q

p−1 . (2.45)

Using (2.34), (2.38) and (2.45), we get

xp
j−1(Sj + 1)

xq
j (Sj)

=
a

pq
p−1

aq = a
q

p−1 ≥ Aj−1,

and so, from (1.1), we get
xj−1(Sj + 2) = a

q
p−1 ,

and working inductively (2.39) is true.
So, the proof of Lemma 2.3 is completed.

In the following propositions, we give furthermore results for system (1.1), where k = 2
and relation (2.6) or (2.12) holds. Our aim is to present how the results of Lemma 2.3 can be
used, in order to find out how a solution of (1.1) behaves.

In what follows, without loss of generality, we assume that A2 = max{A1, A2}. If, in
addition, (2.6) holds, and since A2 > 1, we have that

A1 < A
q

p−1
2 . (2.46)

Proposition 2.4. Consider the system of difference equations

x1(n + 1) = max
{

A1, xp
1 (n)

xq
2(n−1)

}
,

x2(n + 1) = max
{

A2, xp
2 (n)

xq
1(n−1)

}
,

(2.47)

where n = 0, 1, . . . , A1, A2 > 1, and the initial values xi(−1), xi(0), i = 1, 2, are positive real
numbers. Suppose that (2.6) holds.

The following statements are true:



10 G. Stefanidou and G. Papaschinopoulos

I. Suppose that

A2 > A
q

p−1
1 . (2.48)

Then system (2.47) has a unique equilibrium which is

(A
q

p−1
2 , A2). (2.49)

Furthermore, we have:

(a) There exist solutions (x1(n), x2(n)) of (2.47), for which, there exists an integer r ≥ 2, such
that

x1(r) < A
q

p−1
2 . (2.50)

These solutions are unbounded.

(b) There exist solutions (x1(n), x2(n)) of (2.47), such that

x1(n) ≥ A
q

p−1
2 , for any n ≥ 2, (2.51)

and
x1(z) = A

q
p−1
2 , for an integer z ≥ 2. (2.52)

These solutions are eventually equal to the unique equilibrium (2.49).

(c) There exist solutions (x1(n), x2(n)) of (2.47), such that

x1(n) > A
q

p−1
2 , for any n ≥ 2, (2.53)

and
x2(d) = A2, for an integer d ≥ 2. (2.54)

These solutions are unbounded.

II. Suppose that

A2 < A
q

p−1
1 . (2.55)

Then system (2.47) has three equilibria, the one given by (2.49), and the following two,

(A1, A
q

p−1
1 ), (2.56)

and
(A1, A2). (2.57)

Furthermore, we have:

(a) There exist solutions (x1(n), x2(n)) of (2.47), for which, there exists an integer r ≥ 2, such
that (2.50) holds. These solutions are unbounded or eventually equal to the equilibrium
(2.56) or eventually equal to the equilibrium (2.57).

(b) There exist solutions (x1(n), x2(n)) of (2.47), such that (2.51) and (2.52) hold. These
solutions are eventually equal to the equilibrium (2.49).

(c) There exist solutions (x1(n), x2(n)) of (2.47), such that (2.53) and (2.54) hold. These
solutions are unbounded.
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Proof. (I.) From (2.46), (2.48) and (iii) of Lemma 2.1, we have that system (2.47) has a unique
equilibrium given by (2.49).

I(a). First, we prove that there exist solutions (x1(n), x2(n)) of (2.47), for which there exists
an integer r ≥ 2, such that (2.50) holds.
Indeed, if, for instance,

x1(−1) > 0, x1(0) > 0 and x2(−1) ≥
x

p
q
1 (0)

A
1
q
1

, x2(0) >
A

p
q
1

A
1

p−1
2

,

then, it is easy to prove that

x1(2) < A
q

p−1
2 ,

and so (2.50) is true for r = 2.
Now, we prove that, if for a solution of (2.47), relation (2.50) is satisfied, then the solution

is unbounded.
At the beginning, we prove that there exists a positive integer s ≥ r, such that

x1(s) = A1. (2.58)

On the contrary, suppose that

x1(n) > A1, for any n ≥ r, (2.59)

then, from (2.47), we have

x1(r + 1) =
xp

1 (r)
xq

2(r − 1)
≤

xp
1 (r)
Aq

2
,

x1(r + 2) =
xp

1 (r + 1)
xq

2(r)
≤

xp2

1 (r)

Aq(1+p)
2

,

and working inductively and as in (2.40), we get

x1(r + m) ≤ A
q

p−1
2

 x1(r)

A
q

p−1
2

pm

, m ≥ 1. (2.60)

From (2.6), (2.50) and (2.60), we have that there exists a positive integer n0 ≥ r, such that

x1(n) < A1, for any n ≥ n0,

which contradicts with (2.59). So, if (2.50) holds, then there exists a positive integer s ≥ r,
such that (2.58) holds.

Now, we prove that
x1(n) = A1, for any n ≥ s. (2.61)

From (2.46), (2.47) and (2.58), we get

xp
1 (s)

xq
2(s − 1)

≤
Ap

1

Aq
2
≤

Ap
1

Ap−1
1

= A1. (2.62)
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From (2.47) and (2.62), obviously,
x1(s + 1) = A1,

and working inductively we get (2.61).
From (2.47) and (2.48), we have

x2(s + 1) ≥ A2 > A
q

p−1
1 ,

and so, from (2.61) and (i) of Lemma 2.3 for a = A1, we have that the solution is unbounded.

I(b). We show that there exist solutions (x1(n), x2(n)) of (2.47) and an integer z ≥ 2, such that
(2.51) and (2.52) hold.

Indeed, if, for instance,

x1(0) > A
p−1

q
2 , x1(−1) > A

p−1
q

2 , x2(0) = A2, x2(−1) =
x

p
q
1 (0)

A
1

p−1
2

,

it is easy to prove that

x1(n) ≥ A
q

p−1
2 , n ≥ −1 and x1(2) = A

q
p−1
2 .

Now, we prove that, if for a solution of (2.47), relations (2.51) and (2.52) hold, then the
solution is eventually equal to the unique equilibrium (2.49).

From (2.47) and (2.52), we have

xp
1 (z)

xq
2(z − 1)

≤ (A
q

p−1
2 )

p

Aq
2

= A
q

p−1
2 ,

and so, from (2.46) and (2.47), we get

x1(z + 1) ≤ A
q

p−1
2 ,

and from (2.51) we have

x1(z + 1) = A
q

p−1
2 .

Working inductively, we get

x1(n) = A
q

p−1
2 > A1, for any n ≥ z. (2.63)

From (2.47) and (2.63), we get

A
q

p−1
2 = max

A1,
A

pq
p−1
2

xq
2(n)

 , n ≥ z − 1,

and so, from (2.46), we have

x2(n) = A2, for any n ≥ z − 1. (2.64)

From (2.63) and (2.64), we have that the solution is eventually equal to the unique equilibrium
(2.49).
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I(c). We show that there exist solutions (x1(n), x2(n)) of (2.47) and an integer d ≥ 3, such that
(2.53) and (2.54) hold.

Indeed, if, for instance,

x1(−1) > A
p−1

q
2 , x1(0) > A

q
p−1
2 and x2(−1) ≤ A2, x2(0) ≤ A2,

it is easy to prove that

x1(n) > A
q

p−1
2 , for any n ≥ 2 and x2(3) = A2.

Now, we prove that, if for a solution of (2.47), relations (2.53) and (2.54) hold, then the
solution is unbounded.

From (2.53) and (2.54), we have

xp
2 (d)

xq
1(d − 1)

<
Ap

2

(A
q

p−1
2 )

q < A2, (2.65)

and so, from (2.47),
x2(d + 1) = A2, (2.66)

and working inductively, obviously,

x2(n) = A2, for any n ≥ d. (2.67)

Since (2.53) hold, then from (2.67) and (i) of Lemma 2.3 for a = A2, we have that the solution
is unbounded.

II. From (2.46), (2.55) and (iii) of Lemma 2.1 we have that system (2.47) has three equilibria,
which are given by (2.49), (2.56) and (2.57).

II(a). For a solution (x1(n), x2(n)) of (2.47) suppose that there exists an integer r ≥ 2, such
that (2.50) holds. Then, arguing as in I(a), we get that there exists a positive integer s ≥ r,
such that (2.61) holds.

If
x2(s + 1) > A

q
p−1
1 , (2.68)

then from (2.61), (2.68) and (i) of Lemma 2.3 for a = A1, we have that the solution is un-
bounded.

If
x2(s + 1) < A

q
p−1
1 , (2.69)

then from (2.61), (2.69) and (ii) of Lemma 2.3 for a = A1, we have that there exists an integer
s2 ≥ s + 1, such that

x2(n) = A2, for any n ≥ s2. (2.70)

From (2.61) and (2.70), we have that the solution is eventually equal to the equilibrium (2.57).
If

x2(s + 1) = A
q

p−1
1 , (2.71)

then from (2.61), (2.71) and (iii) of Lemma 2.3 for a = A1, we have that

x2(n) = A
q

p−1
1 , for any n ≥ s + 1. (2.72)
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From (2.61) and (2.72) we have that the solution is eventually equal to the equilibrium (2.56).
Now, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s, r ≥ 2, s ≥

r, such that (2.50) and (2.68) hold.
Indeed, if, for instance,

x1(0) > 0, x2(0) > A
p−1

q
1 and x1(−1) <

x
p
q
2 (0)

A
1

p(p−1)
1 x

1
p
1 (0)

, x2(−1) ≥
x

p
q
1 (0)

A
1
q
1

, (2.73)

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) > A

q
p−1
1 ,

and so these solutions are unbounded.
In addition, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s,

r ≥ 2, s ≥ r, such that (2.50) and (2.69) hold.
Indeed, if, for instance,

x1(0) >
A

p
q
2

A
1

p−1
1

, x2(0) > A
p−1

q
1 , x2(−1) ≥

x
p
q
1 (0)

A
1
q
1

, x1(−1) >
x

p
q
2 (0)

A
1

p(p−1)
1 x

1
p
1 (0)

,

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) < A

q
p−1
1 ,

and so these solutions are eventually equal to the equilibrium (2.57).
Finally, we show that there exist solutions (x1(n), x2(n)) of (2.47) and integers r, s, r ≥

2, s ≥ r, such that (2.50) and (2.71) hold.
Indeed, if, for instance,

x1(0) >
A

p
q
2

A
1

p−1
1

, x2(0) > A
p−1

q
1 , x2(−1) ≥

x
p
q
1 (0)

A
1
q
1

, x1(−1) =
x

p
q
2 (0)

A
1

p(p−1)
1 x

1
p
1 (0)

, (2.74)

it is easy to prove that

x1(2) = A1 < A
q

p−1
2 and x2(3) = A

q
p−1
1 ,

and so these solutions are eventually equal to the equilibrium (2.56).

II(b). The proof is the same as in I(b).

II(c). The proof is the same as in I(c).

Proposition 2.5. Consider the system of difference equations

x1(n + 1) = max
{

A1, xp
1 (n)

xp−1
2 (n−1)

}
,

x2(n + 1) = max
{

A2, xp
2 (n)

xp−1
1 (n−1)

}
,

(2.75)

where n = 0, 1, . . . , A1, A2 > 1, and the initial values xi(−1), xi(0), i = 1, 2, are positive real
numbers.

The following statements are true.
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(a) There exist solutions (x1(n), x2(n)) of (2.75), for which, there exists an integer r ≥ 2, such that

x1(r) < A2. (2.76)

These solutions are unbounded.

(b) There exist solutions (x1(n), x2(n)) of (2.75), such that

x1(n) ≥ A2, for any n ≥ 2, (2.77)

and
x1(z) = A2, for an integer z ≥ 2. (2.78)

These solutions are unbounded or eventually equal to the equilibrium (A2, A2).

(c) There exist solutions (x1(n), x2(n)) of (2.75), such that

x1(n) > A2, for any n ≥ 2, (2.79)

and
x2(d) = A2, for an integer d ≥ 2. (2.80)

These solutions are unbounded.

(d) The solution (x1(n), x2(n)) = (a, a), n ≥ −1, a > A2, is the only solution of (2.75), which is
eventually equal to the equilibrium (a, a).

Proof. (a) Since Lemma 2.3 holds for q = p − 1 > 0 and, from (2.75) and (2.76), we get that
A1 < A2, the proof of (a) is exactly the same with the proof of I(a) of Proposition 2.4, and we
omit it.

(b) If A1 < A2, then arguing as in the proof of I(b) of Proposition 2.4, we can prove that, there
exist solutions (x1(n), x2(n)) of (2.75), such that relations (2.77) and (2.78) hold, and these
solutions are eventually equal to the equilibrium (A2, A2).

If A1 = A2, then for a solution (x1(n), x2(n)) of (2.75), such that (2.77) and (2.78) hold, we
have

x1(z) = A1, for an integer z ≥ 2, (2.81)

and so, arguing as to prove (2.61), we get

x1(n) = A1, for any n ≥ z. (2.82)

If
x2(z + 1) = A2 = A1, (2.83)

then, from (2.82), (2.83), and (iii) of Lemma 2.3 for a = A1 and q = p − 1 > 0, we have that

x2(n) = A2 = A1, for any n ≥ z + 1. (2.84)

From (2.82) and (2.84), we have that the solution is eventually equal to the equilibrium
(A2, A2).

If
x2(z + 1) > A2 = A1, (2.85)

then, from (2.82), (2.85), and (i) of Lemma 2.3 for a = A1 and q = p − 1 > 0, we have that the
solution is unbounded.
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Now, we show that there exist solutions (x1(n), x2(n)) of (2.75), such that (2.81) and (2.85)
hold for an integer z, z ≥ 2. Indeed, if, for instance, relations (2.74) hold for q = p − 1 > 0,
then it is easy to prove that

x1(2) = A1 = A2 and x2(3) = A1 = A2,

and so these solutions are eventually equal to the equilibrium (A2, A2).
In addition, we show that there exist solutions (x1(n), x2(n)) of (2.75), such that (2.81) and

(2.83) hold for an integer z, z ≥ 2,.
Indeed, if, for instance, relations (2.73) hold for q = p − 1 > 0, then it is easy to prove that

x1(2) = A1 = A2 and x2(3) > A1 = A2,

and so these solutions are unbounded.

(c) Relation (2.65), for q = p − 1 > 0, becomes

xp
2 (d)

xp−1
1 (d − 1)

<
Ap

2

Ap−1
2

= A2,

and so, we have that, (2.66) also holds, and since Lemma 2.3 holds for q = p − 1 > 0, the proof
of (c) is exactly the same with the proof of I(c) of Proposition 2.4, and we omit it.

(d) Suppose that (x1(n), x2(n)) is a solution of (2.75) eventually equal to the equilibrium (a, a),
a > A2. Then, there exists a positive integer n0, such that

x1(n) = a, x2(n) = a, for any n ≥ n0. (2.86)

Since a > A2, from (2.75) and (2.86), we have

x1(n0 + 1) =
xp

1 (n0)

xp−1
2 (n0 − 1)

, x2(n0 + 1) =
xp

2 (n0)

xp−1
1 (n0 − 1)

,

and so, x2(n0 − 1) = a and x1(n0 − 1) = a. Working inductively, we get

x1(n) = a, x2(n) = a, for any − 1 ≤ n ≤ n0 − 1. (2.87)

From (2.86) and (2.87), we have that

x1(n) = a, x2(n) = a, for any n ≥ −1.
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[37] S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput.
210(2009), 525–529. https://doi.org/10.1016/j.amc.2009.01.050

[38] S. Stević, On a generalized max-type difference equation from automatic control theory,
Nonlinear Anal. 72(2010), 1841–1849. https://doi.org/10.1016/j.na.2009.09.025
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