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Abstract. In this article we consider the class CSL2r2c∞
7 of non-degenerate real planar

cubic vector fields, which possess two real and two complex distinct infinite singulari-
ties and invariant straight lines of total multiplicity 7, including the line at infinity. The
classification according to the configurations of invariant lines of systems possessing
invariant straight lines was given in articles published from 2014 up to 2022. We con-
tinue our investigation for the family CSL2r2c∞

7 possessing configurations of invariant
lines of type (3, 1, 1, 1) and prove that there are exactly 42 distinct configurations of this
type. Moreover we construct all the orbit representatives of the systems in this class
with respect to affine group of transformations and a time rescaling.
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1 Introduction and statement of the Main Theorem

We consider here real polynomial differential systems

dx
dt

= p(x, y),
dy
dt

= q(x, y), (1.1)

where p, q are polynomials in x, y with real coefficients, i.e. p, q ∈ R[x, y]. We call degree of a
system (1.1) max(deg(p), deg(q)). A cubic system (1.1) is of degree three. We say that a system
(1.1) is non-degenerate if the polynomials p(x, y) and q(x, y) are co-prime, i.e. gcd(p, q) =

constant.
Let

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
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be the polynomial vector field corresponding to a system (1.1).
In [17] Darboux introduced the notion of an algebraic invariant curve for differential equa-

tions on the complex plane. An algebraic curve f (x, y) = 0 with f (x, y) ∈ C[x, y] is an
invariant curve of a system of the form (1.1) where p(x, y), q(x, y) ∈ C[x, y] if and only if there
exists K[x, y] ∈ C[x, y] such that

X( f ) = p(x, y)
∂ f
∂x

+ q(x, y)
∂ f
∂y

= f (x, y)K(x, y)

is an identity in C[x, y]. Since R ⊂ C, any system (1.1) over R generates a system of differential
equations over C. Using the embedding C2 ↪→ P2(C), (x, y) 7→ [x : y : 1] = [X : Y : Z], (x =

X/Z, y = Y/Z and Z ̸= 0), we can compactify the differential equation q(x, y)dy− p(x, y)dx =

0 to an associated differential equation over the complex projective plane. In fact the theory
of Darboux in [17] is done for differential equations on the complex projective plane.

We compactify the space of all the polynomial differential systems (1.1) of degree n on
SN−1 with N = (n + 1)(n + 2) by multiplying the coefficients of each systems with 1/(∑(a2

ij +

b2
ij))

1/2, where aij and bij are the coefficients of the polynomials p(x, y) and q(x, y), respectively.

Definition 1.1 ([36]). (1) We say that an invariant curve L : f (x, y) = 0, f ∈ C[x, y] for a poly-
nomial system (S) of degree n has multiplicity m if there exists a sequence of real polynomial
systems (Sk) of degree n converging to (S) in the topology of SN−1, N = (n + 1)(n + 2), such
that each (Sk) has m distinct invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0
over C, deg( f ) = deg( fi,k) = r, converging to L as k → ∞, in the topology of PR−1(C), with
R = (r + 1)(r + 2)/2 and this does not occur for m + 1.

(2) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of degree
n has multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree n
converging to (S) in the topology of SN−1, N = (n + 1)(n + 2), such that each (Sk) has m − 1
distinct invariant lines L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm−1,k(x, y) = 0 over C, converging to the
line at infinity L∞ as k → ∞, in the topology of P2(C) and this does not occur for m.

In this work we consider a particular case of invariant algebraic curves, namely the invari-
ant straight lines of systems (1.1). A straight line over C is the locus {(x, y) ∈ C2| f (x, y) = 0}
of an equation f (x, y) = ux + vy + w = 0 with (u, v) ̸= (0, 0) and (u, v, w) ∈ C3. We note
that by multiplying the equation by a non-zero complex number λ, the locus of the equa-
tion does not change. So that we have an injection from the lines in C2 to the points in
P2(C)\{[0 : 0 : 1]}. This injection induces a topology on the set of lines in C2 from the
topology of P2(C) and hence we can talk about a sequence of lines convergent to a line in C2.

For an invariant line f (x, y) = ux + vy + w = 0 we denote â = (u, v, w) ∈ C3 and by
[â] = [u : v : w] the corresponding point in P2(C). We say that a sequence of straight lines
fi(x, y) = 0 converges to a straight line f (x, y) = 0 if and only if the sequence of points [âi]

converges to [â] = [u : v : w] in the topology of P2(C).
In view of the above definition of an invariant algebraic curve of a system (1.1), a line

f (x, y) = ux + vy + w = 0 over C is an invariant line if and only if it there exists K(x, y) ∈
C[x, y] which satisfies the following identity in C[x, y]:

X( f ) = up(x, y) + vq(x, y) = (ux + vy + w)K(x, y).

We point out that if we have an invariant line f (x, y) = 0 over C it could happen that mul-
tiplying the equation by a number λ ∈ C∗ = C \ {0}, the coefficients of the new equation
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become real, i.e. (uλ, vλ, wλ) ∈ R3. In this case, along with the line f (x, y) = 0 sitting in C2

we also have an associated real line, sitting in R2 defined by λ f (x, y) = 0.
Note that, since a system (1.1) is with real coefficients, if its associated complex system

has a complex invariant straight line ux + vy + w = 0, then its conjugate complex invariant
straight line ūx + v̄y + w̄ = 0 is also invariant.

A line in P2(C) is the locus in P2(C) of an equation F(X, Y, Z) = uX + vY + wZ = 0
where (u, v, w) ∈ C3 and F(X, Y, Z) ∈ C[X, Y, Z]. The line Z = 0 in P2(C) is called the line
at infinity of the affine plane C2. This line is an invariant manifold of the complex differential
equation on P2(C). Clearly the lines in P2(C) are in a one-to-one correspondence with points
[u : v : w] ∈ P2(C) and thus we have a topology on the set of lines in P2(C). We can thus talk
about a sequence of lines in P2(C) convergent to a line in P2(C).

To a line f (x, y) = ux + vy + w = 0, (u, v) ̸= (0, 0), f ∈ C[x, y], we associate its projective
completion F(X, Y, Z) = uX + vY + wZ = 0 under the embedding C2 ↪→ P2(C), (x, y) 7→ [x :
y : 1] = [X, Y, Z] indicated above.

We first remark that in the above definition we made an abuse of language. Indeed, we talk
about complex invariant lines of real systems. However we already said that to a real system
one can associate a complex systems and to a differential equation q(x, y)dy − p(x, y)dx = 0
corresponds a differential equation in P2(C).

We remark that Definition 1.1 is a particular case of the definition of geometric multiplicity
given in [16], and namely the "strong geometric multiplicity" with the restriction, that the
corresponding perturbations are cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this reason
people began by studying particular subclasses of CS. Some of these subclasses are on cubic
systems having invariant straight lines.

We mention here some papers on polynomial differential systems possessing invariant
straight lines. For quadratic systems see [8, 18, 31, 32, 36–40] and [41]; for cubic systems see
[4, 5, 7, 9–14, 23, 25–27, 33, 34, 44] and [45]; for quartic systems see [43] and [47].

The existence of sufficiently many invariant straight lines of planar polynomial systems
could be used for proving the integrability of such systems. During the past 15 years several
articles were published on this theme (see for example [13, 14, 37, 39]).

According to [1, 16], for a non-degenerate polynomial differential system of degree m, the
maximum number of invariant straight lines including the line at infinity and taking into
account their multiplicities is 3m. This bound is always reached (see [16]).

In particular, the maximum number of the invariant straight lines (including the line at
infinity Z = 0) for cubic systems with a finite number of infinite singularities is 9. In [25]
the authors classified all cubic systems possessing the maximum number of invariant straight
lines taking into account their multiplicities according to their configurations of invariant lines.
The notion of configuration of invariant lines for a polynomial differential system was first
introduced in [36].

Definition 1.2 ([40]). Consider a real planar polynomial differential system (1.1). We call
configuration of invariant straight lines of this system, the set of (complex) invariant straight lines
(which may have real coefficients), including the line at infinity, of the system, each endowed
with its own multiplicity and together with all the real singular points of this system located
on these invariant straight lines, each one endowed with its own multiplicity.

In [25] the authors used a weaker notion, not taking into account the multiplicities of real
singularities. They detected 23 such configurations. Moreover, in [25] the necessary and suffi-



4 C. Bujac, D. Schlomiuk and N. Vulpe

cient conditions for the realization of each one of 23 configurations detected, are determined
using invariant polynomials with respect to the action of the group of affine transformations
(A f f (2, R)) and time rescaling (i.e. A f f (2, R)× R∗)). In [4] the author detected another class
of cubic systems whose configuration of invariant lines was not detected in [25].

If two polynomial systems are equivalent under the action of the affine group and time
rescaling, clearly they must have the same kinds of configurations of invariant lines. But
it could happen that two distinct polynomial systems which are non-equivalent modulo the
action of the affine group and time rescaling have “the same kind of configurations” of straight
lines. We need to say when two configurations are considered equivalent.

Definition 1.3. Suppose we have two cubic systems (S), (S′) both with a finite number of sin-
gularities, finite and infinite, a finite set of invariant straight lines Li : fi(x, y) = 0, i = 1, . . . , k,
of (S) (respectively L′

i : f ′i (x, y) = 0, i = 1, . . . , k′, of (S′)). We say that the two configurations
C, C′ of invariant lines, including the line at infinity, of these systems are equivalent if there is
a one-to-one correspondence ϕ between the lines of C and C′ such that:

(i) ϕ sends an affine line (real or complex) to an affine line and the line at infinity to the
line at infinity conserving the multiplicities of the lines and also sends an invariant line with
coefficients in R to an invariant line with coefficients in R;

(ii) for each line L : f (x, y) = 0 we have a one-to-one correspondence between the real
singular points on L and the real singular points on ϕ(L) conserving their multiplicities and
their order on these lines;

(iii) we have a one-to-one correspondence ϕ∞ between the real singular points at infinity
on the (real) lines at infinity of (S) and (S′) such that when we list in a counterclockwise
sense the real singular points at infinity on (S) starting from a point p on the Poincaré disc,
p1 = p,...,pk, ϕ∞ preserves the multiplicities of the singular points and preserves or reverses
the orientation;

(iv) consider the total curves

F : ∏ Fj(X, Y, Z)mi Zm = 0, F ′ : ∏ F′
j (X, Y, Z)m′

i Zm′
= 0

where Fi(X, Y, Z) = 0 (respectively F′
i (X, Y, Z) = 0) are the projective completions of Li

(respectively L′
i) and mi, m′

i are the multiplicities of the curves Fi = 0, F′
i = 0 and m, m′ are

respectively the multiplicities of Z = 0 in the first and in the second system. Then, there is a
one-to-one correspondence ψ between the real singularities of the curves F and F ′ conserving
their multiplicities as singular points of the total curves.

Remark 1.4. In order to describe the various kinds of multiplicity for infinite singular points
we use the concepts and notations introduced in [36]. Thus we denote by “(a, b)” the max-
imum number a (respectively b) of infinite (respectively finite) singularities which can be
obtained by perturbation of a multiple infinite singular point.

The configurations of invariant straight lines which were detected for some families of
systems (1.1), were instrumental for determining the phase portraits of those families. For
example, in [37,39] it was proved that we have a total of 57 distinct configurations of invariant
lines for quadratic systems with invariant lines of total multiplicity greater than or equal to 4.
These 57 configurations lead to the existence of 135 topologically distinct phase portraits. In
[33,34,44,45] it was proved that cubic systems with invariant lines of total parallel multiplicity
six or seven (the notion of “parallel multiplicity” could be found in [45]) have 113 topologi-
cally distinct phase portraits. This was done by using the various possible configurations of
invariant lines of these systems.
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In what follows we define some algebraic-geometric notions which will be needed in order
to describe the invariants used for distinguishing configurations of invariant lines.

Let V be an irreducible algebraic variety of dimension n over a field K.

Definition 1.5. A cycle of dimension r or r-cycle on V with coefficients in an Abelian group G
is a formal sum ΣWnWW, where W is a subvariety of V of dimension r which is not contained
in the singular locus of V, nW ∈ G, and only a finite number of nW are non-zero. The support
of a cycle C is the set Supp(C) = {W|nW ̸= 0}. An (n − 1)-cycle is called a divisor D.

Definition 1.6. We call type of a divisor D the set of all ordered couples (m, sm) where m is
an integer appearing as a coefficient in the divisor D and sm is the number of occurrences in
D of the coefficient m.

Clearly the notion of type of a divisor is an affine invariant.
These notions (see [21]) which occur frequently in algebraic geometry, were used for clas-

sification purposes of planar quadratic differential systems by Pal and Schlomiuk [29], [35]
and by Llibre and Schlomiuk in [24]. They are also helpful here as we indicate below.

We apply the preceding notions to planar polynomial differential systems (1.1). We denote
by PSLn,L the class of all non-degenerate planar polynomial differential systems of degree n
with a finite number of infinite singularities and possessing invariant lines, including the line
at infinity, of total multiplicity L.

We define here below an important divisor which is used in this work and which we
call the parallelism divisor. Consider a system in (S) ∈ PSLn,L. Let p1, p2, . . . , ps be the set of
all the real singular points at infinity of (S). Let jk, k ∈ {1, . . . , s} be the total multiplicity
of all invariant affine lines which cut the line at infinity at pk. Let ik, k ∈ {1, . . . , s} be the
maximum number of distinct invariant affine lines which can appear from the line at infinity
in a perturbation of (S) in the class PSLn,L and which cut the line at infinity at pk.

Definition 1.7. We call parallelism divisor on Z = 0 with coefficients in Z2 the divisor
DL(S; Z) defined as follows:

DL(S; Z) =
s

∑
k=1

(
ik

jk

)
pk.

Observation 1.8. In this definition we spell out the affine part jk (the finite parallelism index)
as well as the infinite part expressed by ik (the infinite parallelism index). We could form
another divisor on the line at infinity, namely ∑s

k=1 (ik + jk)pk whose coefficients are the total
parallelism indices.

Definition 1.9. We define the parallelism type of the configuration (or simply type of the
configuration) of invariant lines occurring for a cubic polynomial system (S), the sequence
of non-zero numbers, τk = ik + jk, k ∈ {1, . . . , s} attached to DL(S; Z), listed according to
descending magnitudes:

T = (τ1, τ2, . . . , τl), 1 ≤ l ≤ s.

Clearly T is an affine invariant of systems in the class PSLn,L and of their configurations
of invariant lines.

Notation 1.10. As already used in the Abstract CSL2r2c∞
7 is meant to be the class of non-

degenerate cubic systems with invariant lines of total multiplicity seven which have two real
and two complex distinct singularities at infinity.
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As we have two real and two complex infinite singularities and the total multiplicity of the
invariant lines (including the line at infinity) must be 7, then the cubic systems in CSL2r2c∞

7
could only have one of the following four possible types of configurations of invariant lines:

(i) T = (3, 3); (ii) T = (3, 1, 1, 1); (iii) T = (2, 2, 2); (iv) T = (2, 2, 1, 1). (1.2)

Remark 1.11. We remark that the cubic systems in CSL2r2c∞
7 possessing the configurations of

invariant lines of the type T = (3, 3) were already investigated in [6], where the existence of
14 distinct configurations Config. 7.1a – Config. 7.14a of this type are determined.

In this article we classify the subfamily of cubic systems in CSL2r2c∞
7 , possessing config-

urations of invariant line of the type (3, 1, 1, 1), according to the relation of equivalence of
configurations. We denote this subfamily by CSL2r2c∞

(3,1,1,1).
Our main result is the following one.

Main Theorem.

(A) A non-degenerate cubic system (1.1) belongs to the class CSL2r2c∞
(3,1,1,1) if and only if D1 < 0,

V4 = U 2 = 0 and one of the following set of conditions holds:

(A1) If D7 ̸= 0, D8 ̸= 0, χ1 = 0, D6 ̸= 0 then χ3 = χ6 = 0.
(A2) If D7 ̸= 0, D8 ̸= 0, χ1 = 0, D6 = 0 then χ2 = χ3 = 0.
(A3) If D7 ̸= 0, D8 ̸= 0, χ1 ̸= 0, D4 ̸= 0 then χ7 = χ8 = χ9 = χ10 and either D5 ̸= 0,

χ11 = 0 or D5 = χ12 = 0.
(A4) If D7 ̸= 0, D8 ̸= 0, χ1 ̸= 0, D4 = 0 then χ4 = χ5 = χ7 = χ9 = χ13 = χ14 = 0.
(A5) If D7 ̸= 0, D8 = 0, D6 ̸= 0, D4 ̸= 0 then χ1 = χ3 = χ6 = 0.
(A6) If D7 ̸= 0, D8 = 0, D6 ̸= 0, D4 = 0 then χ1 = χ3 = χ8 = χ16 = 0, χ15 ̸= 0.
(A7) If D7 ̸= 0, D8 = 0, D6 = 0 then χ1 = χ2 = χ4 = χ6 = χ17 = 0, χ11 ̸= 0, ζ4 ≤ 0.
(A8) If D7 = 0, χ̃1 ̸= 0 then χ1 = χ2 = χ3 = 0.
(A9) If D7 = 0, χ̃1 = 0, χ̃2 ̸= 0 then χ1 = χ3 = χ6 = 0.

If D7 = χ̃1 = χ̃2 = 0 then a cubic system (1.1) could not belong to the class CSL2r2c∞
(3,1,1,1).

(B) Assume that a non-degenerate cubic system (1.1) belongs to the class CSL2r2c∞
(3,1,1,1), i.e. one of

the sets of conditions provided by statement (A) holds. Then this system possesses one of the
configurations Config. 7.1b – Config. 7.42b, presented in Figure 1.1. Moreover the necessary
and sufficient conditions for the realization of each one the mentioned configurations are given in
Diagrams from Figures 1.2, 1.3 and 1.4, correspondingly.

(C) In Figure 1.1 are given all the configurations that could occur for systems in the class CSL2r2c∞
(3,1,1,1).

We prove that all these configurations are realizable within CSL2r2c∞
(3,1,1,1) (see the examples given in

the proof of the statement (A)) and that these 42 configurations are distinct. This proof is done
in Subsection 3.3 using geometric invariants and it is presented in the corresponding diagram
from Figures 3.1.

Notation 1.12. We give here the directions for reading the pictures representing the config-
urations. An invariant line with multiplicity k > 1 will appear in a configuration in bold
face and will have next to it the number k. Real invariant straight lines are represented by
continuous lines, whereas complex invariant straight lines are represented by dashed lines.
The multiplicities of the real singular points of the system located on the invariant lines, will
be indicated next to the singular points.
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Figure 1.1: The configurations of invariant lines for cubic systems in the class
CSL2r2c∞

(3,1,1,1)

Since a configuration of invariant lines of a system (1.1) could contain simultaneously
real and complex invariant lines, there appears the problem of indicating these lines simul-
taneously on a picture in the Poincaré disc in order to capture and see schematically this
phenomenon. So in order to fix the positions of real lines with respect to the complex ones in
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Figure 1.1 (cont.): The configurations of invariant lines for cubic systems in the
class CSL2r2c∞

(3,1,1,1)

a coherent way, we present here the following mode of representing complex invariant lines
of systems (1.1) along with the real invariant ones on the Poincaré disc.

Convention. Assume that a system (1.1) possesses an invariant line with complex coefficients
such that we cannot multiply all its coefficients by a non-zero complex number and obtain
real coefficients. Then clearly the corresponding conjugate line is also invariant for this system
having the same property. Suppose that such invariant lines are:

L : Ax + By + C = 0, L̄ : Āx + B̄y + C̄ = 0, A, B, C ∈ C, (A, B) ̸= (0, 0).

These lines are affine lines in C2 (∼= R4) and hence planes in R4.
Without loss of generality, due to the change x ↔ y we may assume B ̸= 0 and then the

lines become:

y = (a ± bi)x + (c ± di) = (ax + c)± i(bx + d), (a, b, c, d) ∈ R4, b2 + d2 ̸= 0. (1.3)
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Figure 1.2: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statement

(A1)
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Figure 1.2 (cont.): Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): state-

ment (A1)

We associate to the lines (1.3) over C the two lines with real coefficients: the real line l =

R(L, L̄): y = ax + c as well as its complexification Cl defined by the same equation but letting
x, y run over the complex plane. The real line l can be drawn on the Poincaré disk. Consider
now the two cases b ̸= 0 and b = 0.

Case b ̸= 0. In this case the two lines (1.3) intersect at the real point M0 = (−d/b,−(ad −
bc)/b) ∈ R2 that also lies on the real line l ⊂ Cl. Being at the intersection of the two complex
invariant lines (1.3) , the real point M0 is a singular point for systems (1.1). To signal the
presence of the complex lines (1.3) we make the convention to represent them on the Poincaré
disk as two dashed lines both passing through M0. Thus the real line l will appear inside
two of the four curvilinear triangles described by the dashed lines and parts of the circle at
infinity. We denote this domain by D.

Suppose now that the system S has a real invariant line l′ also passing through M0 and
consider its complexification L′ = Cl′ that is also an invariant line.

We assume that our system is included in a family of systems possessing the invariant
lines (1.3) and the line L’. If the parameters b and d tend simultaneously to zero, then it is
clear that the two complex lines tend to the complexification of the real line y = ax + c. Then
clearly this line is an invariant line that is a multiple line of multiplicity two or three. We now
distinguish two subcases: l′ = l or l′ ̸= l.

Subcase l′ = l. In this case two complex invariant lines (1.3) coalesced with the invariant
line L′ and hence this is a triple line. In this case we will draw the real line l′ inside the domain
D.

Subcase l′ ̸= l. In this case if both b and d tend to zero then the lines (1.3) will tend to a
double line, the complexification of the real line y = ax + c. In this case we draw the line l′

outside D.
Case b = 0. In this case the lines (1.3) intersect at infinity at the real point [1 : a : 0]. The

real line l : y = ax + c passes also through this point. We draw by dashed lines these two
complex lines placing inside the domain delimited by them and denoted by D′ the real line l.
Suppose the line L′ passes through the same point at infinity [1 : a : 0]. We make the following
convention:

If l′ = l then we will draw l′ inside the domain D′. If l′ ̸= l then we will draw l′ outside
the domain D′.

The work is organized as follows. In Section 2 we give some preliminary results needed
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Figure 1.3: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statements

(A2)–(A5)
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Figure 1.4: Diagram of the configurations for the class CSL2r2c∞
(3,1,1,1): statements

(A6)–(A9)

for this paper. In Section 3 we prove our Main Theorem considering the family of cubic
systems possessing invariant lines in the configuration of the type (3, 1, 1, 1) and having two
real and two complex distinct infinite singularities. More exactly, in Subsection 3.1 we prove
the statement (A) of the Main Theorem, constructing the canonical systems and determining
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the corresponding configurations which these systems could possess. Moreover, the neces-
sary and sufficient conditions for the realization of each one the obtained configurations are
determined. In Subsection 3.2 we prove the statement (B) of the Main Theorem. Using the
geometric invariants, we prove that all the 42 detected configurations of invariant lines for the
class of cubic systems in CSL2r2c∞

(3,1,1,1) are distinct according to Definition 1.3.

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P(a, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y)
(2.1)

with variables x and y and real coefficients. The polynomials pi and qi (i = 0, 1, 2, 3) are
homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x3 + 3a21x2y + 3a12xy2 + a03y3,

p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q3(x, y) = b30x3 + 3b21x2y + 3b12xy2 + b03y3,

q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients of systems
(2.1) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

2.1 The main invariant polynomials associated to configurations of invariant lines

It is known that on the set of polynomial systems (1.1), in particular on the set CS of all cubic
differential systems (2.1), acts the group Aff (2, R) of affine transformation on the plane [40].
For every subgroup G ⊆ Aff (2, R) we have an induced action of G on CS. We can identify the
set CS of systems (2.1) with a subset of R20 via the map CS−→ R20 which associates to each
system (2.1) the 20-tuple a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) of its coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the definition of
a T-comitant and CT-comitant we refer the reader to [36]. Here we shall only construct the
necessary affine invariant polynomials which are needed to detect the existence of invariant
lines for the class of cubic systems with four real distinct infinite singularities and with exactly
seven invariant straight lines including the line at infinity and including multiplicities.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

As it was shown in [42] the polynomials{
C0(a, x, y), C1(a, x, y), C2(a, x, y), C3(a, x, y), D1(a), D2(a, x, y) D3(a, x, y)

}
(2.2)

of degree one in the coefficients of systems (2.1) are GL-comitants of these systems.
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Notation 2.1. Let f , g ∈ R[a, x, y] and

( f , g)(k) =
k

∑
h=0

(−1)h
(

k
h

)
∂k f

∂xk−h∂yh
∂kg

∂xh∂yk−h .

( f , g)(k) ∈ R[a, x, y] is called the transvectant of index k of ( f , g) (cf. [20, 28]).

Theorem 2.2 ([46]). Any GL-comitant of systems (2.1) can be constructed from the elements of the
set (2.2) by using the operations: +, −, ×, and by applying the differential operation ( f , g)(k).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials P(a, x, y) and
Q(a, x, y). We obtain P̃(ã(a, x0, y0), x′, y′) = P(a, x′ + x0, y′ + y0), Q̃(ã(a, x0, y0), x′, y′) =

Q(a, x′ + x0, y′ + y0). We construct the following polynomials

Ωi(a, x0, y0) ≡ Res x′
(

Ci
(
ã(a, x0, y0), x′, y′

)
, C0

(
ã(a, x0, y0), x′, y′

))
/(y′)i+1,

Ωi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2, 3)

and we denote

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Remark 2.3. We note that the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) are affine comi-
tants of systems (2.1) and are homogeneous polynomials in the coefficients a00, . . . , b03 and
non-homogeneous in x, y and

dega G̃1 = 3, dega G̃2 = 4, dega G̃3 = 5,

deg(x,y) G̃1 = 8, deg(x,y) G̃2 = 10, deg(x,y) G̃3 = 12.

Notation 2.4. Let Gi(a, X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a, X, Y, Z) = Z8G̃1(a, X/Z, Y/Z),

G2(a, X, Y, Z) = Z10G̃2(a, X/Z, Y/Z),

G3(a, X, Y, Z) = Z12G̃3(a, X/Z, Y/Z),

and H(a, X, Y, Z) = gcd
(
G1(a, X, Y, Z), G2(a, X, Y, Z), G3(a, X, Y, Z)

)
in R[a, X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas
(see [25]):

Lemma 2.5. The straight line L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an
invariant line for a cubic system (2.1) if and only if the polynomial L(x, y) is a common factor of the
polynomials G̃1(x, y), G̃2(x, y) and G̃3(x, y) over C, i.e.

G̃i(x, y) = (ux + vy + w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 2.6. Consider a cubic system (2.1) and let a ∈ R20 be its 20-tuple of coefficients.
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1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant straight line of
multiplicity k for the system associated to a then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e.
there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux + vy + w)kWi(a, x, y), i = 1, 2, 3.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e. we have
Zk−1 | H(a, X, Y, Z).

Consider the differential operator L = x · L2 − y · L1 constructed in [3] and acting on
R[a, x, y], where

L1 = 3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1
3

a02
∂

∂a12
+

2
3

a11
∂

∂a21
+ a20

∂

∂a30

+ 3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1
3

b02
∂

∂b12
+

2
3

b11
∂

∂b21
+ b20

∂

∂b30
,

L2 = 3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1
3

a20
∂

∂a21
+

2
3

a11
∂

∂a12
+ a02

∂

∂a03

+ 3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1
3

b20
∂

∂b21
+

2
3

b11
∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx
(

p3(a, x, y), q3(a, x, y)
)
/y9 we con-

struct the following polynomials

µi(a, x, y) =
1
i!
L(i)(µ0), i = 1, . . . , 9,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.
These polynomials are in fact comitants of systems (2.1) with respect to the group GL(2, R)

(see [3]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous of degree 6 in the coeffi-
cients of systems (2.1) and homogeneous of degree i in the variables x and y. The geometrical
meaning of these polynomial is revealed in the next lemma.

Lemma 2.7 ([2, 3]). Assume that a cubic system (S) with coefficients a ∈ R20 belongs to the family
(2.1). Then:

(i) The total multiplicity of all finite singularities of this system equals 9 − k if and only if for every
i ∈ {0, 1, . . . , k− 1} we have µi(a, x, y) = 0 in the ring R[x, y] and µk(a, x, y) ̸= 0. In this case
the factorization µk(a, x, y) = ∏k

i=1(uix − viy) ̸= 0 over C indicates the coordinates [vi : ui : 0]
of singularities at infinity which in perturbations generate finite singularities of the system (S).
Moreover the number of distinct factors in this factorization is less than or equal to four (the
maximum number of infinite singularities of a cubic system) and the multiplicity of each one of
the factors uix − viy gives us the number of the finite singularities of the system (S) which have
coalesced with the infinite singular point [vi : ui : 0].

(ii) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 9) for the cubic system (S)
if and only if for every i such that 0 ≤ i ≤ k − 1 we have µ9−i(a, x, y) = 0 in R[x, y] and
µ9−k(a, x, y) ̸= 0.

(iii) The system (S) is degenerate (i.e. gcd(p, q) ̸= const) if and only if µi(a, x, y) = 0 in R[x, y]
for every i = 0, 1, . . . , 9.
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In order to define the invariant polynomials we need, we first construct the following
comitants of second degree with respect to the coefficients of initial systems (2.1):

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2, D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2, D3)
(2) ,

S3 = (C0, D2)
(1) , S12 = (C1, D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1, D3)

(2) , S22 = (D2, D3)
(1) ,

S5 = (C0, D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2, D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3, D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3, D3)
(2) ,

S9 = (C1, D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3, D3)
(2) .

We shall use here the following invariant polynomials constructed in [25] and [10]:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

,

D2(a, x, y) = − S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

D4(a) = (C3, D2)
(4),

D5(a) = A1 − A2,

D6(a) = 3A1 + A2,

D7(a) = − A1 − 3A2,

D8(a) = 2A3
1 − 9A2

6 + 2A1A10 + A16,

V1(a, x, y) = S23 + 2D2
3,

V2(a, x, y) = S26,

V3(a, x, y) = 6S25 − 3S23 − 2D2
3,

V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)

]
,

V5(a, x, y) = 6T1(9A5−7A6) + 2T2(4T16 − T17)− 3T3(3A1+5A2)+3A2T4+36T2
5 −3T44,

U 1(a) = S24 − 4S27,

U 2(a, x, y) = 6 (S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)− 24S2

26

+ 2C3 (C3, S23)
(4) + 24D3 (D3, S26)

(1) + 24D2
3S27,

In order to characterize the cubic systems belonging to the class CSL2r2c∞
(3,1,1,1) we define here the

following new invariant polynomials:

χ1(a, x, y) = T13 − 2T11,

χ2(a, x, y) = 8A3T2 + 22A4T2 + 15T57 + 9T60 − 21T62 + 6T63 + 9T65,

χ3(a, x, y) = 2T1T8T15 + 2T5T74 + T5T75,

χ4(a) = A7 + A8 − A9,

χ5(a) = A7,

χ6(a, x, y) = 30(6A3T2
1 + 9T5T6 − 3T4T9 − T2T26)− T1(29T2T14 + 32T2T15 − 108T36 − 45T42),

χ7(a, x, y) = T12 − T13,



The family of cubic differential systems with invariant straight lines 17

χ8(a, x, y) = 10A3T2 + 30A4T2 − 6T59 + 15T60 + 15T57 − 31T62 + 17T63 + 5T64 + 5T65,

χ9(a, x, y) = 6T5(3T11 − 4T13) + 10T3T18 + 6T4T18 − 3T2T48 + 2T2(T49 + T50) + 22T1T71 + T86,

χ10(a, x, y) = 880A3T1(101T2T6−36T1T9)+337920(T11−T13)(T74+T75)− 880(5T2
2 +27T3)T2

9

− 528T9(120A4T2
1 + 11658T5T6 + 50T2T26 − 60T1T37 + 25T76 − 80T78)

− 44T19(21442T2T15 − 259854T36 + 42588T37 + 59307T42 − 42888T38)

− 2640T26(128T25 − 3T23 + 10T24 + 24T26) + 24T4T6(344426T14 − 921997T15)

−3T6(345752T3T15−1006720T80−1019038T81+969523T82+2177623T83−11264T84),

χ11(a, x, y) = 360A7T2+3066T110−270T111+148T113−1895T114+2675T115−1176T116+3090T117

− 540T118 − 680T119 + 155T120 + 1375T121,

χ12(a, x, y) = 18T2
2 T9−T2(36T23+324T24−737T26)−T1(108T2T15−6(460T36−629T37−656T42))

− 3(29028T5T6 + 54T3T9 − 629T4T9 + 96T78),

χ13(a, x, y) = −60(2A14+47A15)T2 − 12180A4T17 + 30A3(47T16+51T17)− 105A1(T57+12T63)

− A2(1200T60 − 174T59 − 255T57 − 5754T62 + 2403T63 − 4435T64 + 7820T65),

χ14(a, x, y) = 3T1T8T15 − 3T5T75,

χ15(a, x, y) = T8,

χ16(a, x, y) = 96T6T8 + 12T133 + 9T135 + 28T2T74 + 21T2T75,

χ17(a, x, y) = 9T6T9(174T1T9 + 193T19) + T2
6 (77T2T9 + 1164T1T14 − 69T23 − 57T24)− 696T2

74,

χ̃1(a, x, y) = T13 − 2T12,

χ̃2(a, x, y) = 3T2T6 + 2T1T9 + T19,

ζ1(a, x, y) = (A1 − A2)(5A3T2 + 25A4T2 − 9T59 + 15T57 − 39T62 + 33T63),

ζ ′1(a, x, y) = 972T1(A8T2+6T107)− 5832T5(5T36+T38) + 27(14904T2
11+216T10T15−16344T8T18

− 7T2
2 T59 − 81T3T59 + 18T4T59),

ζ2(a) = 432A2A4 − 162A12 − 81A13 − 27A14 − 648A15,

ζ3(a) =A7(2A1A9 − 3A4A6),

ζ4(a, x, y) = T59,

ζ5(a) =36A2
1A2

4 − (A12 − 4A13 − A14 − 2A15)
2,

ζ6(a) =8A2
1A2 + 58A3

2 − 29A2
6 + 82A2A10 + 245A16,

ζ7(a) = − (5A1 + 3A2),

ζ8(a) = A4(2A3 + 3A4),

ζ9(a) = − T9T17,

where

A1 = S24/288, A2 = S27/72, A3 =
(
72D1A2 + (S22, D2)

(1))/24,

A4 =
[
9D1S24 − 2592D1A2 + 36(S11, D3)

(2) + 24(S18, D2)
(1) − 8(S14, D3)

(2) − 8(S20, D2)
(1)

− 32(S22, D2)
(1)]/27/33, A6 =

(
S26, D3

)(2)/25/33, A7 = (T9, C3)
(4)/25/32,

A8 = (T14, D3)
(2)/12, A9 = (T15, D3)

(2)/12, A10 = [[S23, D3)
(2), D3)

(2)/29/34,

A12 = [[T9, C3)
(3), D3)

(2)/26/33, A13 = [[T9, C3)
(2), C3)

(4)/27/33,

A14 = [[T9, D3)
(2), D3)

(2)/25/32, A15 = [[T14, C3)
(2), D3)

(2)/25/32,

A16 = [[S23, C3)
(1), D3)

(2), D3)
(2), D3)

(2)/5/213/37
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are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
3C1(D2

3 − 9T3 + 18T4)− 2C2(2D2D3 − S17 + 2S19 − 6S21)+

+ 2C3(2D2
2 − S14 + 8S15)

]
/24/32, T7 = (S23, C3)

(1)/72,

T8 =
[
5D2(D2

3 + 27T3 − 18T4) + 20D3S19 + 12
(
S16, D3

)(1) − 8D3S17
]
/5/25/33,

T9 =
[
9D1(9T3 − 18T4 − D2

3) + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18
(
S15, C3

)(1)−
− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33, T10 = (S23, D3)

(1)/25/33,

T11 =
[(

D2
3 − 9T3 + 18T4, C2

)(2) − 6
(

D2
3 − 9T3 + 18T4, D2

)(1) − 12
(
S26, C2

)(1)
+

+ 12D2S26 + 432C2(A1 − 5A2)
]
/27/34,

T12 =
[(

D2
3 + 15T3 − 6T4, C2

)(2) − 6
(

D2
3 − 3T3 + 12T4, D2

)(1) − 4
(
S26, C2

)(1)
+

+ 10D2S26 − 720(A1 + 3A2)C2
]
/27/33,

T13 =
[(

D2
3+27T3−18T4, C2

)(2)−216
(
T4, D2

)(1)
+48D3S22+36D2S26−432C2(3A1+17A2)

]
/27/34,

T14 =
[(

8S19 + 9S21, D2
)(1) − D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,

T15 =
[
72(S19, D2)

(1)−(S17, C2)
(2)+16(S21, D2)

(1)−3(D2
3, C1)

(2)+27(T3, C1)
(2)−54(T4, C1)

(2)

+36D1S26+2160C1A1+4752C1A2−16D2S22+4(S14, D3)
(1)−68(S15, D3)

(1)−8(S14, C3)
(2)

−8(S15, C3)
(2)−4D2S18

]
/26/33, T16 = (S23, D2)

(2)/26/33, T17 = (S26, D3)
(1)/25/33,

T18 =
[
4
(

D2
3 + 6T4, C2

)(3)
+ 2(C2D3, C3)

(4) − 9D2(96A2 + S24),

T19 =
(
T6, C3

)(1)/2, T23 =
(
T6, C3

)(2)/6, T24 =
(
T6, D3

)(1)/6,

T25 =
[
16

[
(C2, D3)

(1)]2
+ 5184C1(3A2C3 − T5D3) + D2

2(D2
3 − 81T3 − 54T4) + 4D2(648T5C2

+ 3D3S17 + 2D3S19 − 18C3S20)
]
/26/34, T26 =

(
T9, C3

)(1)/4, T36 =
(
T6, D3

)(2)/12,

T37 =
(
T9, C3

)(2)/12, T38 =
(
T9, D3

)(1)/6, T42 =
(
T14, C3

)(1)/2,

T44 =
(
(S23, C3)

(1), D3
)(2)/5/26/33, T50 =

(
T12, D3

)(1)/6,

T57 =
(
T9, D3

)(2)/12, T59 =
(
T6, C3

)(4)/24/32, T60 =
(
T9, C3

)(3)/72,

T62 =
(
T14, C3

)(2)/6, T63 =
(
T15, C3

)(2)/6, T64 =
(
T15, D3

)(1)/6, T65 =
(
T14, D3

)(1)/6,

T74 =
[
18(27T3C2D1−54T4C2D1−64T6D2−3T3C1D2+6T4C1D2)D3−6(9C2D1−C1D2)D3

3

+ 27C0D4
3 + D2

3(−486T3C0 + 972T4C0 + 108C3D1D2 − 8C2D2
2 − 54C3S8 + 108C3S9

+ 27C2S11 − 27C2S12 + 4C2S14 − 32C2S15 + 54D1S16 − 3C1S17 + 6C1S19 − 18C1S21)

− 972(T3 − 2T4)C3D1D2 + 72(T3 − 2T4)C2D2
2 − 486C3(128T11C1 − T3S8 + 2T4S8

+ 2T3S9 − 4T4S9) + 20736T11C2
2 − 9C2(T3 − 2T4)(27S11 − 27S12 + 4S14 − 32S15)

+ 2187(T3 − 2T4)
2C0 + 576T6(S17 − 2S19 + 6S21)− 27T3(18D1S16 − C1S17 + 2C1S19

− 6C1S21) + 54T4(18D1S16 − C1S17 + 2C1S19 − 6C1S21)
]
/28/34,

T75 =
[
− 18(40C3D2 + 137S16)

(
D2

3, C1
)(1) − 48(4C3D2 − 3C2D3 − S16)

(
S14, C3

)(1)
− 768C3D2

(
S15, C3

)(1)
+ 9(16C3D2 − 9C2D3 + 5S16)

(
S23, C1

)(1) − 648C0D4
3

+ 162(C2D3 + 3S16)
(
S25, C1

)(1)
+ 144(9C2D1 + 2C1D2)D3

3 − 12D2
3(32C2D2

2 − 18C3S8

+ 9C2S11 − 54C2S12 + 24C2S14 − 96C2S15 − 324D1S16 − 6C1S17 + 12C1S19 − 18C0S23
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+ 216C0S25) + 8D3(64C3D3
2 + 64C3D2S14 + 16D2

2S16 + 12S14S16 − 96S15S16 − 36C2
2S18

− 96C2D2S19 + 108C2
2S20 + 240C2D2S21 − 297C2D1S23 − 24C1D2S23 + 1134C2D1S25)

+ 62208C3(3T13C1−16T8D1) + 2(1728C3D1D2+32C2D2
2+18C3S8+4176C3S9−9C2S11

− 1395C2S12 − 16C2S14 + 96C2S15 − 108D1S16 − 18C1S17 − 60C1S19 + 2160C1S21)S23

+ 54C0S2
23 + 32(5832T13C1C3 − 31104T8C3D1 − 34992T8S10 − 3C3S14S17 − 4D2S16S17

+ 3C2S2
17 + 12C2C3D2S18 − 3C2S16S18 + 16C3D2

2S19 − 2C3S14S19 + 16C3S15S19

+ 24D2S16S19 − 12C2S2
19 − 36C2C3D2S20 + 9C2S16S20 − 48C3D2

2S21 − 12C3S14S21

− 24D2S16S21 + 12C2S17S21)− 36(288C3D1D2 + 474C3S8 + 528C3S9 − 237C2S11

− 255C2S12−180D1S16−86C1S17+156C1S19+276C1S21)S25−1944C0S2
25
]
/211/34,

T76 = [[T6, C3)
(2), C3)

(1)/36, T78 =
(
T25, C3

)(1)/2, T80 = [[T9, C3)
(2), C3)

(1)/144,

T81 = [[T6, C3)
(3), C3)

(1)/26/32, T82 = [[T6, C3)
(2), D3)

(1)/23/33, T83 = [[T6, C3)
(1), D3)

(2)/24,

T84 =
(
T25, C3

)(2)/6, T86 = [[T11, C3)
(2), C3)

(1)/36, T107 = [[T9, D3)
(2), D3)

(1)/432,

T110 = [[T6, C3)
(4), C3)

(2)/27/33, T111 =[[T6, C3)
(3), D3)

(2)/27/33, T113 =[[T14, C3)
(2), C3)

(2)/72,

T114 = [[T14, C3)
(2), D3)

(1)/72, T115 = [[T14, C3)
(1), D3)

(2)/72, T116 = [[T15, C3)
(2), C3)

(2)/72,

T117 = [[T6, D3)
(2), D3)

(2)/25/33, T118 = [[T9, C3)
(3), C3)

(2)/25/33, T119 =
(
T25, C3

)(4)/24/32,

T120 = [[T9, C3)
(3), D3)

(1)/25/33, T121 = [[T9, C3)
(2), D3)

(2)/24/33, T133 =
(
T74, C3

)(1),
T135 =

(
T75, C3

)(1),
are T-comitants of cubic systems (2.1) (see for details [36]). In the above list the bracket “[[”
means a succession of two or up to four parentheses “(” depending on the row in which it
appears.

We note that these invariant polynomials are the elements of the polynomial basis of T-
comitants up to degree six constructed by Iu. Calin [15].

2.2 Preliminary results

In order to determine the degree of the common factor of the polynomials G̃i(a, x, y) for i =
1, 2, 3, we shall use the notion of the kth subresultant of two polynomials with respect to a given
indeterminate (see for instance, [22, 28]).

Following [25] we consider two polynomials

f (z) = a0zn + a1zn−1 + · · ·+ an, g(z) = b0zm + b1zm−1 + · · ·+ bm,

in the variable z of degree n and m, respectively.
We say that the k–th subresultant (see for example, [28]) with respect to variable z of the

two polynomials f (z) and g(z) is the (m + n − 2k)× (m + n − 2k) determinant

R(k)
z ( f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1
0 a0 a1 . . . . . . am+n−2k−2
0 0 a0 . . . . . . am+n−2k−3
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 b0 . . . . . . bm+n−2k−3
0 b0 b1 . . . . . . bm+n−2k−2
b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 (m − k) times

 (n − k) times

(2.3)



20 C. Bujac, D. Schlomiuk and N. Vulpe

in which there are m − k rows of a’s and n − k rows of b’s, and ai = 0 for i > n, and bj = 0 for
j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words we can say
that the k–th subresultant with respect to the variable z of the two polynomials f (z) and g(z)
can be obtained by deleting the first and the last k rows and the first and the last k columns
from its resultant written in the form (2.3) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 2.8 (see [22, 28]). Polynomials f (z) and g(z) have precisely k roots in common (considering
their multiplicities) if and only if the following conditions hold:

R(0)
z ( f , g) = R(1)

z ( f , g) = R(2)
z ( f , g) = · · · = R(k−1)

z ( f , g) = 0 ̸= R(k)
z ( f , g).

For the polynomials in more than one variables it is easy to deduce from Lemma 2.8 the
following result.

Lemma 2.9. Two polynomials f̃ (x1, x2, . . . , xn) and g̃(x1, x2, . . . , xn) have a common factor of degree
k with respect to the variable xj if and only if the following conditions are satisfied:

R(0)
xj ( f̃ , g̃) = R(1)

xj ( f̃ , g̃) = R(2)
xj ( f̃ , g̃) = · · · = R(k−1)

xj ( f̃ , g̃) = 0 ̸= R(k)
xj ( f̃ , g̃),

where R(i)
xj ( f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In paper [25] all the possible configurations of invariant lines are determined in the case,
when the total multiplicity of these lines (including the line at infinity) equals nine. All
possible configurations of invariant lines in the case when the total multiplicity of these lines
(including the line at infinity) equals eight, are determined in [5, 9–12].

In the above mentioned articles, several lemmas are proved concerning the number of
triplets and/or couples of parallel invariant straight lines which could have a cubic system.
Taking together these lemmas produce the following theorem.

Theorem 2.10. If a cubic system (2.1) possesses a given number of triplets or/and couples of invariant
parallel lines real or/and complex, then the following conditions are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U 1 = 0;
(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;

(iii) one triplet ⇒ V4 = U 2 = 0;
(iv) 3 couples ⇒ V3 = 0;
(v) 2 couples ⇒ V5 = 0.

Remark 2.11. The above conditions depend only on the coefficients of the cubic homogeneous
parts of the systems (2.1).

We rewrite the systems (2.1) using a different notation for the coefficients::

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3 ≡ p(x, y),

ẏ = b + ex + f y + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3 ≡ q(x, y).
(2.4)

Let L(x, y) = Ux +Vy+W = 0 be an invariant straight line of this family of cubic systems.
Then, we have

Up(x, y) + Vq(x, y) = (Ux + Vy + W)(Ax2 + 2Bxy + Cy2 + Dx + Ey + F),
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and this identity provides the following 10 relations:

Eq1 = (p − A)U + tV = 0, Eq6 = (2h−E)U+(2m−D)V−2BW=0,

Eq2 = (3q − 2B)U + (3u − A)V = 0, Eq7 = kU + (n − E)V − CW = 0,

Eq3 = (3r − C)U + (3v − 2B)V = 0, Eq8 = (c − F)U + eV − DW = 0

Eq4 = (s − C)U + Vw = 0, Eq9 = dU + ( f − F)V − EW = 0,

Eq5 = (g − D)U + lV − AW = 0, Eq10 = aU + bV − FW = 0.

(2.5)

It is well known that in the case of the non-singular infinite invariant line the infinite
singularities (real or complex) of systems (2.4) are determined by the linear factors of the
polynomial

C3 = yp3(x, y)− xq3(x, y).

Remark 2.12. Let C3 = ∏4
i=1(αix + βiy), i = 1, 2, 3, 4. Then [βi : αi : 0] are the singular

points at infinity. Hence the invariant affine lines must be of the form Ux + Vy + W = 0
with (U,V) among (αi, βi). In this case, for any fixed (αi, βi), for a specific value of W, six
equations among (2.5) become linear with respect to the parameters {A, B, C, D, E, F} (with
the corresponding non-zero determinant) and we can determine their values, which annihilate
some of the equations (2.5). So in what follows, for each direction given by (αi, βi), we will
examine only the non-zero equations containing the last parameter W.

For the proof of the Main Theorem it is useful to consider the following homogeneous
cubic systems associated to systems (2.4):

x′ = p3(x, y), y′ = q3(x, y). (2.6)

Clearly in the case of two real and two complex distinct infinite singularities the polyno-
mial C3(x, y) has four distinct linear factors over C: two of them being real and two complex.
The following remark concerning the associated homogeneous cubic systems (2.6) is useful.

Remark 2.13. Assume that a cubic system (2.4) in CSL2r2c∞
(3,1,1,1) possesses invariant lines of total

multiplicity three in a real direction. Then the corresponding associated homogeneous cubic
systems (2.6) has one invariant line of multiplicity three in the same direction.

Indeed, if a system (2.4) possesses a triplet of parallel invariant lines (distinct or coinciding)
in a real direction then via an affine transformation this system could be brought to the form

ẋ = x[(x + b)2 + u], ẏ = q(a, x, y).

It is clear that if u < 0 (respectively u > 0) then we have three real (respectively one real and
two complex) all distinct invariant lines. In the case u = 0 we either have one simple and
one double invariant lines if b ̸= 0, or one triple invariant line if b = 0. It remains to observe
that in all four cases the corresponding associated homogeneous cubic systems possess the
invariant line x = 0 of multiplicity at least three.

According to [9, 25] (see also [30]) we have the following result.

Lemma 2.14. A cubic system (2.4) has 2 real and two complex all distinct infinite singularities if and
only if the condition D1 < 0 holds. Moreover its associated homogeneous cubic systems (2.6) could be
brought via a linear transformation to the canonical form

(SII)

{
x′ = (1 + u)x3 + (s + v)x2y + rxy2, C3 = x(sx + y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3.
(2.7)
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3 The proof of the Main Theorem

Considering Lemma 2.14 we deduce that for the systems in the class CSL2r2c∞
(3,1,1,1) the condition

D1 < 0 holds and these systems could be brought via a linear transformation to the family of
systems

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3 + (s + v)x2y + rxy2,

ẏ = b + ex + f y + lx2 + 2mxy + ny2 − sx3 + ux2y + vxy2 + (r − 1)y3 (3.1)

with C3 = x(sx + y)(x2 + y2). In what follows we examine cubic systems possessing configu-
rations of invariant lines of the type T = (3, 1, 1, 1).

3.1 The proof of the statement (A)

The configurations of the type T = (3, 1, 1, 1) could only have one triplet of parallel invariant
lines and clearly in the case of two real and two complex infinite singularities such triplet
could be only in a real direction.

3.1.1 Construction of the associated homogeneous systems

Since systems with the configuration of the type T = (3, 1, 1, 1) could only possess one triplet
of parallel invariant lines, according to Theorem 2.10 the conditions V4 = U 2 = 0 are necessary
for systems (3.1). Taking the corresponding associated homogeneous systems (2.7) we force
the conditions V4 = U 2 = 0.

We observe that the invariant polynomial U2 is a homogeneous polynomial of degree four
in x and y. So we shall use the following notation:

U 2 =
4

∑
j=0

U 2jx4−jyj.

On the other hand a straightforward computation of the value of V4 for systems (2.7) yields

V4 = 9216 V̂4 C3(x, y), where

V̂4 = 6r2s + r(2su − 9s − 3v) + (s + v)(sv − 3u).

As for systems (2.7) we have C3 = x(sx + y)(x2 + y2) ̸= 0, we conclude that the condition
V4 = 0 for these systems is equivalent to V̂4 = 0.

For systems (2.7) we evaluate

U 2 = 3 · 212
4

∑
j=0

Û 2jx4−jyj,

where Û 2j are polynomials in the parameters r, s, u and v. We have

Û 24 = r(9u − 12ru + 4r2u − 3sv + 2rsv − rv2) = 0

and we consider two cases: r ̸= 0 and r = 0.

1: The case r ̸= 0. Then we must have

9u − 12ru + 4r2u − 3sv + 2rsv − rv2 = (3 − 2r)2u + v(−3s + 2rs − rv) = 0
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and we examine two subcases: 3 − 2r ̸= 0 and 3 − 2r = 0.

1.1: The subcase 3 − 2r ̸= 0. Then the condition Û 24 = 0 gives u = 3sv−2rsv+rv2

(3−2r)2 and we
obtain:

Û 23 =
3r(3s − 2rs + v)

[
(3 − 2r)2 + v2)

2r − 3
= (3 − 2r)V̂4 = 0.

Since r(3 − 2r) ̸= 0 the above condition gives v = (2r − 3)s and this implies U 2 = V̂4 = 0.
Therefore we get the family of systems

ẋ = (1 − s2 + rs2)x3 + 2(−1 + r)sx2y + rxy2,

ẏ = − sx3 + (−1 + r)s2x2y + (−3 + 2r)sxy2 + (−1 + r)y3.
(3.2)

1.2: The subcase 3− 2r = 0. We get r = 3/2 and therefore the condition Û 24 = 0 gives v = 0.
Then we obtain V̂4 = 0 and

Û 20 = −3(s2 − 2u)
[
4s2 + (3 + 2u)2]/4 = 0

and we discuss two possibilities: s2 − 2u = 0 or s = 3 + 2u = 0.

1.2.1: The possibility s2 − 2u = 0. We have u = s2/2 and then U 2 = V̂4 = 0. In this case
we arrive at the family of systems

ẋ = (1 + s2/2)x3 + sx2y + 3xy2/2,

ẏ = − sx3 + 1/2s2x2y + y3/2.
(3.3)

We observe that the above family of systems is a subfamily of (3.2) defined by the value
r = 3/2.

1.2.2: The possibility s = 3 + 2u = 0. In this case we get again U 2 = V̂4 = 0 and we obtain
the system

ẋ = − x3/2 + 3xy2/2, ẏ = −3x2y/2 + y3/2. (3.4)

However for this system we calculate (see the definition of the polynomial H(X, Y, Z) on the
page 14, Notation 2.4):

H(X, Y, Z) = gcd(G1,G2,G3) = 3XY(X2 + Y2)3/4.

So system (3.4) possesses two triple invariant lines x ± iy = 0 and by Remark 2.13, systems
(3.1) could have triplets of parallel invariant lines only in these two directions. However since
these lines will be complex, we deduce that systems (3.1) with the associated homogeneous
cubic system (3.4) could not possess invariant lines with the configuration of the type T =

(3, 1, 1, 1).

2: The case r = 0. Then we calculate

Û 23 = 3(s + v)(3u − sv), V̂4 = −(s + v)(3u − sv)

and we examine two subcases: s + v = 0 or s + v ̸= 0 and 3u − sv = 0.

2.1: The subcase s + v = 0. Then v = −s and this implies U 2 = V̂4 = 0. Therefore we get the
family of systems (we set new parameters and variables: s = s1, u = u1, x = x1, y = y1)

ẋ1 =(1 + u1)x3
1, ẏ1 = −s1x3

1 + u1x2
1y1 − s1x1y2

1 − y3
1. (3.5)
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In this case we observe that the systems (3.2) via the transformation

x1 = −(sx + y), y1 = −x + sy, t1 = −t/(s2 + 1)

can be transformed to systems (3.5) after additional change of the parameters: s = s1 and
s2 − r(1 + s2) = u1.

2.2: The subcase 3u − sv = 0 and s + v ̸= 0. Then u = sv/3 and we calculate

Û 22 = −(s + v)(3s + v)(9 + v2).

Since s + v ̸= 0 we get v = −3s and this implies U 2 = V̂4 = 0. In this case we obtain the
family of systems

ẋ =(1 − s2)x3 − 2sx2y, ẏ = −sx3 − s2x2y − 3sxy2 − y3. (3.6)

We observe that the above family of systems is a subfamily of (3.2) defined by the value r = 0.
So we have proved the next lemma.

Lemma 3.1. If for a homogeneous cubic system (2.7) the conditions V4 = U 2 = 0 hold then this system
could be brought via a linear transformation and time rescaling to the form (3.5) with one exception:
when the conditions s = v = 0 and r = −u = 3/2 (which imply V4 = U 2 = 0) then we get the
system (3.4) that has two triple complex invariant lines x ± iy = 0.

Thus according to this lemma forcing the conditions V4 = U 2 = 0 to be satisfied for sys-
tems (3.1) we obtain two families of systems. The first one with the associated homogeneous
cubic systems of the form (3.5) and due to an additional translation having the parameter
n = 0 in the quadratic parts of systems (3.1):

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3,

ẏ = b + ex + f y + lx2 + 2mxy − sx3 + ux2y − sxy2 − y3,
(3.7)

The second family has the associated homogeneous cubic systems of the form (3.4) and
applying an additional translation we can assume that two parameters vanish: m = 0 and
n = 0. As a result we arrive at the following family of systems:

ẋ = a + cx + dy + gx2 + 2hxy + ky2 − x3/2 + 3xy2/2,

ẏ = b + ex + f y + lx2 − 3x2y/2 + y3/2.
(3.8)

As it was mentioned above, by Remark 2.13 systems (3.8) could not possess invariant lines
with the configuration of the type T = (3, 1, 1, 1). And later (see Lemma 3.25) will be proved
that none of the sets of conditions provided by the statement A) of Main Theorem could be
satisfied for systems (3.8).

Next we prove the following lemma which is the first step in the classification of the
configuration of systems in the class CSL2r2c∞

(3,1,1,1).

Lemma 3.2. Assume that for a non-degenerate cubic system (2.4) the conditions D1 < 0 and V4 =

U 2 = 0 hold. Then the infinite invariant line Z = 0 of this system has the multiplicity indicated below
if and only if the corresponding conditions are satisfied, respectively:

(i) one ⇔ D7 ̸= 0;
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(ii) two ⇔ D7 = 0 and χ̃1 ̸= 0;

(iii) three ⇔ D7 = χ̃1 = 0 and χ̃2 ̸= 0;

(iv) four ⇔ D7 = χ̃1 = χ̃2 = 0.

Moreover the maximum multiplicity which could have the line at infinity of a non-degenerate system
with D1 < 0 and V4 = U 2 = 0 is four.

Proof. First of all we mention that by Lemma 2.14 the condition D1 < 0 implies the existence
of 2 real and 2 complex infinite singularities.

On the other hand as it was mentioned earlier, according to Lemma 3.1 the conditions
V4 = U 2 = 0 lead either to the family of systems (3.7) or to (3.8).

According to Lemma 2.6 if the invariant line Z = 0 is of multiplicity k > 1 then Zk−1 is a
common factor of the invariant polynomials Gi(a, X, Y, Z), i = 1, 2, 3 defined in Notation 2.4
of the manuscript. So the existence of such a common factor of the above mentioned three
polynomials is a necessary condition for the invariant line Z = 0 of systems (3.7) to be of the
multiplicity k.

For systems (3.7) calculations yield:

G1(X, Y, Z) = (1 + u)X3(sX + Y)(X2 + Y2)(uX2 − 2sXY − 3Y2) + Z
[
Ψ1(X, Y, Z)

]
,

G2(X, Y, Z) = (1 + u)X3(sX + Y)(X2 + Y2)
[
(s2 + 2u + 2u2)X4 − 4suX3Y

+ (s2 − 3 − 6u)X2Y2 + 4sXY3 + 3Y4]+ Z
[
Ψ2(X, Y, Z)

]
,

G3(X, Y, Z) = 24(1 + u)X3(sX + Y)(uX2 − Y2)(X2 + Y2)
[
(1 + s2 + 2u + u2)X4

− 2suX3Y + (s2 − 1 − 2u)X2Y2 + 2sXY3 + Y4]+ Z
[
Ψ3(X, Y, Z)

]
,

(3.9)

where Ψj(X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z.
Evidently Z will be a common factor of the polynomials Gi(X, Y, Z) (i.e. Gi(X, Y, 0) = 0

for each i = 1, 2, 3) if and only if u + 1 = 0. Since the condition D7 ̸= 0 implies u + 1 ̸= 0 we
deduce that Z could not be the needed common factor and hence the infinite invariant line
Z = 0 for systems (3.7) is of multiplicity one.

On the other hand for systems (3.8) we calculate

G1(X, Y, Z) = 6XY(X2 + Y2)3 + Z
[
Φ(X, Y, Z)

]
, D7 = 4 ̸= 0,

where Φ(X, Y, Z) is a polynomials in X, Y and Z. So we can see that the polynomial G1(X, Y, Z)
could not have as a factor Z and hence all three polynomials Gi(X, Y, Z) i = 1, 2, 3 could not
have the common factor Z. So we arrive at the following remark.

Remark 3.3. The family of systems (3.8) could not have the infinite invariant line Z = 0 of
multiplicity greater than one.

Thus we conclude that in the case D7 ̸= 0 a non-degenerate cubic system with D1 < 0
and V4 = U 2 = 0 has the line at infinity of multiplicity one. This completes the proof of the
statement (i) of the lemma.

(ii) Assume now that the condition D7 = 0 holds and taking into account Remark 3.3
we consider the family of systems (3.7). In this case the condition D7 = 0 gives us u = −1
and considering (3.9) we deduce that Z is a common factor of the polynomials Gi(X, Y, Z),
i = 1, 2, 3. We claim that the invariant line Z = 0 of systems (3.7) has multiplicity at least
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two. For this it is sufficient to apply the following perturbation to systems (3.7) with u = −1
(remaining in the class of cubic systems):

ẋ = (a + cx + dy + gx2 + 2hxy + ky2)(1 + εx), ẏ = q(x, y), |ε| ≪ 1.

It is clear that the perturbed systems possess the invariant line εx+ 1 = 0 which coalesces with
infinite one when ε tends to zero. So we deduce that the invariant line Z = 0 is of multiplicity
at least 2 and in order to determine exactly its multiplicity we calculate:

G1(X, Y, Z)/Z = − (sX + Y)(X2 + Y2)
[
(g − 2hs)X4 + 2(g − k)sX3Y

+ (3g − k + 2hs)X2Y2 + 4hXY3 + kY4]+ Z
[
Ψ′

1(X, Y, Z)
]
,

G2(X, Y, Z)/Z = (sX + Y)2(X2 + Y2)2[(g − k)sX3 + (3g − k + 2hs)X2Y

+ 6hXY2 + 2kY3]+ Z
[
Ψ′

2(X, Y, Z)
]
,

G3(X, Y, Z)/Z = − 24(sX + Y)3(X2 + Y2)3(gX2 + 2hXY + kY2) + Z
[
Ψ′

3(X, Y, Z)
]
,

(3.10)

where Ψ′
j(X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z.

We observe that each one of the polynomials Gi(X, Y, Z)/Z, i = 1, 2, 3 has the factor Z if
and only if k = h = g = 0. This condition is governed by the invariant polynomials χ̃1 because
for systems (3.7) with u = −1 we have

Coefficient[χ̃1, xy2] = −8ks/3, Coefficient[χ̃1, y3] = 2k(s2 − 3)/9

and clearly the condition χ̃1 = 0 implies k = 0. Then we calculate

χ̃1 = 2x2[2(h + 2gs − 3hs2)x + (3g − 8hs − gs2)y
]
/9 = 0,

and we determine that for s = 0 we get h = g = 0. If s ̸= 0 we obtain:

h + 2gs − 3hs2 = 0 ⇒ g =
h(3s2 − 1)

2s
⇒ 3g − 8hs − gs2 = −3h(1 + s2)2

2s
= 0 ⇒ h = g = 0.

So in the case χ̃1 ̸= 0 we have k2 + h2 + g2 ̸= 0 and therefore the invariant line Z = 0 has the
multiplicity exactly two.

(iii) Admit now that the conditions D7 = 0 and χ̃1 = 0 are satisfied. This implies u = −1
and k = h = g = 0 and considering (3.10) we deduce that Z2 is a common factor of the
polynomials Gi(X, Y, Z), i = 1, 2, 3. We claim that the invariant line Z = 0 of systems (3.7)
has the multiplicity at least three. For this it is sufficient to apply to (3.7) with u = −1 and
k = h = g = 0 the following perturbation (remaining in the class of cubic systems):

ẋ = (a + cx + dy)(1 + ε1x + ε2x2), ẏ = q(x, y)

with |ε i| ≪ 1 (i = 1, 2). Clearly the perturbed systems possess the two invariant lines defined
by the equation 1 + ε1x + ε2x2 = 0 which coalesces with infinite one when ε1 and ε2 tend to
zero. So we deduce that the invariant line Z = 0 is of multiplicity at least 3 and in order to
determine precisely its multiplicity we calculate:

G1(X, Y, Z)/Z2 = − (sX + Y)(X2 + Y2)
[
(c − ds)X3 + 2csX2Y + (3c + ds)XY2

+ 2dY3]+ Z
[
Ψ′′

1 (X, Y, Z)
]
,

G2(X, Y, Z)/Z2 = (sX + Y)2(sX + 3Y)(cX + dY)(X2 + Y2)2 + Z
[
Ψ′′

2 (X, Y, Z)
]
,

G3(X, Y, Z)/Z2 = − 24(sX + Y)3(cX + dY)(X2 + Y2)3 + Z
[
Ψ′′

3 (X, Y, Z)
]
,

(3.11)
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where Ψ′′
j (X, Y, Z) (j = 1, 2, 3) are some polynomials in X, Y and Z. We observe that each of

the polynomials Gi(X, Y, Z)/Z2, i = 1, 2, 3 has as a factor Z if and only if c = d = 0. This
condition is governed by the invariant polynomials χ̃2 because for of systems (3.7) u = −1
and k = h = g = 0 we have

χ̃2 = 4x2(sx + y)(cx + dy)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2]/3.

Evidently the condition χ̃2 = 0 is equivalent to c = d = 0. So in the case χ̃2 ̸= 0 we have
c2 + d2 ̸= 0 and therefore we deduce that the invariant line Z = 0 has the multiplicity exactly
three.

(iv) Admit now that the conditions D7 = 0 (i.e. u = −1) and χ̃1 = χ̃2 = 0 which implies
k = h = g = d = c = 0. Then considering (3.11) we deduce that Z3 is a common factor of
the polynomials Gi(X, Y, Z), i = 1, 2, 3. We claim that the invariant line Z = 0 of systems
(3.7) is of multiplicity at least four. For this it is sufficient to apply to (3.7) with u = −1 and
k = h = g = d = c = 0 the following perturbation (remaining in the class of cubic systems):

ẋ = a(1 + ε1x + ε2x2 + ε3x3), ẏ = q(x, y)

with |ε i| ≪ 1 (i = 1, 2, 3). Clearly the perturbed systems possess the three parallel invariant
lines defined by the equation 1 + ε1x + ε2x2 + ε3x3 = 0 which coalesce with the infinite one
when ε i (i = 1, 2, 3) tend to zero. So we deduce that the invariant line Z = 0 is of multiplicity
at least 4 and in order to determine precisely its multiplicity we calculate:

G1(X, Y, Z)/Z3 = −(sX + Y)(X2 + Y2)(X2 + 2sXY + 3Y2) + Z
[
Ψ′′′

1 (X, Y, Z)
]
,

where Ψ′′′
1 (X, Y, Z) (j = 1, 2, 3) is a polynomial in X, Y and Z. As we can see the polynomial

G1(X, Y, Z)/Z3 could not have Z as a factor and therefore we deduce that the maximum
multiplicity of the invariant line Z = 0 for systems (3.7) equals four.

As all the cases are examined we conclude that Lemma 3.2 is proved.

Thus considering Lemma 3.1 as well as Lemma 3.25 (which will be proved later) in what
follows we consider the family of systems (3.7), i.e. the systems

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + (1 + u)x3,

ẏ = b + ex + f y + lx2 + 2mxy − sx3 + ux2y − sxy2 − y3,
(3.12)

for which we have C3(x, y) = x(sx + y)(x2 + y2). For the corresponding associated homoge-
neous cubic systems we calculate (see the definition of the polynomial H(X, Y, Z) on the page
14, Notation 2.4):

H(X, Y, Z) = gcd(G1,G2,G3) = (1 + u)X3(sX + Y)(X2 + Y2). (3.13)

So by Remark 2.13, systems (3.12) could have one triplet of parallel invariant lines in the
direction x = 0. However for some values of the parameters u and s the common divisor
gcd(G1,G2,G3) could contain additional factors (see Notation 2.4 and Lemma 2.6). We prove
the following lemma.

Lemma 3.4. Systems (3.12) could possess a triplet of parallel invariant lines in the real direction
sx + y = 0 if and only if s = u = 0.
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Proof. Consider the corresponding homogeneous cubic systems associated to (3.12):

ẋ = (1 + u)x3, ẏ = −sx3 + ux2y − sxy2 − y3. (3.14)

It was shown above that for these systems the value of H(X, Y, Z) is given in (3.13). Since the
factor (sX + Y) in gcd(G1,G2,G3) depends on Y, according to Lemma 2.9 in order to increase
its multiplicity up to 3 it is necessary

R(0)
Y (G2/H, G1/H) = R(1)

Y (G2/H, G1/H) = 0.

We calculate
R(1)

Y (G2/H, G1/H) = 6s(9 + s2)X3 = 0

which implies s = 0. Then for systems (3.14) with s = 0 we obtain

R(0)
Y (G2/H, G1/H) = 9u2(3 + u)2X8 = 0.

Therefore this condition gives u(3 + u) = 0. If u = −3 we get the homogeneous system

ẋ = −2x3, ẏ = −y(3x2 + y2),

for which we have H(X, Y, Z) = 6X3Y(X2 + Y2)2, i.e. considering Remark 2.13 we could not
have a triplet of parallel invariant lines in he direction y = 0.

Assuming u = 0 we get the homogeneous system

ẋ = x3, ẏ = −y3, (3.15)

for which we have H(X, Y, Z) = 3X3Y3(X2 + Y2) and this completes the proof of the lemma.

3.1.2 Construction of the cubic systems possessing configuration of the type T =(3, 1, 1, 1)

In what follows we examine systems (3.12) considering each one of the cases provided by
Lemma 3.2.

1: The case D7 ̸= 0. Then by Lemma 3.2 the infinite invariant line Z = 0 of systems (3.12)
is of multiplicity one and hence, we have to detect the conditions for the existence of invariant
affine lines of total multiplicity six. Moreover these lines have to be in the configuration of the
type (3, 1, 1, 1). Since the existence of a triplet of parallel invariant lines in the real direction
x = 0 for systems (3.12) is a generic case we begin with the study of this case.

Considering the equations (2.5) and Remark 2.12 for systems (3.12) in the case of the
direction x = 0 we obtain the following non-vanishing equations Eqi:

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2 − (1 + u)W3. (3.16)

It is clear that these three equations can have three common solutions if and only if k = d =

h = 0 and since D7 = (u + 1) ̸= 0 we obtain that in this case the equation Eq10 = 0 has three
solutions. They could be real or/and complex, distinct or coinciding. This means that systems
(3.12) have in the direction x = 0 a triplet of parallel invariant lines.

Next we have to determine the conditions for the existence of three invariant lines in three
distinct directions: one real (sx + y = 0) and two complex (x ± iy = 0). Since the coefficients
of systems (3.12) are real it is clear that for the complex directions it is sufficient to examine
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only one of them: x + iy = 0. In this case we have U = 1, V = i and considering (2.5) and
Remark 2.12 we obtain

Eq7 = 2m − g − il + (3 + u − 2is)W,

Eq9 = e + i( f − c)− 2
[
l + i(m − g)

]
)W −

[
3s + i(3 + 2u)

]
W2,

Eq10 = a + ib − (c + ie)W + (g + il)W2 − (1 + u − is)W3.

(3.17)

Calculations yield

ResW(Eq7, Eq9) = H1 + iH2, ResW(Eq7, Eq10) = H3 + iH4

where

H1 = −
[
4s2 − (3 + u)2]e +

[
4( f − c)(3 + u)s + (g2 − 4m2)s − l2s − 2l(3g − 3m + mu)

]
,

H2 =
[
4s2 − (3 + u)2](c − f ) + 2gm(u − 3)− 3l2 + 3g2 − 12es + 2lgs − 4m2u − 4esu

]
H3 = − a(3 + u)

[
12s2 − (3 + u)2]− 2bs

[
4s2 − 3(3 + u)2]+ (cg − le − 2cm)

[
4s2 − (3 + u)2]

− l3s − 2cl2(3g − 3m + mu) + 2(g − 2m)(g2 − gm − 2m2 − 6es + gmu − 2m2u − 2esu)

− ls(12c − 3g2 + 4gm + 4m2 + 4cu),

H4 = 2as
[
4s2−3(3+u)2]−b(3+u)

[
12s2−(3+u)2]+(cl+eg−2em)

[
4s2−(3+u)2]−2l3

− (g − 2m)(g2 − 12c − 4m2 − 4cu)s + 2l(3g2 − 6gm − 6es + 2gmu − 4m2u − 2esu)

+ l2(3g − 2m)s. (3.18)

It is clear that for the existence of a common solution of equations Eq7 = Eq9 = Eq10 = 0 with
respect to W it is necessary and sufficient H1 = H2 = H3 = H4 = 0.

Solving the system of equations H1 = H2 = 0 with respect to the parameters e and f we
obtain:

e =
1[

4s2+(3+u)2
]2

[
l2s(u2−27−4s2−6u)+2l

[
m(3−u)(4s2−(3+u)2)+gu(4s2+18+3u)

+ 27g
]
+ s(g − 2m)(27g − 18m + 4gs2 + 8ms2 + 6gu + 12mu − gu2 + 6mu2)

]
,

f = c+
1[

4s2+(3+u)2
]2

[
l2(27+18u+4s2u+3u2)+2ls(27g−36m+4gs2+6gu−gu2+4mu2)

− (g − 2m)
[
4s2(6m + gu) + (3 + u)2(3g + 2mu)

]]
(3.19)

and evidently we could do this only in the case 4s2 + (3 + u)2 ̸= 0.
On the other hand for systems (3.12) we have

D8 = −8(s2 − u)
[
4s2 + (3 + u)2]/27 (3.20)

and as we will see later the condition s2 − u = 0 is also essential.
So in what follows we have to consider two subcases: D8 ̸= 0 and D8 = 0.

1.1: The subcase D8 ̸= 0, i.e. 4s2 + (3 + u)2 ̸= 0. Considering this condition we examine all
the needed directions.
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(i) The direction x+ iy = 0. In this case we have the conditions (3.19) and solving the system
of equations H3 = H4 = 0 with respect to the parameters a and b we obtain:

a =
(g − 2m)(3 + u)− 2ls[

4s2 + (3 + u)2
]3

[
c(4s2 + (3 + u)2)2 +

[
4ls − 2g(3 + u) + 4m(3 + u)

]
×

[
g(3 + 2s2 + u) + (1 + u)(ls + 3m + mu)

]]
,

b =
2(g − 2m)s + l(3 + u)[

4s2 + (3 + u)2
]3

[
c
[
4s2 + (3 + u)2]2 − 2(g − 2m)

[
2gs2(1 + u) + m(8s2 + (3 + u)3)

]
+ 2l2(3 + u)(3 + 2s2 + u) + 8lsm(1 + u)(3 + u) + 2lgs

[
4s2 − (u − 1)(3 + u)

]]
. (3.21)

Thus if for systems (3.12) the conditions k = d = h = 0, (3.19) and (3.21) are satisfied then
these systems possess five invariant affine lines: three in the direction x = 0 and two in the
complex directions x ± iy.

(ii) The direction sx + y = 0. Then we have U = s, V = 1 and considering (2.5) and the
above conditions we obtain

Eq5 = l + gs − 2ms + (s2 − u)W (3.22)

and since the condition D8 ̸= 0 implies s2 − u ̸= 0 we deduce that the above equation is linear
with respect to the parameter W. Then the condition Eq5 = 0 gives W = (l + gs − 2ms)/(u −
s2) and we calculate:

Eq8 =
2(1 + s2) Ĥ H5

(s2 − u)2
[
4s2 + (3 + u)2

]2 , Eq10 =
(1 + s2) Ĥ H6

(s2 − u)3
[
4s2 + (3 + u)2

]3 , (3.23)

where

Ĥ = s(g − 2m)(9 + u) + l(9 − 2s2 + 3u),

H5 = ls(9 + s2)(1 + u) + m(1 + u)
[
s2(u − 9)− 3u(3 + u)

]
+ g

[
2s4 + u2(3 + u) + s2(9 + 5u)

]
,

H6 = c(s2 − u)2[4s2 + (3 + u)2]2
+ l2(2s2 − 9 − 3u)(1 + u)(9 + 7s2 + 2s4 + 3u − s2u)

+ g2[6s4(u2 − 9 − 4u)− 4s6(3 + u)− u2(3 + u)3 − s2(81 + 99u + 55u2 + 13u3)
]

+ 2m
[
4gs6(3 + u) + 4ls5(1 + u)(3 + u) + gu2(3 + u)3 − 8ls3(1 + u)(u2 − 9 + 2u)

+ 6ls(1 + u)(3 + u)(9 + 4u + u2)− gs4(u3 − 81 − 45u + 13u2)

+ 2gs2(81 + 126u + 76u2 + 20u3 + u4)
]
+ 4m2s2(1 + u)(9 + u)(s2u−9−3s2−7u−2u2)

+2lgs
[
4s6+s4(3−10u−u2)+2s2(2u2+u3−18−23u)−(3+u)(27+39u+12u2+2u3)

]
.

(3.24)
We observe that the equations Eq8 = Eq10 = 0 imply either Ĥ = 0 or H5 = H6 = 0 and we
examine both possibilities.

First we observe that if for systems (3.12) the conditions of the existence of a triplet in
the direction x = 0 are satisfied (i.e. k = d = h = 0) then for these systems we have χ1 =

−Ĥ(g, l, m, s, u)x3/9. Therefore we conclude that the condition Ĥ = 0 is equivalent to χ1 = 0
in the case under consideration.

1.1.1: The possibility χ1 = 0, i.e. Ĥ = 0. We observe that the polynomial Ĥ is linear with
respect to the parameter l with the coefficient 2s2 − 3(u + 3) in front.



The family of cubic differential systems with invariant straight lines 31

On the other hand for systems (3.12) we have

D6 = 4
[
2s2 − 3(u + 3)

]
/9

and therefore we have to consider two cases: D6 ̸= 0 and D6 = 0.

1.1.1.1: The case D6 ̸= 0. Then 9 − 2s2 + 3u ̸= 0 and we calculate l = (g−2m)s(9+u)
2s2−3u−9 . So

considering conditions (3.19) and (3.21) we arrive at the following lemma.

Lemma 3.5. Assume that for a system (3.12) the conditions

u + 1 ̸= 0, (s2 − u)
[
4s2 + (3 + u)2] ̸= 0, κ ≡ 2s2 − 3(u + 3) ̸= 0. (3.25)

hold. Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the
following conditions are satisfied:

k = d = h = 0, l =
s
κ (u + 9)(g − 2m),

e =
s
κ2 (g − 2m)

[
g(s2 − 27) + 2m(s2 − 3u + 18)

]
,

f = c +
3
κ2 (g − 2m)

[
3g(s2 − 3)− 2m(s2 + 3u)

]
,

a = − 3
κ3 (g − 2m)

[
cκ2 + 6(g − 2m)(gs2 − 3g − 3m − 3mu)

]
,

b =
s
κ3 (g − 2m)

[
cκ2 + 2(g − 2m)(4gs2 − 2ms2 − 9mu − 27m)

]
.

(3.26)

Next we construct the invariant conditions corresponding to (3.26).

Lemma 3.6. Assume that for a cubic system (3.12) the conditions χ1 = 0 and D6D7D8 ̸= 0 hold. Then
this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ3 = χ6 = 0
are satisfied.

Proof. For systems (3.12) we have D4 = 2304s(9+ s2) and we examine two possibilities: D4 ̸=0
and D4 = 0.

a) The possibility D4 ̸= 0. For systems (3.12) we calculate

Coefficient[χ1, y3] = k(1 + u)

and since D7 = 4(1 + u) ̸= 0 the condition χ1 = 0 implies k = 0. Then we get the conditions

Coefficient[χ1, xy2] =
2
9

h(s2 + 3u) = 0, Coefficient[χ1, x2y] =
4
9

hs(u − 3) = 0

and since s ̸= 0 (due to D4 = 2304s(9 + s2) ̸= 0) we obtain h = 0. In this case we calculate

χ1 =
1
9
[
l(−9 + 2s2 − 3u)− (g − 2m)s(9 + u)

]
x3 = 0

which implies l = s(u+9)(g−2m)
2s2−3(u+3) . Thus the condition χ1 = 0 for systems (3.12) gives us the

conditions on the parameters k, h and l from (3.26).
Next assuming that these conditions are satisfied we examine the other conditions from

(3.26). Evaluating the invariant polynomial χ6 we obtain

Coefficient[χ6, xy7] = 10d(s2 − 9 − 6u), Coefficient[χ6, x2y6] =
10
3

ds(81 + 23s2 − 42u)
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and since s ̸= 0 we claim that the vanishing of these coefficients implies d = 0. Indeed
supposing d ̸= 0 we get s2 − 9 − 6u = 0 which gives u = (s2 − 9)/6. Then we obtain
81 + 23s2 − 42u = 16(9 + s2) ̸= 0 and the contradiction we obtained proves our claim.

Thus d = 0 and calculations yield

Coefficient[χ6, x3y5] = 110
[
e(s2 − 9 − 6u)− f s(3 + s2 − 2u) + cs(3 + s2 − 2u)

+
4s
κ (g − 2m)(g − m)(9 + s2)

]
,

Coefficient[χ6, x4y4] =
10s
3

[
e(7s2 − 927 − 330u)− f s(21 + 39s2 − 110u) + cs(21 + 39s2 − 110u)

+
4s
κ2 (g−2m)(9+s2)(927m−711g+86gs2−62ms2−165gu+165mu)

]
and we observe that the above polynomials are linear with respect to the parameters e and f
with the corresponding determinant −32 f s(9 + s2)2κ3 ̸= 0. So forcing these polynomials to
vanish we get

e =
s
κ2 (g − 2m)

[
g(s2 − 27) + 2m(s2 − 3u + 18)

]
,

f = c +
3
κ2 (g − 2m)

[
3g(s2 − 3)− 2m(s2 + 3u)

]
.

Thus provided the condition χ1 = 0 is fulfilled, the condition χ6 = 0 for systems (3.12)
gives us the conditions on the parameters d, e and f from (3.26).

So it remains to determine the invariant polynomials which are responsible for the condi-
tions on the parameters a and b given in (3.26). Evaluating the invariant polynomial χ3 for
systems (3.12) for which the conditions on the parameters k, d, h, l, e and f are given in (3.26)
we have:

χ3 =
2x5

27κ3 ψ1ψ2ψ3
[
ψ4 x + ψ5 y

]
,

where
ψ1 = s(u − 3)x + (s2 + 3u)y,

ψ2 = (u2 − 3s2)x2 − 4s(3 + u)xy + (s2 − 9 − 6u)y2,

ψ3 = (6s2 + 3u + u2)x2 + 2s(9 + u)xy + (9 − 2s2 + 3u)y2,

ψ4 = − bκ3 + s(g − 2m)
[
cκ2 + 2(g − 2m)(4gs2 − 2ms2 − 9mu − 27m)

]
,

ψ5 = aκ3 + 3(g − 2m)
[
cκ2 + 6(g − 2m)(gs2 − 3g − 3m − 3mu)

]
.

It is not too difficult to see that due to s ̸= 0 the condition ψ1ψ2ψ3 ̸= 0 holds. Therefore
the condition χ3 = 0 is equivalent to ψ4 = ψ5 = 0 and solving these equations with respect
to the parameters a and b we get the expressions for these parameters given in (3.26). This
completes the proof of Lemma 3.6 as well as the statement (A1) of the Main Theorem in the
case D4 ̸= 0.

b) The possibility D4 = 0. Then s = 0 and we observe that the conditions (3.26) become of
the form:

k = d = h = l = e = b = 0, f = c − 1
(3 + u)2 (g − 2m)(3g + 2mu),

a =
1

(3 + u)3 (g − 2m)
[
c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
,

(3.27)
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For systems (3.12) with s = 0 we calculate

χ1 = −1
9
[
3l(u + 3) + 2hu2]x3 − 1

9
k(u − 3)ux2y +

2
3

huxy2 + k(u + 1)y3

and due to the condition D7D8 = 32u(1 + u)(3 + u)2/27 ̸= 0 we deduce that the condition
χ1 = 0 is equivalent to k = h = l = 0.

On the other hand for systems (3.12) with s = k = h = l = 0 we calculate

Coefficient[χ6, xy7] = −30d(3+2u), Coefficient[χ6, x3y5] = 180d−10(3+2u)(42d+33e+40du)

and evidently the condition χ6 = 0 implies d = 0. Then we calculate again

Coefficient[χ6, x3y5] = −330e(3 + 2u), Coefficient[χ6, x5y3] = 5e
[
81 + (3 + 2u)(10u − 99)

]
and we observe that in this case the condition χ6 = 0 implies e = 0. We finally calculate

χ6 = 60u
[
(c − f )(3 + u)2 − (g − 2m)(3g + 2mu)

]
x6y2

and since u(3 + u) ̸= 0 the condition χ6 = 0 yields

f = c − 1
(3 + u)2 (g − 2m)(3g + 2mu),

i.e. we get the condition for the parameter f given in (3.27).
Next assuming the above mentioned conditions are fulfilled for systems (3.12) we calculate

χ3 =
2u

9(3 + u)2 x5y(ux2 + 3y2)(u2x2 − 9y2 − 6uy2)

×
{

b(3 + u)3x −
[
a(3 + u)3 − (g − 2m)(c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
y
}
].

Therefore due to u(3 + u) ̸= 0 the condition χ3 = 0 implies

b = 0, a =
1

(3 + u)3 (g − 2m)
[
c(3 + u)2 − 2(g − 2m)(g + m + mu)

]
,

i.e. we get the two conditions for the parameters b and a given in (3.27). This completes the
proof of our claim and hence the statement (A1) the Main Theorem is valid also in the case
D4 = 0.

1.1.1.2: The case D6 = 0. This implies 9 − 2s2 + 3u = 0 and we have u = (2s2 − 9)/3.
Then we obtain:

Ĥ ≡ s(g − 2m)(9 + u) + l(9 − 2s2 + 3u) = 2(g − 2m)s(9 + s2)/3 = 0

i.e. we get s(g − 2m) = 0. On the other hand for u = (2s2 − 9)/3 we calculate (see (3.20))

D8 = −8(s2 − u)
[
4s2 + (3 + u)2]/27 = − 32

729
s2 (s2 + 9

)2 ̸= 0.

So s ̸= 0 and this implies g = 2m. Considering (3.19) and (3.21) we arrive at the next lemma.
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Lemma 3.7. Assume that for a system (3.12) the conditions χ1 = 0, D7D8 ̸= 0 and D6 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following
conditions are satisfied:

k = d = h = 0, u = (2s2 − 9)/3, g = 2m,

e =
3l
[
3l(s2 − 27) + 4ms(9 + s2)

]
4s(9 + s2)2 ,

f =
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2

4s2(9 + s2)2 ,

a = −
9l
[
27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2]

4s3(9 + s2)3 ,

b =
3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2]

2s(9 + s2)3 .

(3.28)

Next we determine the invariant conditions equivalent to those provided in the above
lemma. More exactly we prove the following lemma.

Lemma 3.8. Assume that for a system (3.12) the conditions χ1 = 0, D7D8 ̸= 0 and D6 = 0
hold. Then this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions
χ2 = χ3 = 0 are satisfied.

Proof. For systems (3.12) with u = (2s2 − 9)/3 we calculate:

D7 =
8
3
(s2 − 3), Coefficient[χ1, y3] = 2k(s2 − 3)/3, Coefficient[χ1, xy2]

∣∣
k=0 = 2h(s2 − 3)/3.

So it is clear that due to D8 ̸= 0 (i.e. s ̸= 0) the condition χ1 = 0 implies k = h = 0 and then
calculations yield:

χ1 = −2(g − 2m)s(9 + s2)x3/27, D8 = − 32
729

s2(9 + s2)2 ̸= 0.

So we conclude that the condition χ1 = 0 for systems (3.12) with D6 = 0 (i.e. u = (2s2 − 9)/3)
is equivalent to k = h = 0 and g = 2m. Assuming that these conditions are fulfilled for
systems (3.12) we obtain:

Coefficient[χ2, y2] = 56ds(9 + s2)/3 = 0 ⇔ d = 0

and then we calculate
χ2 = −8

9
φ′

1x2 +
16
3

φ′
2xy,

where
φ′

1 = 36es(3 + s2)− 8 f s4 + 81l2 − 36lms + 8cs4,

φ′
2 = 9e(s2 − 3)− f s(−27 + s2)− 18clm − 27cs + cs3.

We observe that the polynomials φ′
1 and φ′

2 are linear with respect to the parameters e and f
with the corresponding determinant 36s2(9 + s2)2 ̸= 0 and therefore the equations φ′

1 = φ′
2 =

0 give us

e =
3l

4s(9 + s2)2

[
3l(s2 − 27) + 4ms(9 + s2)

]
,

f =
1

4s2(9 + s2)2

[
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2].
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Thus provided χ1 = 0 is fulfilled, the condition χ2 = 0 for systems (3.12) gives us the condi-
tions on the parameters d, e and f from (3.28).

Next evaluating the invariant polynomial χ3 for systems (3.12) for which the conditions
on the parameters k, d, h, u, g, e and f are given in (3.28) we have:

χ3 =
2x6(sx + 3y)

6561s2(9 + s2)2 ψ̂1ψ̂2
[
− 2s2ψ̂3 x + ψ̂4 y

]
,

where

ψ̂1 = 2s(s2 − 9)x + 9(s2 − 3)y,

ψ̂2 = (81 − 63s2 + 4s4)x2 − 24s3xy − 27(s2 − 3)y2,

ψ̂3 = − 2bs(9 + s2)3 + 3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2],

ψ̂4 = − 4as3(9 + s2)3 − 9l
[
27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2].

It is not too difficult to see that due to s(s2 − 3) ̸= 0 the condition ψ̂1ψ̂2 ̸= 0 holds. Therefore
the condition χ3 = 0 is equivalent to ψ̂3 = ψ̂4 = 0 and solving these equations with respect
to the parameters a and b we get the expressions for these parameters given in (3.28). This
completes the proof of Lemma 3.8 as well as the statement (A2) of the Main Theorem.

1.1.2: The possibility χ1 ̸= 0. Then considering (3.23) in order to have invariant lines of
total multiplicity seven we must force H5 = H6 = 0. Taking into account (3.24) we consider
two cases: s ̸= 0 and s = 0 and this condition is governed by the invariant polynomial
D4 = 2304s(9 + s2).

1.1.2.1: The case D4 ̸= 0. Then s ̸= 0 and solving the equations H5 = H6 = 0 with
respect to the parameters c and l we obtain:

c =
1

s2(9 + s2)2(1 + u)

[
− 27m2(s2 − 3)(1 + u)2 + 6gm(s2 − 3)(1 + u)(s2 + 3u)

− g2(2s4u − 27s2 − 7s4 − 6s2u − 9u2 + 3s2u2)
]
,

l =
1

s(9 + s2)(1 + u)

[
m(1 + u)(9s2 + 9u − s2u + 3u2)− g(9s2 + 2s4 + 5s2u + 3u2 + u3)

]
.

Thus considering the conditions k = d = h = 0 and the conditions for the parameters e
and f from (3.19) as well as for the parameters a and b from (3.21) and the above conditions
we conclude that altogether these conditions guarantee the existence of common solutions of
the equations (2.5) for each one of the four directions for invariant lines of systems (3.12). So
we arrive at the following lemma.

Lemma 3.9. Assume that for a system (3.12) the conditions χ1D7D8 ̸= 0 and D4 ̸= 0 hold. Then this
system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions
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are satisfied:

k = d = h = 0,

f =
1

s2 (s2 + 9)2 (u + 1)2

[
3m2(1 + u)2(27 − 9s2 + s4 + 27u − 3s2u + 9u2)

+ 18gm(1 + u)(2s2 + s4 − 3u − 3u2 − u3)− g2(s2 + 3u)(2s2 + s4 − 3u − 3u2 − u3)
]
,

e =
1

s (s2 + 9)2 (u + 1)2

[
m2(3u − 18 − s2)(1 + u)2(s2 + 3u)

+ 6gm(1 + u)(6s2 + s4 + 9u + 4s2u + 9u2 − u3)

+ g2(−27s2 − 11s4 − s6 − 24s2u − 4s4u − 18u2 − 8s2u2 − 12u3 + u4)
]
,

a =
g(3 + s2 + 2u)− 6m(1 + u)

s2 (s2 + 9)2 (u + 1)2

[
9m2(1 + u)2 − 6gmu(1 + u) + g2(s2 + u2)

]
,

b = − m(s2 − 3u)(1 + u) + g(s2 + u2)

s3 (s2 + 9)3 (u + 1)3

[
m2(1 + u)2(81 + 81s2 + 2s4 + 81u − 3s2u + 18u2)

+ g2(3 + s2 + 2u)(9s2 + 2s4 + 5s2u + 3u2 + u3)

− 2gm(1 + u)(36s2 + 10s4 + 27u + 33s2u + 27u2 + s2u2 + 6u3)
]
,

c =
1

s2(9 + s2)2(1 + u)
[
27m2(3 − s2)(1 + u)2 + 6gm(s2 − 3)(1 + u)(s2 + 3u)

+ g2(27s2 + 7s4 + 6s2u − 2s4u + 9u2 − 3s2u2)
]
,

l = − 1
s(9 + s2)(1 + u)

[
m(1 + u)(s2u − 9s2 − 9u − 3u2) + g(9s2 + 2s4 + 5s2u + 3u2 + u3)

]
(3.29)

Next we determine the invariant conditions equivalent to those provided by the above
lemma. More exactly we prove the following lemma.

Lemma 3.10. Assume that for a system (3.12) the conditions χ1D7D8 ̸= 0 and D4 ̸= 0 hold. Then
this system has invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ7 = χ8 =

χ9 = χ10 = 0 and either D5 ̸= 0 and χ11 = 0 or D5 = χ12 = 0 are satisfied.

Proof. For systems (3.12) we calculate:

χ7 =
1
9
(hx + ky)

[
(3s2 + 3u + 2u2)x2 − 2s(u − 3)xy − (s2 + 3u)y2].

We claim that the condition χ7 = 0 is equivalent to k = h = 0. Indeed assume that χ7 = 0
and k2 + h2 ̸= 0. Then we must have 3s2 + 3u + 2u2 = s(u − 3) = s2 + 3u = 0. However since
s ̸= 0 (due to D4 ̸= 0) we obtain u = 3 and this leads to a contradiction s2 + 9 = 0. So our
claim is proved and we conclude that the condition χ7 = 0 gives k = h = 0 from (3.29).

Assuming that for systems (3.12) the conditions k = h = 0 hold we calculate

χ8 =
160
9

d
[
s(3s2 − 9 + 4u2)x2 + 2(6s2 + 9u + s2u + 6u2)xy + s(9 + s2)y2]

and due to s ̸= 0 we deduce that the condition χ8 = 0 is equivalent to d = 0.
Next we evaluate the invariant polynomial χ9 for systems (3.12) with the conditions k =

h = d = 0:

χ9 =− 16
9
[
ls(9 + s2)(1 + u) + m(1 + u)(s2u − 9s2 − 9u − 3u2)

+ g(9s2 + 2s4 + 5s2u + 3u2 + u3)
]
x5.
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Evidently forcing the condition χ9 = 0 to be fulfilled we get the condition for the parameter l
given in (3.29).

Assuming that for systems (3.12) the conditions under the parameters k, h, d and l provided
by Lemma 3.9 are fulfilled we calculate

χ11 = − 40
9s2(9 + s2)2(1 + u)2

[(
u11c + u12e − u13 f + Ũ(g, m, s, u)

)
x2

+
(
u21c + u22e − u23 f + Ṽ(g, m, s, u)

)
xy +

(
u31c + u32e − u33 f + W̃(g, m, s, u)

)
y2
]
,

where
u11 = s3(9 + s2)2(1 + u)2(427s2u + 912s2 − 905u2 − 237u + 2277),

u12 = s2(9 + s2)2(1 + u)2(529s2u + 1830s2 − 2103u2 − 7479u − 6831),

u13 = s3(9 + s2)2(1 + u)2(529s2u + 606s2 − 599u2 − 1155u + 2277),

u21 = 2s2(9 + s2)2(1 + u)2(332s4 − 613s2u + 996s2 − 306u2 − 459u),

u22 = 2s3(9 + s2)2(1 + u)2(383s2 − 1686u − 1611),

u23 = 2s2(9 + s2)2(1 + u)2(383s4 − 307s2u + 996s2 + 153u2 − 459u),

u31 = 843s3(9 + s2)2(1 + u)2(3 + s2 − 2u),

u32 = 843s2(9 + s2)2(1 + u)2(s2 − 6u − 9),

u33 = 843s3(9 + s2)2(1 + u)2(3 + s2 − 2u)

and

Ũ = 2s
[
m2(1 + u)2(s2 + 3u)(1058s4u + 1824s4 − 1740s2u2 + 2025s2u + 20601s2 + 459u3

− 8775u2−55080u−73872)−3gm(1+u)(427s6u2+281s6u+924s6+376s4u3+3404s4u2

+ 4065s4u − 6777s4 − 1657s2u4 − 3456s2u3 − 9999s2u2 − 50841s2u − 61479s2 + 306u5

− 12159u4 − 78084u3 − 137052u2 − 61479u) + g2(612s8 + 427s6u3 − 643s6u2 − 1805s6u

+1713s6+2658s4u3−12786s4u2−54540s4u−35424s4−1128s2u5−5259s2u4−21321s2u3

−112509s2u2−220725s2u−122958s2+153u6−9234u5−59724u4−112428u3−61479u2)
]
,

Ṽ = 2
[
m2(1 + u)2(s2 + 3u)(1532s6 − 1686s4u + 6894s4 − 1377s2u2 − 17928s2u − 24867s2

+1377u3+8262u2+12393u)−6gm(1+u)(332s8u−434s8+383s6u2+1150s6u−4599s6

−1379s4u3−1074s4u2−8055s4u−18630s4−153s2u4−9198s2u3−26919s2u2−10368s2u

+ 459u5 + 2754u4 + 4131u3) + g2(664s8u2 − 2656s8u − 1484s8 + 153s6u3 + 2298s6u2

− 30507s6u−25308s6−1992s4u4−3378s4u3−19341s4u2−99360s4u−70389s4−13338s2u4

− 37287s2u3 − 4212s2u2 + 12393s2u + 459u6 + 2754u5 + 4131u4)
]
,

W̃ = 1686(g − m)s(9 + s2)(1 + u)
[
g(s4u − 5s4 − 6s2u − 18s2 − 3u3 − 9u2)

− m(2s2 − 9 − 3u)(1 + u)(s2 + 3u)
]
.

We observe that the condition χ11 = 0 yields the equations

Coefficient[χ11, x2] = Coefficient[χ11, xy] = Coefficient[χ11, y2] = 0 (3.30)

which are linear with respect to the parameters c, e and f . Calculating the corresponding
determinant det ||uij|| (i, j = 1, 2, 3) we obtain

det ||uij|| = 26311716s7(s2 + 3u)(9 + s2)7(1 + u)6(s2 − u)
[
4s2 + (u + 3)2].
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On the other hand for systems (3.12) we have

D5 =
4
9
(s2 + 3u), D4 = 2304s(9 + s2), D7 = 4(1 + u), D8 = −8(s2 − u)

[
4s2 + (3 + u)2]/27

and since D4D7D8 ̸= 0 we conclude that in the case D5 ̸= 0 we get det ||uij|| ̸= 0.
So assuming D5 ̸= 0 and solving the system of equations (3.30) with respect to the pa-

rameters c, e and f we get exactly the conditions provided by Lemma 3.9 for these three
parameters.

We examine now the case D5 = 0 when the invariant polynomial χ11 could not be used
for the determining the conditions under parameters c, e and f .

So assume that for systems (3.12) the conditions on the parameters k, h, d and l provided by
Lemma 3.9 are fulfilled and in addition the condition D5 = 0 holds. This implies s2 + 3u = 0
(i.e. u = −s2/3) and we calculate

χ12 =
4x2

729(s2−3)2

(
ϕ′

1x6+ϕ′
2x5y+ϕ′

3y4y2+ϕ′
4x3y3+ϕ′

5x2y4+ϕ′
6xy5+ϕ′

7y6), D7 = −4
3
(s2−3),

where
ϕ′

7 = −2751246(s2 − 3)2(3 f − 3c + g2 − 2gm + cs2 − f s2).

Since D7 ̸= 0 (i.e. s2 − 3 ̸= 0) the condition ϕ′
7 = 0 gives us

f =
1

s2 − 3
(cs2 − 3c + g2 − 2gm) (3.31)

and then we calculate

ϕ′
6 = 655371(s2 − 3)

[
9e(s2 − 3)2 − gs(18m − 27g + gs2 − 6ms2)

]
.

Therefore due to s2 − 3 ̸= 0 the condition ϕ′
6 = 0 implies

e =
gs

7(s2 − 3)2 (gs2 − 27g − 6ms2 + 18m)

and for these values of the parameters f and e we obtain

χ12 = −432(s2 − 3)x8(sx + 3y)2[cs2(s2 − 3)(9 + s2)2 − 9m2(s2 − 3)3 + g2s2(9 + s2)2].
Again since s2 − 3 ̸= 0 as well as s ̸= 0 (due to D4 ̸= 0) the condition χ12 = 0 yields

c =
1

s2(s2 − 3)(9 + s2)2

[
9m2(s2 − 3)3 − g2s2(9 + s2)2].

So considering (3.31) we obtain

f =
m

s2(s2 − 3)(9 + s2)2

[
9m(s2 − 3)3 − 2gs2(9 + s2)2].

Comparing the conditions obtained for the parameters c, e and f above with (3.29) for u =

−s2/3 we conclude that they coincide.
Thus from the conditions (3.29) it remains to construct the invariant analog for the con-

ditions on the parameters a and b and this will be done independently on the value of the
invariant polynomial D5.
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So evaluating the invariant polynomial χ10 for systems (3.12) for which the conditions on
the parameters k, d, h, l, c, e and f are given in (3.29) we have:

χ10 =
112640x6

9s4(9 + s2)4(1 + u)4 ψ′
1ψ′

2ψ′
3
[
9m(1 + u)− g(s2 + 3u)

][
ψ′

4 x + ψ′
5 y

]
,

where

ψ′
1 = (2s4 + s2u2 − 3s2u − 2u3 − 9u2 − 9u) x − s(s2 + 9)(u + 1)y,

ψ′
2 = (3s2 + 2u2 + 3u) x2 − 2s(u − 3)xy − (s2 + 3u) y2,

ψ′
3 = (3s2 − u2)x2 + 4s(3 + u)xy − (s2 − 9 − 6u)y2,

ψ′
4 = bs3(9+s2)3(1+u)3 +

[
m(s2−3u)(1+u) + g(s2+u2)

][
m2(1+u)2(81+81s2+2s4+81u

−3s2u+18u2)+g2(3+s2+2u)(9s2+2s4+5s2u+3u2+u3)−2gm(1+u)(36s2+10s4

+ 27u + 33s2u + 27u2 + s2u2 + 6u3)
]
,

ψ′
5 = − s(9 + s2)(1 + u)

[
as2(9 + s2)2(1 + u)2 − (3g − 6m + gs2 + 2gu − 6mu)

[
g2s2

+ (gu − 3m − 3mu)2]].

We observe that the polynomial χ10 contains as a factor the expression 9m(1 + u) − g(s2 +

3u) which is different from zero due to the condition χ1 ̸= 0 because in the case under
consideration we have:

χ1 =
(s2 − u)

9s(9 + s2)(1 + u)
[
4s2 + (u + 3)2][9m(1 + u)− g(s2 + 3u)

]
.

It is evidently due to D4D7D8 ̸= 0 that the condition χ1 ̸= 0 is equivalent to 9m(1 + u) −
g(s2 + 3u) ̸= 0.

Thus due to χ1 ̸= 0 we conclude that the condition χ10 = 0 is equivalent to ψ′
4 = ψ′

5 = 0,
because for s ̸= 0 the condition ψ′

1ψ′
2ψ′

3 ̸= 0 holds. Solving the equations ψ′
4 = ψ′

5 = 0 with
respect to the parameters a and b we get exactly the expressions for these parameters given in
(3.29).

So Lemma 3.10 is proved and this means that the statement (A3) of the Main Theorem is
also proved.

1.1.2.2: The case D4 = 0. Then s = 0 and considering (3.24) and systems (3.12) with the
conditions (3.19) and (3.21) we obtain

D8 = 8u(3 + u)2/27, Ĥ = 3l(3 + u), H5 = −u(3 + u)(3m − gu + 3mu),

H6 = −(3 + u)2[9l2(1 + u) + g(g − 2m)u2(3 + u)− cu2(3 + u)2].
Since in this case the conditions Ĥ ̸= 0 and D8 ̸= 0 imply lu(3+ u) ̸= 0, solving the equations
H5 = H6 = 0 with respect to the parameters c and g we obtain:

c =
3(1 + u)

[
3l2 + m2(3 + u)2]

u2(3 + u)2 , g =
3m(1 + u)

u
.

So we arrive at the next lemma.
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Lemma 3.11. Assume that for a system (3.12) the conditions D7D8 ̸= 0 and D4 = 0 hold. Then this
system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions
are satisfied:

k = d = h = s = 0, e =
2lm

u
, g =

3m(1 + u)
u

,

f =
1

u2(3 + u)2

[
m2u(3 + u)2 + 3l2(3 + 3u + u2)

]
,

c =
3(1 + u)

u2(3 + u)2

[
3l2 + m2(3 + u)2], l(3 + u) ̸= 0,

a =
m(1 + u)

u3(3 + u)2

[
9l2 + m2(3 + u)2],

b =
l

u2(3 + u)2

[
m2(3 + u)2 + l2(3 + 2u)

]
,

(3.32)

Next we determine the invariant conditions equivalent to those provided in the above
lemma. More exactly we prove the following lemma.

Lemma 3.12. Assume that for a cubic system (3.12) the conditions χ1D7D8 ̸= 0 and D4 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions
χ4 = χ5 = χ7 = χ9 = χ13 = χ14 = 0 are satisfied.

Proof. For systems (3.12) the condition D4 = 2304s(9 + s2) = 0 gives s = 0 and we calculate:

χ7 =
1
9

u(hx + ky)
(
(3x2 + 2ux2 − 3y2)

)
.

Is evidently due to D8 ̸= 0 the condition χ7 = 0 is equivalent to k = h = 0. Assuming these
conditions to be satisfied for systems (3.12) as well as the condition s = 0 we calculate

χ4 = −2du(1 + u), χ5 = −2lm − du + eu,

χ9 = −3376
27

u(3 + u)(gu − 3m − 3mu)x5, D7 = 4(1 + u).

Therefore due to D7D8 ̸= 0 (i.e. u(u + 1)(u + 3) ̸= 0) we conclude that the condition χ4 = 0
is equivalent to d = 0 and in this case the condition χ5 = 0 gives us e = 2lm/u. Moreover the
condition χ9 = 0 implies g = 3m(1 + u)/u. So we get the conditions for the parameters d, e
and g given in (3.32).

Next provided these conditions are satisfied for systems (3.12) and evaluating the invariant
polynomial χ13 we have:

χ13 =
120
u

(θ′1x2 + θ′2y2)

where

θ′1 = − cu2(138 + 178u + 69u2)− f u2(−138 − 145u + 17u2) + 3l2u(11 + 17u)

+ 2m2(207 + 405u + 298u2 + 112u3),

θ′2 = − 3cu2(3 + 2u)− 3 f (−3 + u)u2 + 3
[
3l2u + m2(9 + 12u + 7u2)

]
.

We observe that the equations θ′1 = θ′2 = 0 are linear with respect to the parameters c and
f and the corresponding determinant equals 105u5(3 + u)2 ̸= 0. Solving these equations we
obtain:

c =
3(1 + u)

u2(3 + u)2

[
3l2 + m2(3 + u)2], f =

1
u2(3 + u)2

[
m2u(3 + u)2 + 3l2(3 + 3u + u2)

]
,
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i.e. we get exactly the values for the parameters c and f presented in (3.32).
Thus from the conditions (3.32) it remains to construct the invariant analog for the condi-

tions under parameters a and b. Evaluating the invariant polynomial χ14 for systems (3.12)
for which the conditions on the parameters k, d, h, s, e, g, c and f are given in (3.32) we have:

χ14 =
2(u + 1)x5y
u2(3 + u)2 (ux2 − 3y2)

[
u2x2 − 3(3 + 2u)y2][uθ′′1 x + θ′′2 y

]
,

where
θ′′1 = − bu2(3 + u)2 + l

[
m2(3 + u)2 + l2(3 + 2u)

]
,

θ′′2 = au3(3 + u)2 − m(1 + u)(9l2 + 9m2 + 6m2u + m2u2).

It is clear that due to u(u + 1)(u + 3) ̸= 0 the condition χ14 = 0 is equivalent to θ′′1 = θ′′2 = 0
and this implies exactly the conditions for the parameters a and b given in (3.32).

It remains to observe that the condition l(3 + u) ̸= 0 from (3.32) is equivalent to χ1 =

−l(3 + u)x3/3 ̸= 0. This completes the proof of Lemma 3.12 as well as of the statement (A4)

of the Main Theorem.

1.2: The subcase D8 = 0, i.e. (s2 − u)
[
4s2 + (3 + u)2] = 0.

Remark 3.13. For systems (3.12) the condition D8 = 0 = D6 is equivalent to 4s2 +(3+ u)2 = 0.

Indeed for systems (3.12) we have D6 = 4(2s2 − 9 − 3u)/9. Assume that D8 = D6 = 0
but 4s2 + (3 + u)2 ̸= 0. Then we get u = s2 and this implies D6 = −4(9 + s2)/9 ̸= 0. This
contradiction proves the validity of the above remark. So in what follows we examine two
possibilities: D6 ̸= 0 and D6 = 0.

1.2.1: The possibility D6 ̸= 0. Then the condition D8 = 0 yields s2 − u = 0. We mention
that earlier (up to 1.1: The subcase D8 ̸= 0, see page 29) we have investigated the directions
x = 0 and x ± iy = 0. So now we examine the remaining direction for the invariant lines, i.e.
sx + y = 0.

Thus we have u = s2 and considering (3.22) for the direction sx + y = 0 the condition
Eq5 = 0 gives l = s(2m − g). In this case for the equations Eq8 = 0 and Eq10 = 0 we obtain

Eq8 =
2(2m − g)s + (9 + s2)W

(9 + s2)2 Φ1(g, m, s, W) = 0,

Eq10 =
2(2m − g)s + (9 + s2)W

(9 + s2)2 Φ2(g, m, s, W) = 0,

where Φi(g, m, s, W) is a polynomial in the parameters g, m and s and it is of degree i with
respect to the variable W.

As we can see the above equations have a common solution in variable W, i.e. in the
direction sx + y = 0 we have one invariant line and altogether we get six invariant affine lines.

Thus considering (3.19) and (3.21) in the case u = s2 as well as the condition l = s(2m − g)
we arrive at the following lemma.

Lemma 3.14. Assume that for a system (3.12) the conditions D7D6 ̸= 0 and D8 = 0 hold. Then this
system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following conditions
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are satisfied:

k = d = h = 0, l = s(2m − g), u = s2,

f = c +
3(g − 2m)

(s2 + 9)2 (3gs2 − 9g − 8ms2),

e =
s(g − 2m)

(s2 + 9)2 (gs2 − 27g − 4ms2 + 36m),

a =
3(g − 2m)

(s2 + 9)3

[
c(9 + s2)2 + 6(g − 2m)(gs2 − 3g − 3m − 3ms2)

]
,

b = − s(g − 2m)

(s2 + 9)3

[
c(9 + s2)2 + 2(g − 2m)(4gs2 − 27m − 11ms2)

]
.

(3.33)

In order to detect the corresponding invariant conditions we consider two cases: D4 ̸= 0
and D4 = 0.

1.2.1.1: The case D4 ̸= 0. We observe that the conditions (3.33) can be obtained as a
particular case from the conditions (3.26) by setting u = s2 (i.e. we allow the condition D8 = 0
to be satisfied).

On the other hand in the proof of Lemma 3.6 we did not use the condition s2 − u ̸= 0
and this means that Lemma 3.6 is valid in the case D8 = 0 too. Therefore we deduce that the
statement (A5) of the Main Theorem is true.

1.2.1.2: The case D4 = 0. Then s = 0 and we have u = 0 = s. Then according to
Lemma 3.4 we could have a triplet of invariant lines either in the direction x = 0 or in the
direction y = 0. Therefore we have to construct the affine invariant conditions taking into
consideration the second possibility for the existence of a triplet.

In the first case (i.e. when a triplet of invariant lines is in the direction x = 0) we have
constructed the corresponding conditions which coincide with (3.33) for s = 0. Now we have
to determine the conditions on the parameters of systems (3.12) in order to possess invariant
lines in the configuration (3, 1, 1, 1) with the triplet in the direction y = 0.

So we have to examine each one of the directions for the invariant lines in this case.

(i) The direction y = 0. Considering the equations (2.5) and Remark 2.12 for systems (3.12)
with s = u = 0 in the case of the direction y = 0 we obtain the following non-vanishing
equations containing the parameter W:

Eq5 = l, Eq8 = e − 2mW, Eq10 = b − f W + W3.

So it is evident that for the existence of a triplet the conditions l = e = m = 0 have to be
satisfied.

(ii) The direction x + iy = 0. In this case we have U = 1, V = i and considering (2.5),
Remark 2.12 and the conditions u = s = l = e = m = 0 we obtain

Eq7 = k − g − 2ih + 3W,

Eq9 = d + i( f − c)− 2(h − ig)W − 3iW2,

Eq10 = a + Ib − cW + gW2 − W3.

Calculations yield

ResW(Eq7, Eq9) = V1 + iV2, ResW(Eq7, Eq10) = V3 + iV4
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V1 = 3d − 2gh − 2hk, V2 = 3 f − 3c + g2 − k2

V3 = 27a − 9cg + 2g3 + 9ck − 3g2k − 12h2k + k3,

V4 = 27b − 18ch + 6g2h + 8h3 − 6hk2.

(3.34)

It is clear that for the existence of a common solution of equations Eq7 = Eq9 = Eq10 = 0 with
respect to W it is necessary and sufficient V1 = V2 = V3 = V4 = 0. Solving these equations we
get

f =
1
3
(3c − g2 + k2), d =

2h
3
(g + k), b =

2h
27

(9c − 3g2 − 4h2 + 3k2),

a =
1
27

[
9c(g − k)− 2g3 + 3(g2 + 4h2)k − k3]

(iii) The direction x = 0. In this case considering the above already detected conditions
and (2.5) as well as Remark 2.12 we obtain Eq7 = k = 0. Hence k = 0 and we calculate the
remaining non-vanishing equations:

Eq9 =
2
3

h(g − 3W), Eq10 = − 1
27

(g − 3W)(−9c + 2g2 + 6gW − 9W2).

As we can see the equations Eq9 = 0 and Eq10 = 0 have a common solution W = g/3.
Thus we conclude that the following lemma is valid.

Lemma 3.15. Assume that for a system (3.12) the conditions D7D6 ̸= 0 and D8 = D4 = 0 hold. Then
this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if one of the following
sets of the conditions is satisfied:

– for a triplet in the direction x = 0:

u = s = k = d = h = l = e = b = 0, f = c +
g(2m − g)

3
,

a = − g − 2m
27

(
2g2 − 9c − 2gm − 4m2).

(3.35)

– for a triplet in the direction y = 0:

u = s = k = l = e = m = 0, d =
2gh

3
, f = c − g2

3
,

a =
g

27
(9c − 2g2), b = −2h

27
(−9c + 3g2 + 4h2).

(3.36)

We point out that in order to construct the equivalent invariant conditions for a system
(3.12) to possess invariant lines in the configuration (3, 1, 1, 1) we have to take into consider-
ations both sets of conditions: (3.35) (when the triplet is in the direction x = 0) and (3.36)
(when the triplet is in the direction y = 0).

First of all we recall that for systems (3.12) the conditions D8 = 0 and D6 ̸= 0 yields
s2 − u = 0 (see page 41) and D4 = 0 gives s = 0, i.e. we have for systems (3.12) s = u = 0.

Considering these conditions we evaluate the invariant polynomial χ1 for systems (3.12):

χ1 = −lx3 + ky3

and evidently the condition χ1 = 0 implies k = l = 0. We observe that these conditions are
included in (3.35) as well as in (3.36). Then we calculate

χ3 = 2(mx + hy)x3y3(x2 + y2)
[
3ex2 − 2(3c − 3 f − g2 + 2gm)xy − (3d − 2gh)y2],

χ8 = − 960hmxy

and we prove the next lemma.



44 C. Bujac, D. Schlomiuk and N. Vulpe

Lemma 3.16. Assume that for a system (3.12) are satisfied either the conditions (3.35) or (3.36) and
in addition we have h = m = 0. Then this system possess invariant lines of total multiplicity 9.

Proof. Supposing h = m = 0 a straightforward calculation shows us that the conditions (3.35)
coincide with (3.36) and have:

u = s = k = d = h = l = e = b = 0, f = c − g2/3, a = − g
27

(
2g2 − 9c

)
.

The above conditions lead to the family of systems

ẋ = − 1
27

(g + 3x)
(
2g2 − 9c − 6gx − 9x2) ,

ẏ =
1
3

y
(
3c − g2 − 3y2) ,

which evidently possess two triplets of parallel invariant lines: one in the direction x = 0 and
another in the direction y = 0. Moreover in addition these systems possess the following two
complex invariant lines: g + 3(x ± iy) = 0 and this completes the proof of the lemma.

Thus we conclude that in the case of the conditions (3.35) or (3.36) the conditions h2 +m2 ̸=
0 must hold. It remains to observe that this condition is governed by the invariant polynomial
χ15 because for systems (3.12) with s = u = k = l = 0 we have χ15 = x2y2(mx + hy).

So in what follows we assume that the condition χ15 ̸= 0 holds, i.e. h2 + m2 ̸= 0. Then the
condition χ3 = 0 implies

e = 0, f =
1
3
(3c − g2 + 2gm), d =

2gh
3

,

whereas the condition χ8 = 0 implies hm = 0.
In the case h = 0 we get e = d = 0 and f = (3c − g2 + 2gm)/3 and we observe that we

obtain exactly the conditions from (3.35) provided for the parameters h, e, d and f .
On the other hand if m = 0 we obtain e = 0, d = 2gh/3 and f = c − g2/3, i.e. we obtain

exactly the conditions from (3.36) provided for the parameters m, e, d and f .
We examine each one of the cases mentioned above.
α) Assume first that for systems (3.12) all the conditions (3.35) are satisfied except the

conditions on the parameters a and b. Then for these systems we calculate

χ16 = −12x5y5[(27a − 9cg + 2g3 + 18cm − 6g2m + 8m3)x + 27by
]

and we determine that the condition χ16 = 0 implies

a =
1
27

(g − 2m)(9c − 2g2 + 2gm + 4m2), b = 0.

So we obtain exactly the conditions on the parameters a and b given in (3.35).
β) Suppose now that for systems (3.12) all the conditions (3.36) are satisfied excepting the

conditions on the parameters a and b. Then for these systems we calculate

χ16 = −12x5y5[(27a − 9cg + 2g3)x + (27b − 18ch + 6g2h + 8h3)y
]

and we obtain that the condition χ16 = 0 implies in this case

a =
1
27

g(9c − 2g2), b =
2
27

h(9c − 3g2 − 4h2).

So we obtain exactly the conditions on the parameters a and b given in (3.36).
Thus we have proved the following lemma.
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Lemma 3.17. Assume that for a cubic system (3.12) the conditions D6D7 ̸= 0 and D8 = D4 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions
χ1 = χ3 = χ8 = χ16 = 0 and χ15 ̸= 0 are satisfied.

From this lemma the validity of the statement (A6) of the Main Theorem follows.

1.2.2: The possibility D6 = 0. Since D8 = 0, according to Remark 3.13 the condition
4s2 + (3 + u)2 = 0 holds. Then s = 0, u = −3 and by Lemma 3.4 we conclude that a triplet
could be only in the direction x = 0. So considering the condition k = d = h = 0 which
guarantees the existence of a triplet of parallel invariant lines in the direction x = 0 we
examine the directions sx + y = 0 (which becomes y = 0) and x + iy = 0.

a) The direction y = 0. Considering (2.5) and Remark 2.12 we obtain

Eq5 = l + 3W, Eq8 = e − 2mW, Eq10 = b − f W + W3.

Therefore the condition Eq5 = 0 yields W = −l/3 and then we obtain

Eq8 = (3e + 2lm)/3 = 0, Eq10 = (27b − l3 + 9l f )/27 = 0.

Solving these equations with respect to the parameters b and e we get

b = l(l2 − 9 f )/27, e = −2lm/3 (3.37)

and these conditions guarantee the existence of one invariant line in the direction y = 0.

b) The direction x + iy = 0. In this case taking into account the conditions k = d = h = 0
and (3.37) we obtain

Eq7 = 2m − g − il, Eq9 = −2lm/3 + i( f − c)− 2
[
l + i(m − g)

]
)W + 3iW2,

Eq10 = a + il(l2 − 9 f )/27 − (c − 2lmi/3)W + (g + il)W2 + 2W3.

Clearly the condition Eq7 = 0 implies l = 0 and g = 2m and therefore we have

Eq9 = i(−c + f + 2mW + 3W2), Eq10 = a − cW + 2mW2 + 2W3.

Calculations yield

ResW(Eq9, Eq10) = i
[
27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2)

]
≡ iH′,

Res(2)W (Eq9, Eq10) = 3c + 6 f + 4m2.
(3.38)

Thus the condition H′ = 0 implies the existence of at least one common solution W = W0 of
the equations Eq9 = 0 and Eq10 = 0. Moreover in this case the condition Res(2)W (Eq9, Eq10) ̸= 0
must hold (i.e. 3c + 6 f + 4m2 ̸= 0), otherwise we get that the mentioned equations have
two common solutions and therefore the corresponding systems do not belong to the class
CSL2r2c∞

(3,1,1,1).
We observe that the polynomial H′ is quadratic with respect to the parameter a and we

calculate
Discrim[H′, a] = 4(3c − 3 f + m2)(3c + 6 f + 4m2)2.

Since the condition 3c + 6 f + 4m2 ̸= 0 has to be fulfilled (see the previous paragraph) we
deduce that the condition 3c − 3 f + m2 ≥ 0 must hold.

So we have proved the following lemma.
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Lemma 3.18. Assume that for a system (3.12) the conditions D7 ̸= 0 and D8 = D6 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following
conditions are satisfied:

s = 0, u = −3, k = d = h = e = l = b = 0, g = 2m,

27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2) = 0,

3c − 3 f + m2 ≥ 0, 3c + 6 f + 4m2 ̸= 0.

(3.39)

Next we determine the invariant conditions equivalent to those provided in the above
lemma. More exactly we prove the following lemma.

Lemma 3.19. Assume that for a cubic system (3.12) the conditions D7 ̸= 0 and D8 = D6 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions
χ1 = χ2 = χ4 = χ6 = χ17 = 0, χ11 ̸= 0 and ζ4 ≤ 0 are satisfied.

Proof. As it was mentioned earlier (see Remark 3.13) the conditions D8 = D6 = 0 imply for
systems (3.12) s = 0 and u = −3. Then for these systems we calculate:

χ1 = −2(hx + ky)(x2 + y2) = 0 ⇔ h = k = 0.

Herein calculations yield

Coefficient[χ6, xy7] = 90d, Coefficient[χ6, x4y4] = −720l2

and evidently the condition χ6 = 0 implies d = 0 and l = 0. Then we calculate again

χ6 = 90x3y
[
15ex4 + 6(g − 2m)2x3y + 26ex2y2 + 11ey4]

and clearly the condition χ6 = 0 yields e = 0 and g = 2m. Then considering the above
detected conditions we obtain

χ11 = 4080(3c + 6 f + 4m2)xy

and we deduce that the condition 3c + 6 f + 4m2 ̸= 0 fixed in (3.39) is equivalent to χ11 ̸= 0.
Next we calculate

ζ4 = −(3c − 3 f + m2)(13x2 + 3y2)

and clearly the condition 3c − 3 f + m2 ≥ 0 given in (3.39) is equivalent to ζ4 ≤ 0.
Thus all the conditions provided by Lemma 3.18 are defined by the corresponding invari-

ant polynomials except the conditions b = 0 and H′ = 0 (see (3.38)). These conditions are
governed by the invariant polynomials χ17 which being evaluated for systems (3.12) under
the conditions (3.39) (except for b = 0 and H′ = 0) has the form

χ17 = −18792x8(x2 + y2)4
[
27b2x2 − 2b(27a + 9cm + 4m3)xy + H′y2

]
.

The condition χ17 = 0 is evidently equivalent to b = 0 = H′ and this completes the proof of
Lemma 3.19 as well as the proof of the statement (A7) of the Main Theorem.

2: The case D7 = 0. Then u = −1 and by Lemma 3.4 we could not have a triplet of parallel
invariant lines in the direction y = 0. Since for the direction x = 0 we have the equations

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2. (3.40)
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we arrive at the conditions k = d = h = 0 and considering u = −1 we have

χ̃1 = 2gx2[4sx + (3 − s2)y
]
/9.

According to Lemma 3.2 we consider two subcases: χ̃1 ̸= 0 and χ̃1 = 0.

2.1: The subcase χ̃1 ̸= 0. We prove the following lemma.

Lemma 3.20. Assume that for a system (3.12) the conditions D7 = 0 and χ̃1 ̸= 0 hold. Then this
system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions χ1 = χ2 =

χ3 = 0 are satisfied.

Proof. As it was mentioned above the condition χ̃1 ̸= 0 implies g ̸= 0 and according to
Lemma 3.2 the infinite line Z = 0 of systems (3.12) with the conditions u = −1 has the
multiplicity exactly 2. Moreover in the direction x = 0 we have two parallel invariant affine
lines (due to g ̸= 0).

Thus we have to examine the remaining three directions: x ± iy = 0 and sx + y = 0.

(i) The direction x + iy = 0. We repeat the examinations of the corresponding equations
(3.17) for this particular case (i.e. u = −1) and considering (3.18) we arrive at the equations

Hi|{u=−1} = 0, i = 1, 2, 3, 4.

Solving these equations with respect o the parameters a, b, e and f we obtain the values of
these parameters given in (3.19) and (3.21) for this particular case u = −1. More precisely we
get the following conditions:

a =
1

4(1 + s2)2 (g − 2m − ls)
[
2c(1 + s2)− g(g − 2m − ls)

]
,

b =
1

4(1 + s2)2 (l + gs − 2ms)
[
l2 − 2(g − 2m)m + lgs + 2c(1 + s2)

]
,

e =
1

4(1 + s2)2

[
(g − 2m)s(5g − 6m + gs2 + 2ms2)− l2s(5 + s2) + 2l(3g − 4m − gs2 + 4ms2)

]
,

f =
1

4(1+s2)2

[
4c(1+s2)2+l2(3−s2)+2ls(5g−8m+gs2)+(g−2m)(2m−3g+gs2−6ms2)

]
.

(3.41)

(ii) The direction sx + y = 0. Considering (3.22) and u = −1 for this direction we obtain

Eq5 = l + gs − 2ms + (s2 + 1)W = 0,

which yields W = −(l + gs − 2ms)/(s2 + 1). Then considering (3.23) we obtain

Eq8 =
g

2(1 + s2)

[
4(g − 2m)s + l(3 − s2)

]
,

Eq10 =
1

4(1 + s2)2 (2c − g2 + 2gm + lgs + 2cs2)
[
4(g − 2m)s + l(3 − s2)

]
.

(3.42)

Since g ̸= 0 the condition Eq8 = 0 gives 4(g − 2m)s + l(3 − s2) = 0, which implies also
Eq10 = 0, and we consider two possibilities: D4 ̸= 0 and D4 = 0.

2.1.1: The possibility D4 ̸= 0. Then s ̸= 0 and we obtain m = (3l + 4gs − ls2)/(8s). So
taking into consideration (3.41) we obtained that a system possesses invariant lines in the
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configuration (3, 1, 1, 1) if and only if the following conditions are satisfied:

u = −1, k = d = h = 0, e = − l(21l − 8gs + ls2)

64s
,

f =
24lgs + 64cs2 + 3l2(s2 − 3)

64s2 , a = −3l(3lg + 8cs)
64s2 ,

b =
l
[
12lgs + 32cs2 + l2(9 + s2)

]
256s2 , m =

(3l + 4gs − ls2)

8s
.

(3.43)

Considering the conditions provided by Lemma 3.20 for systems (3.12) with u = −1 we
calculate:

Coefficient[χ1, xy2] = 2
[
4ks + h(s2 − 3)

]
/9, Coefficient[χ1, x2y] = 4

[
k(3s2 − 1)− 4hs

]
/9

and due to s ̸= 0 the condition χ1 = 0 implies k = h = 0. Then we obtain

χ1 = 2
[
l(s2 − 3)− 4(g − 2m)s

]
/9 = 0

which gives us m = (3l + 4gs − ls2)/(8s). So we deduce that forcing χ1 = 0 we get the
conditions for the parameters k, h and m given in (3.43).

Herein calculations yield

Coefficient[χ2, y2] = 56ds(9 + s2)/3 = 0 ⇔ d = 0

due to s ̸= 0. Then we obtain χ2 = φ̂1x2/6 + φ̂2xy/s, where

φ̂1 = 128 f s2 − 64es(15 + s2)− 128cs2 − l(9 + s2)(33l − 8gs + ls2),

φ̂2 = 16es(s2 − 3)− 16 f s2(5 + s2) + 16cs2(5 + s2) + l(9 + s2)(4gs − 3l + ls2).

We observe that the equations φ̂1 = 0 and φ̂2 = 0 are real with respect to the parameters e
and f and the corresponding determinant equals 1024s3(9 + s2)2 ̸= 0 due to s ̸= 0. Solving
these equations we get exactly the expressions for the parameters e and f given in (3.43).

Next supposing that for systems (3.12) the conditions on the parameters u, k, h, d, e, m and
f given in (3.43) are satisfied, we calculate

χ3 = − x5

1728s2 φ̂3 φ̂2
4(φ̂5x + φ̂6y),

where
φ̂3 = 4sx + (3 − s2)y, φ̂4 = (3s2 − 1)x2 + 8sxy + (3 − s2)y2,

φ̂5 = − 256bs2 + l3(9 + s2) + 4ls(3lg + 8cs),

φ̂6 = 4
[
64as2 + 3l(3lg + 8cs)].

We observe that due to s ̸= 0 we have φ̂3 φ̂4 ̸= 0 and therefore the condition χ3 = 0 is
equivalent to φ̂5 = φ̂6 = 0. Solving these equations with respect to the parameters a and b we
get exactly the expressions given in (3.43) for these parameters. This completes the proof of
Lemma 3.20 in the case D4 ̸= 0.

2.1.2: The possibility D4 = 0. Then s = 0 and the condition (see (3.42))

Eq8 =
g

2(1 + s2)

[
4(g − 2m)s + l(3 − s2)

]
= 0
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implies l = 0. Then considering (3.41) in the case s = 0 we arrive at the following conditions:

u = −1, k = d = h = e = b = s = l = 0,

f =
1
4
(4c − 3g2 + 8gm − 4m2), a = −1

4
(g − 2m)(−2c + g2 − 2gm).

(3.44)

Next for systems (3.12) with u = −1 and s = 0 we calculate

χ1 = −2x(3lx2 + hx2 + 2kxy + 3hy2)/9

and evidently the condition χ1 = 0 is equivalent to k = h = l = 0. Then calculations yield

χ2 = −16(2d + 3e)xy, Coefficient[χ3, x4y7] = −4dg/3,

Coefficient[χ3, x6y5] = 2(6b − 2dg − 3eg + 6em)/3

and clearly the conditions χ2 = χ3 = 0 implies to d = e = b = 0. Herein we obtain

χ3 = 2x5y(x2 − 3y2)(ψ̂1x2 + ψ̂2y2)/9,

where
ψ̂1 = − 2a + 3cg − 2 f g − 2g3 − 2cm + 6g2m − 4gm2,

ψ̂2 = 6a − cg − 2 f g + 6cm − 2g2m + 4gm2.

So the condition χ3 = 0 implies ψ̂1 = ψ̂2 = 0 and solving these two equations with respect to
the parameters a and f we obtain exactly the expressions given in (3.44) for these parameters.
This complete the proof of Lemma 3.20 as well as the proof of the statement (A8) of the Main
Theorem.

2.2: The subcase χ̃1 = 0. Then g = 0 and according to Lemma 3.2 we examine two pos-
sibilities: χ̃2 ̸= 0 and χ̃2 = 0. Since for systems (3.12) with the conditions u = −1 and
k = d = h = g = 0 we have

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2]/3

we deduce that the condition χ̃2 = 0 is equivalent to c = 0.

2.2.1: The possibility χ̃2 ̸= 0. Then by Lemma 3.2 systems (3.12) possess a triple infinite
invariant line Z = 0 and since χ̃2 ̸= 0 implies c ̸= 0 we deduce that in the direction x = 0
systems (3.12) possess only one invariant line, which is real.

So we have to examine the remaining three directions: x ± iy = 0 and sx + y = 0.
(i) The direction x + iy = 0. We repeat the examinations of the corresponding equations

(3.17) for this particular case u = −1 and g = 0 and considering (3.18) we arrive at the
equations

Hi|{u=−1,g=0} = 0, i = 1, 2, 3, 4.

Solving these equations with respect o the parameters a, b, e and f we get the values of these
parameters given in (3.19) and (3.21) for this particular case u = −1 and g = 0. More precisely
we get the following conditions:

a = − c(2m + ls)
2(1 + s2)

, b =
(l − 2ms)
4(1 + s2)2

[
l2 + 4m2 + 2c(1 + s2)

]
,

e = − 1
4(1 + s2)2

[
4m2s(−3 + s2)− 8lm(−1 + s2) + l2s(5 + s2)

]
,

f = c− 1
4(1+s2)2

[
16lms+4m2(1−3s2)+l2(−3+s2)

]
.

(3.45)
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(ii) The direction sx + y = 0. Considering (3.22) and the conditions u = −1 and g = 0 for
this direction we obtain

Eq5 = l − 2ms + (s2 + 1)W = 0,

i.e. W = −(l − 2ms)/(s2 + 1). Then considering (3.23) we obtain

Eq8 = 0, Eq10 =
c

2(1 + s2)

[
l(3 − s2)− 8ms

]
. (3.46)

Since c ̸= 0 the condition Eq10 = 0 gives l(3 − s2) − 8ms = 0 and we consider two cases:
s ̸= 0 and s = 0. As it was mentioned earlier these conditions are governed by the invariant
polynomial D4 = 2304s(9 + s2).

2.2.1.1: The case D4 ̸= 0. Then s ̸= 0 and we obtain m = l(3 − s2)/(8s) and considering
the conditions u = −1, k = d = h = g = 0 and (3.45) we arrive at the following lemma.

Lemma 3.21. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 ̸= 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following
conditions are satisfied:

u = −1, k = d = h = g = 0, e = − l2(21 + s2)

64s
,

f =
64cs2 + 3l2(s2 − 3)

64s2 , a = −3c l
8s

,

b =
l
[
32cs2 + l2(9 + s2)

]
256s2 , m =

l(3 − s2)

8s
.

(3.47)

Next we determine the invariant conditions equivalent to those provided by the above
lemma. More exactly we prove the following lemma.

Lemma 3.22. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 ̸= 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the conditions
χ1 = χ3 = χ6 = 0 are satisfied.

Proof. Clearly the condition D7 = 0 imply u = −1. Then for systems (3.12) we calculate

Coefficient[χ̃1, xy2] = −(8ks)/3

and clearly due to D4 ̸= 0 (i.e. s ̸= 0) the condition χ̃1 = 0 implies k = 0. Then we calculate

χ̃1 = 2x2[2(h + 2gs − 3hs2)x + (3g − 8hs − gs2)y
]
/9 = 0

and we claim that the condition χ̃1 = 0 implies g = h = 0. Indeed assuming h+ 2gs− 3hs2 = 0
we get g = h(3s2−1)

2s and then

χ̃1 = −h(s2 + 1)2

2s
= 0 ⇒ h = 0 ⇒ g = 0

and this completes the proof of our claim.
Thus the condition χ̃1 = 0 for systems (3.12) with u = −1 gives us k = h = g = 0. Then

calculations yield

Coefficient[χ6, x2y6] = 10ds(123 + 23s2)/3 = 0 ⇒ d = 0
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due to s ̸= 0. Herein we obtain

Coefficient[χ6, x3y5] = 110
[
e(s2 − 3)− f s(5 + s2)− (6lm − 5cs − 4m2s − cs3)

]
Coefficient[χ6, x4y4] =

10
3
[
es(7s2 − 597)− f s2(131 + 39s2)− 216l2 − 42lms

+ 131cs2 + 124m2s2 + 39cs4]
and we observe that the above polynomials are linear with respect to the parameters e and f
with the corresponding determinant −35200s2(9 + s2)2/3 ̸= 0. So forcing these polynomials
to vanish we get

e =
1

4s(9 + s2)2 (2ms − 3l)(45l + 6ms + 9ls2 + 2ms3),

f =
1

4s2(9 + s2)2

[
4cs2(9 + s2)2 − 3(3l − 2ms)(42ms − 9l + 3ls2 + 2ms3)

]
,

(3.48)

and then calculations yield

χ6 =− 20
s2(9 + s2)2 (8ms − 3l + ls2)2x5[16s2(6 + s2)x3 + s(63 + 30s2 − s4)x2y

+ 9(14s2 − 3 + s4)xy2 + 12s(9 + s2)y3].
Due to s ̸= 0 the condition χ6 = 0 evidently implies 8ms − 3l + ls2 = 0, and considering (3.48)
we determine:

e = − l2(21 + s2)

64s
, f =

64cs2 + 3l2(s2 − 3)
64s2 , m =

l(3 − s2)

8s
.

So we obtain exactly the expressions for the parameters e, f and m given in (3.47).
Next considering that all the conditions from (3.47) are satisfied except the conditions for

the parameters a and b we calculate:

χ3 = − 1
1728s2 x5(4sx + 3y − s2y)

[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2]2

×
[
(9l3 − 256bs2 + 32cls2 + l3s2)x + 32s(3cl + 8as)y

]
.

Therefore due to s ̸= 0 it is simple to determine that the condition χ3 = 0 gives us exactly the
expressions for the parameters a and b given in (3.47). This completes the proof of Lemma 3.22.

2.2.1.2: The case D4 = 0. Then s = 0 and the condition Eq10 = 0 (see (3.46)) gives us
Eq10 = 3cl/2 = 0 and due to c ̸= 0 this implies l = 0. In this case considering the conditions
u = −1, k = d = h = g = s = 0 and (3.45) we arrive at the following lemma.

Lemma 3.23. Assume that for a system (3.12) the conditions D7 = χ̃1 = 0, χ̃2 ̸= 0 and D4 = 0 hold.
Then this system possesses invariant lines in the configuration (3, 1, 1, 1) if and only if the following
conditions are satisfied:

u = −1, s = 0, k = d = h = g = l = b = e = 0, a = −cm, f = c − m2. (3.49)
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Now we determine the invariant conditions equivalent to those provided by the above
lemma. We claim that Lemma 3.22 which was proved for D4 ̸= 0 is also true in the case
D4 = 0.

Indeed it is clear that the conditions D7 = D4 = 0 imply u = −1 and s = 0. Then for
systems (3.12) we calculate

χ̃1 = 2
[
2hx3 + (3g + 2k)x2y − 3ky3]/9

and evidently the condition χ̃1 = 0 implies k = h = g = 0. Then calculations yield

χ1 = −2lx3/3 = 0 ⇒ l = 0

and we obtain

χ6 = −10xy
[
(10d−129e)x6+72(c− f−m2)x5y+(25d+42e)x4y2−3(16d−33e)x2y4+9dy6]/3.

It is clear that the condition χ6 = 0 implies d = e = 0 and f = c − m2 and we observe that all
the conditions given in (3.49) are obtained except for the parameters a and b.

Finally we calculate

χ3 = 4
[
bx − (a + cm)y

]
x5y(x2 − 3y2)2/9

and evidently the condition χ3 = 0 gives us b = 0 and a = −cm. This complete the proof of
the statement (A9) of the Main Theorem.

2.2.2: The possibility χ̃2 = 0. We prove the following lemma.

Lemma 3.24. If for a system (3.12) the conditions D7 = χ̃1 = χ̃2 = 0 hold then this system could hot
have a configuration of the type (3, 1, 1, 1).

Proof. Assume that for a system (3.12) the conditions provided by this lemma are fulfilled. As
we already know the condition D7 = 0 implies u = −1 and by Lemma 3.4 we could not have
a triplet of parallel invariant lines in the direction y = 0. Since for the direction x = 0 we have
the equations (see (3.40))

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW + gW2.

we arrive at the conditions k = d = h = 0 and considering u = −1 we have

χ̃1 = 2gx2[4sx + (3 − s2)y
]
/9.

Therefore the condition χ̃1 = 0 implies g = 0 and evaluating the invariant polynomial χ̃2 for
systems (3.12) with u = −1 and k = d = h = g = 0 we get

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2]/3.

It is clear that the condition χ̃2 = 0 implies c = 0 and hence we arrive at the family of systems

ẋ = a, ẏ = b + ex + f y + lx2 + 2mxy − sx3 − x2y − sxy2 − y3. (3.50)

Suppose the contrary, that these systems possess the configuration invariant lines of the type
(3, 1, 1, 1). Therefore we must have two complex invariant lines: one in the direction x + iy = 0
and another in the direction x − iy = 0.
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Thus considering the equations (2.5) and Remark 2.12 for the direction x + iy = 0 we
obtain U = 1, V = i and

Eq7 = 2m − il + 2(1 − is)W, Eq9 = e + i f − 2(l + im)W − (i + 3s)W2,

Eq10 = a + ib − ieW + ilW2 + isW3.

We calculate ResW(Eq7, Eq9) = Ĥ1 + iĤ2 where

Ĥ1 = 8lm − s(l2 − 8 f + 4m2)− 4e(s2 − 1),

Ĥ2 = 4m2 − 3l2 − 8es − 4 f (s2 − 1).

So solving the system of equations Ĥ1 = 0 and Ĥ2 = 0 which are linear with respect to the
parameters e and f we obtain:

e =− 4m2s(s2 − 3)− 8lm(s2 − 1) + l2s(5 + s2)

4(1 + s2)2 ,

f =− 16lms + 4m2(1 − 3s2) + l2(s2 − 3)
4(1 + s2)2 .

Then calculations yield

ResW(Eq7, Eq10) =
(s + i)3

(1 + s2)2

[
(l2 + 4m2)(l − 2ms)− 4b(1 + s2)2 + 4ia(1 + s2)2

]
= 0

and since the parameters of the systems are real this condition implies a = 0. However in this
case systems (3.50) become degenerate and this completes the proof of the Lemma 3.24.

Since all the possibilities for cases provided by the statement (A) of the Main Theorem are
examined we conclude that this statement is proved.

As we mentioned earlier (see page 24) we have to prove the following lemma.

Lemma 3.25. None of the sets of the conditions (A1)–(A9) could be satisfied for systems (3.8).

Proof. For systems (3.8) calculations yield:

D4 = 0, D6 = −4, D7 = 4, D8 = 0

and comparing with the sets of the conditions provided by the statement (A) of the Main
Theorem we conclude that all the sets of the conditions (Ai) for i = 1, 2, . . . , 5, 7, . . . , 9 could
not be satisfied for systems (3.8). It remains to prove that set of of the conditions (A6) could
also not be satisfied for this family of systems.

Indeed for systems (3.8) we have

χ1 =
1
4
[
− (l + 2h)x3 + 3(g − k)x2y + 3(cl + 2h)xy2 + (k − g)y3]

and therefore the condition χ1 = 0 provided by the statement (A6) gives l = −2h and g = k.
Then we calculate

χ8 = −240(h2 + k2)(x2 + y2), χ15 = −(kx − hy)(x2 + y2)2/4

and since according to the statement (A6) we must have χ8 = 0 and χ15 ̸= 0 we evidently get
a contradiction and this completes the proof of the lemma.
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3.2 The proof of the statement (B) of the Main Theorem

In this section we examine step by step each one of the statements (Ai) (i = 1, . . . , 9) of
Main Theorem and determine the possible configurations of invariant lines, correspondingly.
Moreover we find out necessary and sufficient affine invariant conditions for the realization
of each one of the configurations found.

3.2.1 The statement (A1)

It was shown in the proof of the statement (A) of the Main Theorem that the affine invari-
ant conditions provided by the statement (A1) for the family of systems (3.12) lead to the
conditions (3.26).

It is not too difficult to determine that in this cases we arrive at the family of systems

ẋ =
[

x − 3
κ (g − 2m)

][
c +

6
κ2 (g − 2m)

(
gs2 − 3g − 3mu − 3m

)
+

2
κ (gs2 − 3g − 3m − 3mu) x + (1 + u)x2

]
≡ L1(x)L2,3(x),

ẏ =
s
κ2 (g − 2m)

[
cκ2 + 2(g − 2m)

[
4gs2 − m(27 + 2s2 + 9u)

]]
+

s
κ2 (g − 2m)

[
g
(
s2 − 27

)
+ 2m

(
s2 − 3u + 18

) ]
x +

s
κ (g − 2m)(9 + u) x2

+
[
c +

3
κ2 (g − 2m)

[
3g

(
s2 − 3

)
− 2m

(
s2 + 3u

) ]]
y + 2mxy − sx3 + ux2y − sxy2 − y3,

(3.51)
where κ = 2s2 − 3(u + 3) ̸= 0 and s ̸= 0 or s = 0 depending on the value of the invariant
polynomial D4.

We need to determine if the two lines defined by the equation L2,3 = 0 are real or complex
and in the case when they are real, if one of them coincides with the invariant line L1 = 0. So
we calculate

Discrim [L2,3, x] = − 4
κ2 λ(c, g, m, s, u),

Resx(L1, L2,3) =
1
κ2 µ(c, g, m, s, u)

where
λ = c(1 + u)κ2 −

[
g(s2 − 3)− 3m(1 + u)

][
g(s2 − 9 − 6u) + 9m(1 + u)

]
,

µ = cκ2 + 3(g − 2m)
[
g(4s2 − 9 + 3u)− 18m(1 + u)

]
.

(3.52)

We observe that
sign

(
Discrim [L2,3, x]

)
= −sign (λ),

i.e. the invariant lines L2,3 = 0 are real (respectively complex; coinciding) if λ < 0 (respectively
λ > 0; λ = 0). The invariant line L1 = 0 coincides with one of the lines L2,3 = 0 if and only if
µ = 0.

Evaluating for systems (3.51) the invariant polynomials ζ1 and ζ2 we obtain:

ζ1 =
80

3κ2 (s
2 + 3u)2x2λ, ζ2 = 8µ, D5 = 4(s2 + 3u)/9

and therefore the condition ζ2 = 0 is equivalent to µ = 0. On the other hand we have
sign (λ) = sign (ζ1) only if D5 ̸= 0. So in what follows we examine two possibilities: D5 ̸= 0
and D5 = 0.
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1: The possibility D5 ̸= 0. Then the sign of λ is governed by the invariant polynomial ζ1

and we prove the next proposition.

Proposition 3.26. Assume that for a system (3.51) the conditions D6D7D8 ̸= 0 and D5 ̸= 0 hold.
Then this system possesses one of the configurations of invariant lines presented below if and only if the
corresponding conditions are satisfied, respectively:

D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b;
D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;
D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b;
D4 ̸= 0, ζ1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;
D4 ̸= 0, ζ1 < 0, ζ2 = 0 ⇔ Config. 7.5b;
D4 ̸= 0, ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;
D4 ̸= 0, ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;
D4 ̸= 0, ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;
D4 ̸= 0, ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;
D4 ̸= 0, ζ1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.10b;
D4 ̸= 0, ζ1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.11b;
D4 ̸= 0, ζ1 = 0, ζ2 = 0 ⇔ Config. 7.12b;
D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 < 0, D7 < 0 ⇔ Config. 7.13b;
D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 < 0, D7 > 0 ⇔ Config. 7.14b;
D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 > 0, D7 < 0 ⇔ Config. 7.15b;
D4 = 0, ζ1 < 0, ζ2 ̸= 0, ζ5 > 0, D7 > 0 ⇔ Config. 7.16b;
D4 = 0, ζ1 < 0, ζ2 = 0 ⇔ Config. 7.17b;
D4 = 0, ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.18b;
D4 = 0, ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.19b;
D4 = 0, ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.20b;
D4 = 0, ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.21b;
D4 = 0, ζ1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.22b;
D4 = 0, ζ1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.23b;
D4 = 0, ζ1 = 0, ζ2 = 0 ⇔ Config. 7.24b.

Proof. Following the conditions provided by the above proposition we consider two cases:
D4 ̸= 0 and D4 = 0.

1.1: The case D4 ̸= 0. We examine three subcases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The subcase ζ1 < 0 (D5 ̸= 0). Then λ < 0 and we may use a new parameter v setting
λ = −v2 < 0. Since we have D6D7 ̸= 0 (i.e. (1 + u)κ ̸= 0) considering (3.52) we obtain

c =
1

(1 + u)κ2

[
g2(s2 − 3)(s2 − 6u − 9)− 27m2(1 + u)2 + 6gm(1 + u)(s2 + 3u)− v2]. (3.53)

This leads to the following family of systems

ẋ = (1 + u)
[

x − 3(g − 2m)

κ

][
x +

gs2 − 3g − 3m − 3mu − v
κ(1 + u)

]
×[

x +
gs2 − 3g − 3m − 3mu + v

(1 + u)

]
,



56 C. Bujac, D. Schlomiuk and N. Vulpe

ẏ =− (g − 2m)s
(1 + u)κ3

[
(2gm(27 + 7s2)(1 + u)− m2(1 + u)(81 + 8s2 + 9u)

− g2[s4 + 2s2(u − 2) + 9(3 + 2u)
]
+ v2)

]
+

(g − 2m)s
κ2 (36m − 27g + gs2 + 2ms2 − 6mu) x

+
1

κ2(1+u)
[
g2(s2−3)(s2+3u)−18gm(s2−3)(1+u)+3m2(1+u)(4s2−9+3u)−v2] y

+
s
κ (g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3. (3.54)

On the other hand for the value of c given in (3.53) we calculate

µ =
1

1 + u
(γ2 − v2), γ = g(s2 + 3u)− 9m(1 + u) (3.55)

and since the condition µ = 0 leads to the coalescence of two invariant lines of the triplet, we
examine two possibilities: ζ2 ̸= 0 and ζ2 = 0.

a.1) The possibility ζ2 ̸= 0. Then µ ̸= 0, i.e. (γ − v)(γ + v) ̸= 0 and setting a new parameter
a = γ+v

γ−v we observe that a − 1 ̸= 0. Indeed calculation yields: a − 1 = 2v
γ−v ̸= 0 due to v ̸= 0.

So from the relation a = γ+v
γ−v we can determine the parameter m as follows:

m =
g(a − 1)(s2 + 3u)− (a + 1)v

9(a − 1)(1 + u)
.

Then we can apply to systems (3.54) the following transformation (we recall that κ = 2s2 −
3(u + 3) ̸= 0):

x1 = αx − ν

6v
, y1 = αy +

sν

18v
, t1 =

t
α2 ,

α = − (a − 1)(1 + u)κ
2v

, ν = (a − 1)gκ − 2(1 + a)v.

This transformation brings these systems to the following family of systems (we keep the old
notations for the variables):

ẋ = (1 + u)x(x − 1)(x − a),

ẏ =(1 + u)
[
a − x(a + 1)

]
y − sx3 + ux2y − sxy2 − y3,

(3.56)

for which the parameters s and u satisfy the conditions (3.25).
We detect that systems (3.56) possess six distinct invariant affine straight lines

L1 : x = 0, L2 : x = 1, L3 : x = a, L4 : y = −sx, L5,6 : y = ±ix (3.57)

and the following nine finite singularities:

M1(0, 0), M2,3
(
0,±

√
a(1 + u)

)
, M4(1,−s), M5,6(1,±i), M7(a,−as), M8,9(a,±ia). (3.58)

For systems (3.56) calculations yield

ζ1 = − 20
3
(a − 1)2(u + 1)2x2 (s2 + 3u

)2
, ζ2 = 8aκ2(1 + u),

D5 =
4
9
(
s2 + 3u

)
, D6 =

4
9
[
2s2 − 3(u + 3)

]
≡ 4

9
κ, D7 = 4(1 + u).

Since the conditions D5 ̸= 0 and D6D7 ̸= 0 hold we obtain that the conditions ζ1 < 0 and
ζ2 ̸= 0 imply for the parameter a of systems (3.56) the condition a(a − 1) ̸= 0.
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We observe that the singular points M2 and M3 could be real (if a(1 + u) > 0) or complex
(if a(1 + u) < 0). On the other hand due to the condition a(a − 1) ̸= 0 we conclude that
the line L3 : x = a could neither coincide with L1 (for a = 0) nor with L2 (for a = 1). So
considering the condition a(a − 1) ̸= 0 we examine the following two cases: a(1 + u) > 0 and
a(1 + u) < 0.

a.1.1) The case a(1 + u) > 0. So the singular points M2,3
(
0,±

√
a(1 + u)

)
are real and we

observe that all the singularities (3.58) are located at the intersection of the invariant lines,
except for M2,3

(
0,±

√
a(1 + u)

)
which lie on the line x = 0 and are symmetric with respect to

the origin of coordinates. Moreover fixing the position of all invariant lines and moving only
the singularities M2,3 we could not obtain new configurations. So the distinct configurations
depend on the position of the invariant lines.

We deduce that only two lines are not fixed, and namely: L3 : x = a, L4 : y = −sx.
Moreover four of them (i.e. L1, L4 and L5,6) intersect at the same point (0, 0). Since this point
lies on the line L1, considering the triplet of parallel invariant lines (L1, L2 and L3) we deduce
that we could get different configurations depending on the position of the line L3 = a. More
precisely, if a < 0 then L3 is located on the left of L1 and if a > 0 then L3 is located on the
right of L1.

Regarding the invariant line L4 : y = −sx we make the following remark.

Remark 3.27. Considering our Convention on page 8 we deduce that the invariant line y =

−sx coincides with the projection of the complex invariant lines y = ±ix on the plan (x, y) if
and only if s = 0.

Since in the case under consideration we have s ̸= 0 it is not too difficult to determine that
systems (3.56) possess the configuration of invariant lines Config. 7.1b if a < 0 and Config. 7.2b
if a > 0.

a.1.2) The case a(1 + u) < 0. Then the singular points M2,3
(
0,±

√
a(1 + u)

)
are complex

and on the invariant line L1 there are no real singularities except M1(0, 0). So applying the
same argument as in the previous case above we obtain the following two configurations of
invariant lines for systems (3.56): Config. 7.3b if a > 0 and Config. 7.4b if a < 0.

Thus we obtain that in the case ζ1 < 0 and ζ2 ̸= 0 systems (3.56) could possess only four
distinct configurations Config. 7.1b - Config. 7.4b.

Next we determine the corresponding invariant conditions for distinguishing these con-
figurations of invariant lines. We evaluate for systems (3.56) the next invariant polynomials:

ζ3 = −2(a − 1)2as2(9 + s2)2(1 + u)3/81, D7 = 4(1 + u) ̸= 0, D4 = 2304s(9 + s2) ̸= 0

and due to a(a − 1)(u + 1)s ̸= 0 we have sign (ζ3) = −sign (a(u + 1)) and sign (D7) =

sign (u + 1).
Considering the conditions on the parameters a, u determined above which define the con-

figurations Config. 7.1b - Config. 7.4b for systems (3.56) in the case ζ1 < 0 and ζ2 ̸= 0 as well
as the expressions for the invariant polynomials given above we obtain the following affine
invariant conditions for distinguishing these configurations (as well as the corresponding ex-
amples of their realization):

ζ3 < 0, D7 < 0 ⇔ Config. 7.1b (a = −1, u = −2, s = 1);
ζ3 < 0, D7 > 0 ⇔ Config. 7.2b (a = 2, u = 2, s = 1);
ζ3 > 0, D7 < 0 ⇔ Config. 7.3b (a = 2, u = −2, s = 1);
ζ3 > 0, D7 > 0 ⇔ Config. 7.4b (a = −1, u = 1, s = 1).
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a.2) The possibility ζ2 = 0. Then µ = 0 and considering (3.55) we get (γ − v)(γ + v) = 0.
We may assume γ − v = 0 due to change v → −v and setting v = γ ̸= 0 in systems (3.54) we
arrive at the family of systems

ẋ = (1 + u)
[

x − 3(g − 2m)

κ

]2[
x − 12m(1 + u)− g(2s2 + 3u − 3)

κ(1 + u)

]
,

ẏ = − (g − 2m)s
(1 + u)κ3

[
(2gm(27 + 7s2)(1 + u)− m2(1 + u)(81 + 8s2 + 9u)

− g2[s4 + 2s2(u − 2) + 9(3 + 2u)
]
+ v2)

]
+

(g − 2m)s
κ2 (36m−27g+gs2+2ms2−6mu) x

+
1

κ2(1+u)
[
g2(s2−3)(s2+3u)− 18gm(s2−3)(1+u)+3m2(1+u)(4s2−9+3u)−v2] y

+
s
κ (g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3,

where κ = 2s2 − 3(u + 3) ̸= 0. Since γ = g(s2 + 3u) − 9m(1 + u) ̸= 0 then applying the
transformation

x1 = αx +
3(g − 2m)(1 + u)

2γ
, y1 = αy − s(g − 2m)(1 + u)

2γ
,

t1 =
t

α2 , α =
κ(1 + u)

2γ

we obtain the following 2-parameter family of systems:

ẋ = (1 + u)x2(x − 1),

ẏ =− (1 + u)xy − sx3 + ux2y − sxy2 − y3.
(3.59)

We observe that this family of systems is a subfamily of (3.56) defined by the condition a = 0.
So the above systems possess invariant lines (3.57) among which only five are distinct, because
the line L4 ≡ L1 : x = 0 is double. These systems have only 4 distinct finite singularities
because setting a = 0 in (3.58) we obtain that the five singularities M2,3

(
0,±

√
a(1 + u)

)
,

M7(a,−as) and M8,9(a,±ia) coalesce with the singular point M1(0, 0). As a result we get a
singular point of multiplicity 6 which is a point of intersection of four invariant lines: L1, L4

and L5,6. Therefore considering Remark 3.27 due to the condition s ̸= 0 we obtain the unique
configuration of singularities given by Config. 7.5b.

b) The subcase ζ1 > 0 (D5 ̸= 0). Then λ > 0 and we set λ = v2 > 0. Since (1 + u)(9 − 2s2 +

3u) ̸= 0 we obtain

c =
1

(1+u)(9−2s2+3u)2

[
g2(s2−3)(s2−6u−9)−27m2(1+u)2+6gm(1+u)(s2+3u)+ v2].

This leads to the following family of systems

ẋ = (1 + u)
[

x − 3(g − 2m)

κ

] [[
g(s2 − 3)− 3m(1 + u)

]2
+ v2

κ2(1 + u)2

+
2(gs2 − 3g − 3m − 3mu)

κ(1 + u)
x + x2

]
,
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ẏ =
(g − 2m)s
κ3(1 + u)

[
m2(1 + u)(81 + 8s2 + 9u)− 2gm(27 + 7s2)(1 + u) + g2(s4 + 2s2(u − 2)

+ 9(3 + 2u)) + v2]+ (g − 2m)s
κ2 (36m − 27g + 36m + gs2 + 2ms2 − 6mu) x

+
1

κ2(1 + u)
[
g2(s2 − 3)(s2 + 3u) + 3m2(1 + u)(4s2 + 3u − 9)

− 18gm(s2 − 3)(1 + u) + v2] y +
s
κ (g − 2m)(9 + u) x2 + 2mxy − sx3 + ux2y − sxy2 − y3.

(3.60)

In order to simplify these systems we need to use a transformation which depends on the
condition: either γ ̸= 0 or γ = 0 (we recall that γ = g(s2 + 3u)− 9m(1 + u)).

On the other hand for systems (3.60) we calculate:

ζ4 =
γ2

κ2

[
(4s2 − 13)x2 − 2sxy − 3y2]

and therefore the condition γ = 0 is equivalent to ζ4 = 0.

b.1) The possibility ζ4 ̸= 0. Then γ ̸= 0 and setting a new parameter a = v
γ ̸= 0 we can

determine the parameter m as follows:

m =
ags2 + 3agu − v

9a(1 + u)
.

Then we can apply the following transformation

x1 = αx − ν

3v
, y1 = αy +

sν

9v
, t1 =

t
α2 , α = − a(1 + u)κ

v
, ν = agκ − 2v,

which brings systems (3.60) to the following family of systems (we keep the old notations for
the variables):

ẋ = (1 + u)x
[
(x − 1)2 + a2],

ẏ =(1 + a2)(1 + u)y − 2(1 + u)xy − sx3 + ux2y − sxy2 − y3.
(3.61)

For the above systems calculations yield

ζ1 =
80
3

a2(1 + u)2(s2 + 3u)2x2, D7 = 4(1 + u)

and clearly the condition ζ1 > 0 implies a ̸= 0 and we must have u + 1 ̸= 0 (i.e. D7 ̸= 0),
otherwise we get degenerate systems.

We determine that systems (3.61) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = 1 ± ia, L4 : y = −sx, L5,6 : y = ±ix

and the following nine finite singularities:

M1(0, 0), M2,3
(
0,±

√
(1 + a2)(1 + u)

)
, M4,5

(
1 + ia,±(i − a)

)
,

M6,7
(
1 − ia,±(i + a)

)
, M8,9

(
1 ± ia,−s ∓ is

)
.

(3.62)

We observe that the singular points M2 and M3 could be real (if 1 + u > 0) or complex (if
1 + u < 0), but they could not coincide due to 1 + u ̸= 0. So we consider two cases: 1 + u < 0
and 1 + u > 0, taking into account that sign (1 + u) = sign (D7).
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b.1.1) The case D7 < 0. Then 1 + u < 0 and therefore the singular points M2,3 are complex
and the unique real finite singular point of systems (3.61) is M1(0, 0) which is the point of
intersection of four invariant lines: L1, L4 and L5,6. As a result taking into consideration
Remark 3.27 due to the condition s ̸= 0 we obtain the unique configuration Config. 7.6b.

b.1.2) The case D7 > 0. Then 1 + u > 0 and hence the singular points M2,3 are real. We
observe that all the singularities (3.62) are located at the intersection of the invariant lines,
except for M2,3 which lie on the line x = 0 and are symmetric with respect to the origin of
coordinates. Therefore considering Remark 3.27 and the condition s ̸= 0 we arrive at the
configuration of invariant lines given by Config. 7.7b.

So we have proved that if ζ1 > 0, ζ4 ̸= 0 and D4 ̸= 0 systems (3.54) possess the configu-
ration Config. 7.6b (a = 1, u = −2, s = 1) if D7 < 0 and Config. 7.7b (a = 1, u = 1, s = 1) if
D7 > 0.

b.2) The possibility ζ4 = 0. This implies γ = 0 and considering (3.55) the condition γ = 0
gives us

m =
g(s2 + 3u)
9(1 + u)

Then we can apply the transformation

x1 = αx +
gκ
3v

, y1 = αy − sgκ
9v

, t1 =
t

α2 , α =
(1 + u)κ

v
.

which brings systems (3.60) to the following family of systems (we keep the old notations for
the variables):

ẋ = (1 + u)x(x2 + 1), ẏ = (1 + u)y − sx3 + ux2y − sxy2 − y3 (3.63)

with 1 + u ̸= 0. We determine that systems (3.63) possess six distinct invariant affine straight
lines

L1 : x = 0, L2,3 : x = ±i, L4 : y = −sx, L5,6 : y = ±ix

and the following nine finite singularities:

M1(0, 0), M2,3
(
0,±

√
1 + u

)
, M4,5

(
± i, 1

)
, M6,7

(
± i,−1

)
, M8,9

(
± i,∓is

)
.

We observe that the singular points M2 and M3 could be real (if 1 + u > 0) or complex (if
1 + u < 0), but they could not coincide due to 1 + u ̸= 0.

So, similarly as in the case of systems (3.61) we have two real and four complex invariant
lines. However in this case considering our Convention (see page 8) we determine that the real
invariant line x = 0 coincides with the projection of the complex invariant lines L2,3 : x = ±i
on the plane (x, y). As it was mentioned earlier the invariant line L4 : y = −sx coincides
with the projection of the complex invariant lines L5,6 : y = ±ix on the plane (x, y) (see our
Convention on page 8) if and only if s = 0. Therefore due to the condition s ̸= 0 we arrive at
the configuration Config. 7.8b if u < −1 and at Config. 7.9b if u > −1.

Since sign (u + 1) = sign (D7) we deduce that for ζ1 > 0, ζ4 ̸= 0 and D4 ̸= 0 systems (3.54)
possess the configuration Config. 7.8b (u = −2, s = 1) if D7 < 0 and Config. 7.9b (u = 1, s = 1)
if D7 > 0.

c) The subcase ζ1 = 0 (D5 ̸= 0). This implies λ = 0 and considering (3.52) and solving the
equation λ = 0 with respect to the parameter c, it is clear that we get (3.53) for v = 0. This
leads to the systems (3.54) with v = 0, which we denote by (3.54){v=0}.
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In this case for systems (3.54){v=0} we have

ζ2 =
8γ2

(1 + u)

and we again consider two possibilities: ζ2 ̸= 0 and ζ2 = 0.

c.1) The possibility ζ2 ̸= 0. This implies γ ̸= 0 and via the transformation

x1 = αx +
3ν

γ
, y1 = αy − sν

γ
, t1 =

t
α2 , α = − (1 + u)κ

γ
, ν = (g − 2m)(1 + u)

systems (3.54){v=0} can be brought to the following family of systems (we keep the old nota-
tions for the variables):

ẋ = (1 + u)x(x − 1)2,

ẏ = (1 + u)(1 − 2x)y − sx3 + ux2y − sxy2 − y3.
(3.64)

We observe that this family of systems is a subfamily of (3.56) defined by the condition a = 1.
So systems (3.64) possess invariant lines (3.57) among which only five are distinct. More
exactly the line L3 ≡ L2 : x = 1 is double.

These systems have 6 distinct finite singularities because setting a = 1 in (3.58) we obtain
that the real singularity M7 coalesces with the real singularity M4, whereas the complex sin-
gularity M8 (respectively M9) coalesces with the complex singularity M5 (respectively M6).
Moreover we observe that the simple singular point M1(0, 0) is the point of intersection of
four invariant lines: L1, L4 and L5,6. Therefore considering Remark 3.27 and the condition
s ̸= 0 we arrive at the configuration Config. 7.10b if u + 1 < 0 and at configuration Config. 7.11b
if u + 1 > 0.

So since sign (u + 1) = sign (D7) we conclude that in the case ζ1 = 0, ζ2 ̸= 0 and D4 ̸= 0
systems (3.54) possess the configuration Config. 7.10b (u = −2, s = 1) if D7 < 0 and Config.
7.11b (u = 1, s = 1) if D7 > 0.

c.2) The possibility ζ2 = 0. This implies γ = 0 and considering (3.55) we determine m =
g(s2+3u)
9(1+u) . In this case systems (3.54) with v = 0 for this value of the parameter m become the

systems

ẋ =
(g + 3x + 3ux)3

27(1 + u)2 ,

ẏ =− g3s(27 + 2s2 + 9u)
729(1 + u)3 − g2s(27 + s2 + 6u)

81(1 + u)2 x +
g2(s2 + 3u)
27(1 + u)2 y

− gs(9 + u)
9(1 + u)

x2 +
2g(s2 + 3u)

9(1 + u)
xy − sx3 + ux2y − sxy2 − y3,

and after the transformation

x1 = x +
g

3(1 + u)
, y1 = y − gs

9(1 + u)
, t1 = t

we arrive at the homogeneous systems

ẋ =(1 + u)x3, ẏ = −sx3 + ux2y − sxy2 − y3, 1 + u ̸= 0. (3.65)

These systems possess the invariant lines

L1,2,3 : x = 0, L4 : y = −sx, L5,6 : y = ±ix
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and the unique finite singularities M1(0, 0) of the multiplicity nine. As a result, taking into
consideration Remark 3.27 and the condition s ̸= 0 we obtain the unique configuration Con-
fig. 7.12b.

1.2: The case D4 = 0. Then we arrive at the family of systems (3.51) with s = 0.
So we could follow step by step the investigations given earlier for systems (3.51) but now

considering the condition s = 0. This condition is essential because considering Remark 3.27
we could obtain new configurations of invariant lines. More exactly we have the following
remark.

Remark 3.28. We observe that in the case s ̸= 0 we have constructed 6 canonical forms of
systems (3.51) depending on the the values of the invariant polynomials ζ1, ζ2 and ζ4. And the
algorithm of the construction does not depends on the value of parameter s. More precisely
we have the following canonical systems and their corresponding form in the case s = 0:

ζ1 < 0, ζ2 ̸= 0 ⇒ (3.56) s=0⇒ (3.56){s=0};

ζ1 < 0, ζ2 = 0 ⇒ (3.59) s=0⇒ (3.59){s=0};

ζ1 > 0, ζ4 ̸= 0 ⇒ (3.61) s=0⇒ (3.61){s=0};

ζ1 > 0, ζ4 ̸= 0 ⇒ (3.63) s=0⇒ (3.63){s=0};

ζ1 = 0, ζ2 ̸= 0 ⇒ (3.64) s=0⇒ (3.64){s=0};

ζ1 = 0, ζ2 = 0 ⇒ (3.65) s=0⇒ (3.65){s=0}.

As it was shown in the case s ̸= 0 all the canonical systems enumerated above possess among
their invariant lines the following three ones: L4 : y = −sx (or y = 0 if s = 0) and L5,6 : y =

±ix. Considering Remark 3.27 the positions of these three invariant lines in configurations in
the case s = 0 are different from that in the case s ̸= 0.

So considering the above remark we conclude that in the case s = 0 systems (3.51) possess
also 12 configurations of invariant lines which are distinct from those in the case s ̸= 0.
In order to determine the corresponding affine invariant conditions we evaluate for systems
(3.51){s=0} the invariant polynomials which distinguished the configurations Config. 7.1b –
Config. 7.12b.

Considering Remark 3.28 we observe that the invariant polynomials ζ1, ζ2 and ζ4 were
used for constructing the canonical forms mentioned in this remark. On the other hand the
invariant polynomials D7 and ζ3 were applied for distinguishing the configurations Config.
7.1b – Config. 7.12b (see the statement of Proposition 3.26, case D4 ̸= 0). Evaluating these two
polynomials for systems (3.51){s=0} we have

D7 = 4(1 + u), ζ3 = 0

and hence the invariant polynomial ζ3 could not be used for systems (3.51){s=0}.
On the other hand we observe that this invariant polynomial is applied only in the case of

systems (3.56) and in the case s ̸= 0 it is responsible for the sign of the expression a(u + 1)
because for systems (3.56) we have

ζ3 = −2(a − 1)2as2(9 + s2)2(1 + u)3/81.

Therefore for these systems in the case s = 0 we need another invariant polynomial and we
define the invariant ζ5 which for systems (3.56){s=0} has the value

ζ5 = −144(a − 1)2a(1 + u)3
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and clearly if ζ5 ̸= 0 then sign (ζ5) = −sign (a(u + 1)).
Thus considering Remark 3.28 and the first part of the statement of Proposition 3.26 corre-

sponding to the case D4 ̸= 0 as well as our Convention on page 8 and Remark 3.27, in the case
D4 = 0 we arrive at the configurations Config. 7.13b – Config. 7.24b. For the realization of each
one of these configurations it is sufficient to take the corresponding examples presented in the
proof of the case D4 ̸= 0 and substitute s = 1 by s = 0. Thus we conclude that Proposition
3.26 is completely proved.

2: The possibility D5 = 0. In this case we get u = −s2/3 and then ζ1 = 0. So we have to
detect another invariant polynomial which governs the sign of the polynomial λ. We observe
that in this particular case we have

λ = 3(s2 − 3)2(3c − g2 + m2 − cs2),

where s2 − 3 ̸= 0 due to D7 = −4(s2 − 3)/3 ̸= 0.
On the other hand for systems (3.51) with u = −s2/3 we calculate

ζ ′1 = 64s2(9 + s2)2(3c − g2 + m2 − cs2)x6, D8 = −32s2(9 + s2)2/729. (3.66)

Therefore due to D8 ̸= 0 we have s ̸= 0 and we conclude that in the case D5 = 0 we have
sign (λ) = sign (ζ ′1).

We prove the following proposition.

Proposition 3.29. Assume that for a system (3.51) the conditions D6D7D8 ̸= 0 and D5 = 0 hold.
Then this system possesses one of the configurations of invariant lines presented below if and only if the
corresponding conditions are satisfied, respectively:

ζ ′1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b;
ζ ′1 < 0, ζ2 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;
ζ ′1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b;
ζ ′1 < 0, ζ2 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;
ζ ′1 < 0, ζ2 = 0 ⇔ Config. 7.5b;
ζ ′1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;
ζ ′1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;
ζ ′1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;
ζ ′1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;
ζ ′1 = 0, ζ2 ̸= 0, D7 < 0 ⇔ Config. 7.10b;
ζ ′1 = 0, ζ2 ̸= 0, D7 > 0 ⇔ Config. 7.11b;
ζ ′1 = 0, ζ2 = 0 ⇔ Config. 7.12b.

Proof. First of all we observe that for systems (3.51) with u = −s2/3 according to (3.66) the
condition D8 ̸= 0 implies s ̸= 0 (i.e. D4 ̸= 0).

On the other hand, the proof of Proposition 3.26 for the case D4 ̸= 0 was performed for
the condition u = −s2/3 inclusively, because this condition is not essential for the proof.
Therefore a system (3.51) with u = −s2/3 could possess only one of the configurations Config.
7.1b–Config. 7.12b provided by Proposition 3.26 in the case D4 ̸= 0. We claim that each one of
these 12 configurations is realizable in the case u = −s2/3.
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Indeed for systems (3.51) with u = −s2/3 we have

ζ1 = 0, ζ2 = −72(s2 − 3)(3c − g2 + m2 − cs2),

ζ3 = − 8s2(9 + s2)2

243(−3 + s2)
(3c − g2 + m2 − cs2)(3c − g2 + 4m2 − cs2),

ζ4 = m2(4s2x2 − 13x2 − 2sxy − 3y2), D7 = −4(s2 − 3)/3, D8 = −32s2(9 + s2)2/729

and to prove the compatibility of the conditions provided by Proposition 3.29 it is sufficient
to present the examples of the realizations of the corresponding configurations for systems
(3.54) with u = −s2/3 in terms of the parameters (c, g, m, s) = (c0, g0, m0, s0) with s0 ̸= 0. So
we have

Config. 7.1b: (c0, g0, m0, s0) = (1, 1, 0,−2);
Config. 7.2b: (c0, g0, m0, s0) = (−1, 0, 1,−1);
Config. 7.3b: (c0, g0, m0, s0) = (2, 0, 1,−2);
Config. 7.4b: (c0, g0, m0, s0) = (0, 1, 0,−1);
Config. 7.5b: (c0, g0, m0, s0) = (4, 0, 1, 2);
Config. 7.6b: (c0, g0, m0, s0) = (−1, 0,−2,−2);
Config. 7.7b: (c0, g0, m0, s0) = (−1, 0,−2,−1);
Config. 7.8b: (c0, g0, m0, s0) = (−1, 0, 0,−2);
Config. 7.9b: (c0, g0, m0, s0) = (1, 0, 0,−1);
Config. 7.10b: (c0, g0, m0, s0) = (0, 1, 1,−2);
Config. 7.11b: (c0, g0, m0, s0) = (0, 1, 1,−1);
Config. 7.12b: (c0, g0, m0, s0) = (0, 0, 0, 1).

This completes the proof of Proposition 3.29.

3.2.2 The statement (A2)

As it was shown in the proof of statement (A) of the Main Theorem the affine invariant con-
ditions provided by the statement (A2) for the family of systems (3.12) lead to the conditions
(3.28).

Assuming these conditions to be fulfilled for systems (3.12) we arrive at the family of
systems

ẋ =
[

x − 9l
2s(9 + s2)

][27l2(s2 − 3) + 18lms(9 + s2) + 2cs2(9 + s2)2

2s2(9 + s2)2

+
3l(s2 − 3) + 2ms(9 + s2)

s(9 + s2)
x + 2(s2 − 3)x2/3

]
≡ L(1)

1 (x)L(1)
2,3 (x),

ẏ =
3l
[
18l2s + 9lm(9 + s2) + cs(9 + s2)2]

2s(9 + s2)3 +
3l
[
3l(s2 − 27) + 4ms(9 + s2)

]
4s(9 + s2)2 x

+
81l2(s2 − 3) + 36lms(9 + s2) + 4cs2(9 + s2)2

4s2(9 + s2)2 y + lx2 + 2mxy

− sx3 + (2s2 − 9)x2y/3 − sxy2 − y3,

(3.67)

for which we have

D7 =
8
3
(
s2 − 3

)
̸= 0, D8 = − 32

729
s2(9 + s2)2 ̸= 0.
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We need to determine if the two lines defined by the equation L(1)
2,3 = 0 are real or complex

and in the case when they are real, if one of them coincides with the invariant line L(1)
1 = 0.

So we calculate

Discrim [L(1)
2,3 , x] = − 1

3s2(9 + s2)2 λ(1)(c, l, m, s),

Resx(L(1)
1 , L(1)

2,3 ) =
1

2s2(9 + s2)2 µ(1)(c, l, m, s)

where

λ(1) = 81l2(s2 − 3)2 + 36lms(s2 − 3)(9 + s2) + 4s2(9 + s2)2(2cs2 − 6c − 3m2),

µ(1) = 81l2(s2 − 3) + 36lms(9 + s2) + 2cs2(9 + s2)2.
(3.68)

We observe that
sign

(
Discrim [L(1)

2,3 , x]
)
= −sign (λ(1)),

i.e. the invariant lines L(1)
2,3 = 0 are real (respectively complex; coinciding) if λ(1) < 0 (respec-

tively λ(1) > 0; λ(1) = 0). Moreover, the invariant line L(1)
1 = 0 coincides with one of the lines

L(1)
2,3 = 0 if and only if µ(1) = 0.

On the other hand for systems (3.67) calculations yield:

ζ1 =
20λ(1) (s2 − 3

)2 x2

s2 (s2 + 9)2 , χ5 = − µ(1)

9s (s2 + 9)

and hence due to D7 ̸= 0 we have sign (λ(1)) = sign (ζ1). Moreover we observe that the
condition µ(1) = 0 is equivalent to χ5 = 0.

Proposition 3.30. Assume that for a system (3.67) the condition D7D8 ̸= 0 holds. Then this system
possesses one of the configurations of invariant lines presented below if and only if the corresponding
conditions are satisfied, respectively:

ζ1 < 0, ζ5 ̸= 0, ζ3 < 0, D7 < 0 ⇔ Config. 7.1b ;
ζ1 < 0, ζ5 ̸= 0, ζ3 < 0, D7 > 0 ⇔ Config. 7.2b;
ζ1 < 0, ζ5 ̸= 0, ζ3 > 0, D7 < 0 ⇔ Config. 7.3b ;
ζ1 < 0, ζ5 ̸= 0, ζ3 > 0, D7 > 0 ⇔ Config. 7.4b;
ζ1 < 0, ζ5 = 0 ⇔ Config. 7.5b;
ζ1 > 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.6b;
ζ1 > 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.7b;
ζ1 > 0, ζ4 = 0, D7 < 0 ⇔ Config. 7.8b;
ζ1 > 0, ζ4 = 0, D7 > 0 ⇔ Config. 7.9b;
ζ1 = 0, ζ4 ̸= 0, D7 < 0 ⇔ Config. 7.10b;
ζ1 = 0, ζ4 ̸= 0, D7 > 0 ⇔ Config. 7.11b;
ζ1 = 0, ζ4 = 0 ⇔ Config. 7.12b.

Proof. We examine three cases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The case ζ1 < 0. This implies λ(1) < 0 and we may set λ(1) = −3v2 < 0. We observe
that the polynomial λ(1) is linear with respect to the parameter c with the coefficient 8s2(s2 −
3)(9 + s2)2 ̸= 0 (due to D7D8 ̸= 0).



66 C. Bujac, D. Schlomiuk and N. Vulpe

Thus solving the equation λ(1) = −3v2 we obtain

c =− 3
8s2(s2 − 3)(9 + s2)2

[[
9l(s2 − 3)− 2ms(9 + s2)

][
3l(s2 − 3) + 2ms(9 + s2)

]
+ v2

]
.

(3.69)
This leads to the following family of systems

ẋ =
2(s2 − 3)

3

[
x − 9l

2s(9 + s2)

][
x +

3(18ms − 9l + 3ls2 + 2ms3 − v)
4s(s2 − 3)(9 + s2)

]
×[

x +
3(18ms − 9l + 3ls2 + 2ms3 + v)

4s(s2 − 3)(9 + s2)

]
,

ẏ =
9l

16s2(s2 − 3)(9 + s2)3

[
12lms(s2 − 3)(9 + s2) + 4m2(9s + s3)2

+ 3l2(6s2 − 81 + 7s4)− v2]+ 3l
4s(9 + s2)2 (36ms − 81l + 3ls2 + 4ms3) x

+
3

8s2(s2 − 3)(9 + s2)2

[
27l2(s2 − 3)2 + 12lms(s2 − 3)(9 + s2)

+ 4m2(9s + s3)2 − v2] y + lx2 + 2mxy − sx3 + (2s2 − 9)x2y/3 − sxy2 − y3.

(3.70)

On the other hand for the value of c given in (3.69) we calculate

µ(1) =
3
[
(γ(1))2 − v2]
4(s2 − 3)

, γ(1) = 9l(s2 − 3) + 2ms(9 + s2) (3.71)

and since the condition µ(1) = 0 (i.e. χ5 = 0) leads to the coalescence of two invariant lines of
the triplet, we examine two possibilities: χ5 ̸= 0 and χ5 = 0.

a.1) The possibility χ5 ̸= 0. Then µ(1) ̸= 0, i.e. (γ(1) − v)(γ(1) + v) ̸= 0 and setting a new

parameter a = γ(1)+v
γ(1)−v

we observe that a − 1 ̸= 0. Indeed calculation yields: a − 1 = 2v
γ(1)−v

̸= 0

due to v ̸= 0. So from the relation a = γ(1)+v
γ(1)−v

we can determine the value of the parameter m:

m =
−9l(a − 1)(s2 − 3) + (a + 1)v

2s(a − 1)(9 + s2)
.

Then we can apply the following transformation

x1 = αx +
3ν

v
, y1 = αy − sν

v
, t1 =

t
α2 ,

α =
2(1 − a)s(s2 − 3)(9 + s2)

3v
, ν = l(a − 1)(s2 − 3),

which brings systems (3.70) to the family of systems (we keep the old notations for the vari-
ables)

ẋ =
2
3
(s2 − 3)x(x − 1)(x − a),

ẏ =
2
3
(s2 − 3)

[
a − x(a + 1)

]
y − sx3 +

1
3
(2s2 − 9)x2y − sxy2 − y3.

(3.72)

It remains to observe that this family of systems is a subfamily of systems (3.56) defined by
the condition u = (2s2 − 9)/3. This family was investigated earlier and since u = (2s2 − 9)/3
is not a point of bifurcation, we deduce that there are no new configurations. However we
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have to determine the conditions for the realization of the corresponding configurations of
invariant lines in this case.

For systems (3.72) we calculate:

ζ1 = −80
3
(a − 1)2 (s2 − 3

)4
x2, χ5 = − 4

27
as

(
s2 − 3

) (
s2 + 9

)
,

ζ3 = − 16
2187

(a − 1)2a
(
s2 − 3

)3
s2 (s2 + 9

)2
.

Since the condition D7D8 ̸= 0 is satisfied we conclude that the condition ζ1 < 0 gives us
a − 1 ̸= 0 and the condition χ5 ̸= 0 implies a ̸= 0.

As it was shown earlier systems (3.56) in the case a(a− 1) ̸= 0 and s ̸= 0 could possess only
4 configurations Config. 7.1b – Config. 7.4b. More precisely for systems (3.56) we have obtained
the following configurations when the corresponding conditions are satisfied, respectively:

Config. 7.1b ⇔ a(a − 1) > 0, a < 0;
Config. 7.2b ⇔ a(a − 1) > 0, a > 0;
Config. 7.3b ⇔ a(a − 1) < 0, a > 0;
Config. 7.4b ⇔ a(a − 1) < 0, a < 0.

On the other hand for systems (3.72) we have s ̸= 0 due to D8 ̸= 0 and furthermore we
have

sign (a(u + 1)) = sign (a(s2 − 3)) = sign (ζ3), sign (u + 1) = sign (s2 − 3) = sign (D7).

Therefore we conclude that in the case ζ1 < 0 and χ5 ̸= 0 the statement of Proposition 3.30 is
valid.

a.2) The possibility χ5 = 0. Then µ(1) = 0 and considering (3.71) we get (γ(1) − v)(γ(1) +

v) = 0. So we may assume γ(1) − v = 0 due to change v → −v and setting v = γ(1) ̸= 0 in
systems (3.70) we arrive at the family of systems

ẋ =
2(s2 − 3)

3

[
x − 9l

2s(9 + s2)

]2[
x +

3(9ms − 9l + 3ls2 + ms3)

s(s2 − 3)(9 + s2)

]
,

ẏ =− 27l2(18ms − 27l + 5ls2 + 2ms3)

4s2(9 + s2)3 +
3l

4s(9 + s2)2 (36ms − 81l + 3ls2 + 4ms3) x

− 9l
4s2(9 + s2)2

[
36ms − 27l + 9ls2 + 4ms3] y + lx2 + 2mxy

− sx3 + (2s2 − 9)x2y/3 − sxy2 − y3

So since γ(1) = 9l(s2 − 3) + 2ms(9 + s2) ̸= 0 then applying the transformation

x1 = αx +
3l(s2 − 3)

γ(1)
, y1 = αy − ls(s2 − 3)

γ(1)
, t1 =

t
α2 , α = −2s(s2 − 3)(9 + s2)

3γ(1)
,

we obtain the following 1-parameter family of systems:

ẋ =
2
3
(s2 − 3)x2(x − 1),

ẏ =− 2
3
(s2 − 3)xy − sx3 +

1
3
(2s2 − 9)x2y − sxy2 − y3.
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We again observe that the above family of systems is a subfamily of systems (3.59) defined by
the condition u = (2s2 − 9)/3. This family was investigated earlier and it was shown that it
possesses the unique configuration Config. 7.5b including the case u = (2s2 − 9)/3.

b) The case ζ1 > 0. Then λ(1) > 0 and we set λ(1) = 3v2 > 0 and since s(s2 − 3) ̸= 0 (due to
D7D8 ̸= 0) we obtain

c =− 3
8s2(s2 − 3)(9 + s2)2

[[
9l(s2 − 3)− 2ms(9 + s2)

][
3l(s2 − 3) + 2ms(9 + s2)

]
− v2

]
.

This leads to the following family of systems

ẋ =
[

x − 9l
2s(9 + s2)

][9v2 +
[
9l(s2 − 3) + 2s(9 + s2)(3m + 2(s2 − 3)x)

]2

24s2(s2 − 3)(9 + s2)2

]
,

ẏ =
9l

16s2(s2 − 3)(9 + s2)3

[
12lms(s2 − 3)(9 + s2) + 4m2(9s + s3)2

+ 3l2(6s2 − 81 + 7s4) + v2]+ 3l
4s(9 + s2)2 (36ms − 81l + 3ls2 + 4ms3) x

+
3

8s2(s2 − 3)(9 + s2)2

[
27l2(s2 − 3)2 + 12lms(s2 − 3)(9 + s2)

+ 4m2(9s + s3)2 + v2] y + lx2 + 2mxy − sx3 + (2s2 − 9)x2y/3 − sxy2 − y3.

(3.73)

In order to simplify these systems we need to use a transformation which depends on the
condition: either γ(1) ̸= 0 or γ(1) = 0. Since for the above systems we have

ζ4 =

(
γ(1))2

4s2(9 + s2)2

[
(4s2 − 13)x2 − 2sxy − 3y2]

we conclude that the condition γ(1) = 0 is equivalent to ζ4 = 0. So we discuss two possibilities:
ζ4 ̸= 0 and ζ4 = 0.

b.1) The possibility ζ4 ̸= 0. This implies γ(1) ̸=0 and setting a new parameter a= v
γ(1) ̸=0 we

have v = aγ(1). Then we can apply to systems (3.73) the following transformation

x1 = αx +
6l(s2 − 3)

γ(1)
, y1 = αy − 2ls(s2 − 3)

γ(1)
, t1 =

t
α2 , α = −4s(s2 − 3)(9 + s2)

3γ(1)
,

which brings these systems to the following family of systems (we keep the old notations for
the variables):

ẋ =
2
3
(s2 − 3)x

[
(x − 1)2 + a2],

ẏ =
2
3
(s2 − 3)(1 + a2)y − 4

3
(s2 − 3)xy − sx3 +

1
3
(2s2 − 9)x2y − sxy2 − y3.

(3.74)

It remains to observe that this family of systems is a subfamily of systems (3.61) defined by
the condition u = (2s2 − 9)/3. The family (3.61) was investigated earlier and it was proved
the existence of only two configurations of the invariant lines: Config. 7.6b if D7 < 0 and
Config. 7.7b if D7 > 0.

Since for systems (3.74) we have D7 = 8
(
s2 − 3

)
/3 we deduce that both configurations

are also realizable in the case under consideration.
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b.2) The possibility ζ4 = 0. This implies γ(1) = 0 and considering (3.71) the condition
γ(1) = 0 gives

m = − 9l(s2 − 3)
2s(9 + s2)

Then we can apply to systems (3.73) the transformation

x1 = αx − 6l(s2 − 3)
v

, y1 = αy +
2ls(s2 − 3)

v
, t1 =

t
α2 , α =

4s(s2 − 3)(9 + s2)

3v
,

which brings these systems to the following family of systems (we keep the old notations for
the variables):

ẋ =
2
3
(s2 − 3)x(x2 + 1), ẏ =

2
3
(s2 − 3)y − sx3 +

1
3
(2s2 − 9)x2y − sxy2 − y3. (3.75)

It is easy to observe that this family is a subfamily of systems (3.63) defined by the condition
u = (2s2 − 9)/3. The family (3.63) was investigated earlier and we have proved the existence
of two configurations: Config. 7.8b if D7 < 0 and Config. 7.9b if D7 > 0. So by the same reasons
as in the possibility b.1) above we conclude that in the case ζ1 > 0 and ζ4 = 0 the statement
of Proposition 3.30 is valid.

c) The case ζ1 = 0. This implies λ(1) = 0 and considering (3.68) and solving the equation
λ(1) = 0 with respect to the parameter c, it is clear that we get (3.69) for v = 0. This leads to
the systems (3.70) with v = 0, which we denote by (3.70){v=0} and for these systems we have

ζ4 =

(
γ(1))2

4s2(9 + s2)2

[
(4s2 − 13)x2 − 2sxy − 3y2]

and we again consider two possibilities: ζ4 ̸= 0 and ζ4 = 0.
c.1) The possibility ζ4 ̸= 0. Then γ(1) ̸= 0 and via the transformation

x1 = αx +
6l(s2 − 3)

γ(1)
, y1 = αy − 2ls(s2 − 3)

γ(1)
, t1 =

t
α2 , α = −4s(s2 − 3)(9 + s2)

3γ(1)
,

systems (3.70){v=0} can be brought to the following family of systems (we keep the old nota-
tions for the variables):

ẋ =
2
3
(s2 − 3)x(x − 1)2,

ẏ =
2
3
(s2 − 3)y − 4

3
(s2 − 3)xy − sx3 +

1
3
(2s2 − 9)x2y − sxy2 − y3.

(3.76)

We observe that this family of systems is a subfamily of systems (3.64) defined by the condition
u = (2s2 − 9)/3. This family was investigated earlier and we have detected Config. 7.10b if
D7 < 0 and Config. 7.11b if D7 > 0. Clearly we get the same configurations in the case
u = (2s2 − 9)/3, i.e. when D6 = 0.

c.2) The possibility ζ4 = 0. Then γ(1) = 0 and considering (3.71) we determine m =

− 9l(s2−3)
2s(9+s2)

. In this case systems (3.70) with v = 0 for this value of the parameter m after
the transformation

x1 = x − 9l
2s(9 + s2)

, y1 = y +
3ls

2(9 + s2)
, t1 = t

we will be brought to the homogeneous systems (3.65) with u = (2s2 − 9)/3. However these
systems are already examined and we found only the configuration Config. 7.12b.

Since all the cases are examined we conclude that Proposition 3.30 is proved.



70 C. Bujac, D. Schlomiuk and N. Vulpe

3.2.3 The statement (A3)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-
tions provided by this statement for the family of systems (3.12) lead to the conditions (3.29).

Next we determine the canonical form of the systems (3.12) subject to the conditions (3.29).
Assuming these conditions to be fulfilled for systems (3.12) we arrive at the following family
of systems

ẋ = (1 + u)
[

x +
3g − 6m + gs2 + 2gu − 6mu

(9 + s2)(1 + u)

][ g2s2 +
[
gu − 3m(1 + u)

]2

s2(9 + s2)(1 + u)2

− 2(gu − 3g − 3m − 3mu)
(9 + s2)(1 + u)

x + x2
]
≡ (1 + u)L(2)

1 (x)L(2)
2,3 (x),

ẏ =Q̃(x, y),

(3.77)

where the polynomial Q̃(x, y) depends on the parameters g, m, s and u and it is determined
by the conditions (3.29). According to the statement (A3) of the Main Theorem for the above
systems the conditions D7D8D4 ̸= 0 and χ1 ̸= 0 must hold. So calculations yield:

D7 = 4(1 + u) ̸= 0, D8 = −8(s2 − u)
[
4s2 + (3 + u)2]/27 ̸= 0, D4 = 2304s(9 + s2) ̸= 0,

χ1 =
1

9s(9 + s2)(1 + u)
(s2 − u)

[
9m(1 + u)− g(s2 + 3u)

][
4s2 + (u + 3)2] ̸= 0.

Considering the first equation of systems (3.77) we observe that

Discrim [L(2)
2,3 , x] = − 4(γ(2))2

s2(9 + s2)2 , Resx(L(2)
1 , L(2)

2,3 ) =
(s2 + 1)(γ(2))2

s2(9 + s2)2

where
γ(2) = 9m(1 + u)− g(s2 + 3u) ̸= 0

due to the condition χ1 ̸= 0.
Thus we deduce that the invariant lines L(2)

2,3 = 0 are complex and they could not coalesce.
Moreover all three invariant lines are distinct.

Since γ(2) ̸= 0 applying the transformation

x1 = αx − 3g − 6m + gs2 + 2gu − 6mu
γ(2)

, α = − (u + 1)(9 + s2)

γ(2)
,

y1 = αy +
m(1 + u)(9 + s2 + 6u)− gu(3 + s2 + 2u)

sγ(2)
, t1 =

t
α2 ,

to systems (3.77) we arrive at the family of systems

ẋ = (1 + u)x
[
(x − 1)2 +

1
s2

]
, s(1 + u) ̸= 0,

ẏ = (1 + u)2x/s − (1 + u)(2 + s2 + u)y/s2 + (s2 − 2u − u2)x2/s

+ (3 + s2 + 2u)y2/s − sx3 + ux2y − sxy2 − y3.

(3.78)

We determine that systems (3.78) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = 1 ± i/s, L4 : y = −sx + (s2 + u + 2)/s, L5,6 : y = ±ix + (1 + u)/s
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and the following nine finite singularities:

M1(0, 0), M2
(
0, (1 + u)/s

)
, M3

(
0, (2 + s2 + u)/s

)
, M4,5

(
1 ± i/s, 1/s ∓ i

)
,

M6,7
(
1 ± i/s, u/s ± i

)
, M8,9

(
1 ± i/s, (2 + u)/s ∓ i

)
,

(3.79)

which due to s(1 + u) ̸= 0 are all distinct except for the case 2 + s2 + u = 0 which implies the
coalescence of the real singular point M3 with M1.

We observe that all the singularities (3.79) are located at the intersections of the invariant
lines, except for the real singularity M1(0, 0) and the complex singularities M4,5

(
1± i/s, 1/s∓

i
)
. Moreover we have exactly three real singularities, which are all located on the invariant

line x = 0. We note that the real singularity M2 (respectively M3) is the point of intersection
of the invariant line L1 with the two complex lines L5,6 (respectively with the real line L4).

On the other hand the complex singularity M6 (respectively M7) is a point of intersection
of two invariant lines L2 and L5 (respectively L3 and L6), whereas the complex singularity M8

(respectively M9) is a point of intersection of three invariant lines L2, L4 and L6 (respectively
L3, L4 and L5).

So, considering the fact that we have exatly three real finite singularities M1, M2 and M3

and all of them are located on the invariant line x = 0 we conclude that we could obtain three
distinct configurations of invariant lines defined by the distinct positions of the free point M1

with respect to the other two real singularities (M2 and M3).
In order to describe the positions of the finite real singularities located on the same invari-

ant line we use the following notations.

Notation 3.31. Assume that two finite real singular points M̃1(x1, y1) and M̃2(x2, y2) of a cubic
system are located on the real invariant line ax + by + c = 0 of this system. Then:

(α) in the case a ̸= 0 we say that the singular point M̃1 is located below (respectively above)
or coincides with, the singularity M̃2 if y1 ≤ y2 (respectively y2 < y1) and we denote this
position by M̃1 ⪯ M̃2 (respectively M̃2 ≺ M̃1);

(β) in the case a = 0 (then y1 = y2) we say that the singular point M̃1 is located on the left
(respectively on the right) or coincides with, the singularity M̃2 if x1 ≤ x2 (respectively x2 < x1)
and we again denote this position by M̃1 ⪯ M̃2 (respectively M̃2 ≺ M̃1).

Since y3 − y2 = (1 + s2)/s it is easy to determine that the positions of the real singularities
on the line x = 0 are determined by the following conditions:

M2 ≺ M1 ⇔ (1 + u)s < 0; M3 ⪯ M1 ⇔ (2 + u + s2)s ≤ 0; M3 ⪯ M2 ⇔ s < 0.

Therefore considering these conditions we obtain the following conditions for the realiza-
tion of the corresponding configurations of invariant lines:

1 + u < 0, 2 + u + s2 < 0 ⇒ M2 ≺ M3 ≺ M1 ⇒ Config. 7.25b; (s = 1, u = −7/2)

1 + u < 0, 2 + u + s2 > 0 ⇒ M2 ≺ M1 ≺ M3 ⇒ Config. 7.26b; (s = 1, u = −3/2)

1 + u < 0, 2 + u + s2 = 0 ⇒ M2 ≺ M3 ≡ M1 ⇒ Config. 7.27b; (s = 1, u = −3)

1 + u > 0 ⇒ M1 ≺ M2 ≺ M3 ⇒ Config. 7.28b. (s = 1, u = 0)

In order to determine the corresponding invariant conditions we evaluate for systems
(3.78) the following invariant polynomials:

D4 = 2304s(9 + s2), D7 = 4(1 + u), ζ6 = 8(2 + u + s2)
[
4s2 + (u − 1)2].
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So due to the condition s ̸= 0 (as D4 ̸= 0) we have sign (ζ6) = sign (2+ u+ s2) and sign (D7) =

sign (1 + u).
Considering the conditions for the configurations of invariant lines presented above we

arrive at the following proposition.

Proposition 3.32. Assume that for a system (3.77) the condition D7D8χ1 ̸= 0 and D4 ̸= 0 holds.
Then this system possesses one of following four configurations of invariant lines if and only if the
corresponding conditions are satisfied, respectively:

D7 < 0, ζ6 < 0 ⇔ Config. 7.25b;
D7 < 0, ζ6 > 0 ⇔ Config. 7.26b;
D7 < 0, ζ6 = 0 ⇔ Config. 7.27b;
D7 > 0 ⇔ Config. 7.28b.

3.2.4 The statement (A4)

As it was shown in the proof of the statement (A) of the Main Theorem the affine invari-
ant conditions provided by the statement (A4) for the family of systems (3.12) lead to the
conditions (3.32).

Assuming these conditions to be fulfilled for systems (3.12) we arrive at the family of
systems

ẋ = (1 + u)
(

x +
m
u

)[ 9l2

u2(3 + u)2 +
(

x +
m
u

)2]
,

ẏ =
(l + uy)

u2

[ l2(3 + 2u)
(3 + u)2 + (ux + m)2 + ly − uy2

]
.

(3.80)

According to the statement (A4) of the Main Theorem for the above systems the conditions
D7D8 ̸= 0 and χ1 ̸= 0 must hold. So calculations yield:

D7 = 4(1 + u) ̸= 0, D8 = 8u(3 + u)2/27 ̸= 0, χ1 = −l(3 + u)x3/3 ̸= 0

and hence for systems (3.80) the condition lu(3 + u) ̸= 0 holds. Then via the transformation

x1 = αx +
m(3 + u)

3l
, y1 = αy +

3 + u
3

, t1 =
t

α2 , α =
u(3 + u)

3l

systems (3.80) can be brought to the systems

ẋ = (1 + u)x(x2 + 1), ẏ = y
[
− 2 − u + (3 + u)y + ux2 − y2], (3.81)

for which we have D7 = 4(1 + u) ̸= 0 and D8 = 8u(3 + u)2/27 ̸= 0. Therefore for the above
systems the condition u(1 + u)(3 + u) ̸= 0 is satisfied.

We determine that systems (3.81) possess six distinct invariant affine straight lines

L1 : x = 0, L2,3 : x = ±i, L4 : y = 0, L5,6 : y = 1 ± ix

and the following nine finite singularities:

M1(0, 0), M2(0, 1), M3(0, 2 + u), M4,5(±i, 0), M6,7(±i, 2), M8,9(±i, 1 + u).

We observe that we could have multiple singularities for some values of the parameter u.
More exactly, in the case u = −2 the singular point M3 coalesces with M1 and we obtain a
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double singular point (0, 0). On the other hand we determine that for u = 1 the complex
singular point M8(i, 1 + u) (respectively M9(−i, 1 + u) coalesces with the complex singular
point M6(i, 2) (respectively M7(−i, 2). As a result we get two double complex singular points,
however according to Definition 1.2 this fact is irrelevant for a configuration because we take
into consideration only real singularities located on the invariant lines.

We remark that we have only three real singularities and all of them are located on the
invariant line x = 0. Two among these real singularities are fixed: M1(0, 0) (which is a point
of the intersection of the invariant lines L1 and L4) and M2(0, 1) (which is a point of the
intersection of the invariant lines L1, L5 and L6). The singular point M3(0, u + 2) depends on
the parameter u and hence could change its position with respect to the singularities M1 and
M2.

Thus, since we have M1 ≺ M2, taking into consideration our Convention (see page 8 ) we
conclude that the position of M3(0, u + 2) leads to the following four distinct configurations
of invariant lines:

u < −2 ⇒ M3 ≺ M1 ≺ M2 ⇒ Config. 7.29b;

u = −2 ⇒ M3 = M1 ≺ M2 ⇒ Config. 7.30b;

−2 < u < −1 ⇒ M1 ≺ M3 ≺ M2 ⇒ Config. 7.31b;

u > −1 ⇒ M1 ≺ M2 ≺ M3 ⇒ Config. 7.32b.

On the other hand for systems (3.81) we have

D7 = 4(1 + u), ζ7 = 4(2 + u)

and evidently we arrive at the following proposition.

Proposition 3.33. Assume that for a system (3.80) the conditions D7D8 ̸= 0 and χ1 ̸= 0 hold. Then
this system possesses one of the following four configurations of the invariant lines if and only if the
corresponding conditions are satisfied, respectively:

ζ7 < 0 ⇔ Config. 7.29b;
ζ7 = 0 ⇔ Config. 7.30b;
ζ7 > 0, D7 < 0 ⇔ Config. 7.31b;
ζ7 > 0, D7 > 0 ⇔ Config. 7.32b.

3.2.5 The statement (A5)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-
tions provided by the statement (A5) for the family of systems (3.12) lead to the conditions
(3.33).

Remark 3.34. We observe that the conditions (3.33) can be obtained as a particular case from
the conditions (3.26) by setting u = s2 (i.e. we allow the condition D8 = 0 to be satisfied). This
means that we could follow all the steps we have done in the case of the conditions (3.26) if
these steps do not depend on the condition u = s2.

Thus applying the conditions (3.33) to systems (3.12) we arrive at the family of systems
(3.51){u=s2} which is a subfamily of (3.51) defined by the condition u = s2.
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We remark that all the configurations of the family (3.51) were investigated and Proposition
3.26 provides the necessary and sufficient affine invariant conditions for the realization of each
one of the possible 12 possible configurations in the case D4 ̸= 0.

Thus we have to determine which sets of the conditions provided by Proposition 3.26 (for
D4 ̸= 0) are compatible in the case u = s2 ̸= 0. We prove the following proposition.

Proposition 3.35. Assume that for a system (3.51){u=s2} the conditions D7D6 ̸= 0 and D4 ̸= 0 hold.
Then this system possesses one of the configurations of the invariant lines presented below if and only
if the corresponding conditions are satisfied, respectively:

ζ1 < 0, ζ2 ̸= 0, ζ3 < 0 ⇔ Config. 7.2b;
ζ1 < 0, ζ2 ̸= 0, ζ3 > 0 ⇔ Config. 7.4b;
ζ1 < 0, ζ2 = 0 ⇔ Config. 7.5b;
ζ1 > 0, ζ4 ̸= 0 ⇔ Config. 7.7b;
ζ1 > 0, ζ4 = 0 ⇔ Config. 7.9b;
ζ1 = 0, ζ2 ̸= 0 ⇔ Config. 7.11b;
ζ1 = 0, ζ2 = 0 ⇔ Config. 7.12b.

Proof. Evaluating for systems (3.54){u=s2} the invariant polynomials ζ1, ζ2, ζ3, ζ4, D4 and D7

which are involved in Proposition 3.26 (for D4 ̸= 0) we obtain:

ζ1 =
1280s4

3(s2 + 9)2 κ1x2, ζ2 = 8κ2, ζ3 =
8s2

81(s2 + 9)2 κ1κ2, D4 = 2304s(9 + s2)

ζ4 =
1

(s2 + 9)2 κ2
3
[
(4s2 − 13)x2 − 2sxy − 3y2], D7 = 4(1 + s2), D6 = −4(9 + s2)/9,

where

κ1 = c(1 + s2)(9 + s2)2 + (9g − 9m + 5gs2 − 9ms2)(gs2 − 3g − 3m − 3ms2),

κ2 = c(9 + s2)2 + 3(g − 2m)(7gs2 − 9g − 18m − 18ms2),

κ3 = 9m − 4gs2 + 9ms2.

As we can see the condition D7 > 0 holds. Therefore we conclude that the configurations
Configs. 7.1b, 7.3b, 7.6b, 7.8b, 7.10b which correspond to the case D7 < 0 and are realizable for
systems (3.54) (see Proposition 3.26), could not be realizable for systems (3.54){u=s2}.

To prove the compatibility of other conditions provided by Proposition 3.26 it is sufficient
to present the examples of the realizations of the corresponding configurations for systems
(3.54){u=s2} in terms of the parameters (c, g, m, s) = (c0, g0, m0, s0) with s0 ̸= 0. So we have

Config. 7.2b: (c0, g0, m0, s0) = (−1, 1, 1,−1);
Config. 7.4b: (c0, g0, m0, s0) = (−2, 1, 1,−1);
Config. 7.5b: (c0, g0, m0, s0) = (−57/50, 1, 1,−1);
Config. 7.7b: (c0, g0, m0, s0) = (0, 1, 1,−1);
Config. 7.9b: (c0, g0, m0, s0) = (1, 0, 0,−1);
Config. 7.11b: (c0, g0, m0, s0) = (0,−3, 1, 1);
Config. 7.12b: (c0, g0, m0, s0) = (0, 0, 0, 1)

This completes the proof of Proposition 3.35.
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3.2.6 The statement (A6)

As it was shown in the proof of the statement (A) of the Main Theorem the affine invariant
conditions provided by the statement (A6) for the family of systems (3.12) according to Lemma
3.15 lead either to the conditions

u = s = k = d = h = l = e = b = 0, f = c +
g(2m − g)

3
,

a = − g − 2m
27

(
2g2 − 9c − 2gm − 4m2).

(3.82)

(for a triplet in the direction x = 0), or to the conditions

u = s = k = l = e = m = 0, d =
2gh

3
, f = c − g2

3
,

a =
g

27
(9c − 2g2), b = −2h

27
(−9c + 3g2 + 4h2)

(3.83)

(for a triplet in the direction y = 0).
It is not too difficult to detect that when conditions (3.82) are satisfied then (3.12) become

the systems

ẋ =
1
27

(g − 2m + 3x)(9c − 2g2 + 2gm + 4m2 + 6gx + 6mx + 9x2),

ẏ =
1
3

y
(
3c − g2 + 2gm + 6mx − 3y2) .

(3.84)

On the other hand, if conditions (3.83) are satisfied then we arrive at the family of systems

ẋ = − 1
27

(g + 3x)
(
−9c + 2g2 − 6gx − 18hy − 9x2) ,

ẏ =− 1
27

(2h + 3y)
(
−9c + 3g2 + 4h2 − 6hy + 9y2) .

(3.85)

We claim that systems (3.84) and (3.85) are affinely equivalent. Indeed since some parameters
of the two systems coincide we set for systems (3.85) free parameters c̃ = c, g̃ = g and h̃ = h.
Then the transformation

x1 = y − g̃/3, y1 = −x − g̃/3, t1 = −t

leads to the systems

ẋ1 =
1
27

(g1 − 2m1 + 3x)
(
9c1 − 2g2

1 + 2g1m1 + 4m2
1 + 6g1x1 + 6m1x1 + 9x2

1
)

,

ẏ1 =
1
3

y1
(
3c1 − g2

1 + 2g1m1 + 6m1x − 3y2
1
)

with g1 = g̃, m1 = −h̃ and c1 = (−3c̃ + 2g̃2)/3. In other words we have obtained exactly
systems (3.84) with new parameters c1, g1, m1. This completes the proof of our claim.

Thus in this case either the conditions (3.82) or (3.83) are satisfied in both cases using an
affine transformation and time rescaling we arrive at the same family of systems (3.84).

We observe that the family of systems (3.84) is a subfamily of (3.51) defined by the con-
dition u = s = 0. We have shown that systems (3.51) possess three parallel invariant lines
in the direction x = 0 and the kind of these lines (real, complex, distinct or coinciding) are
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determined by the polynomials λ and µ given in (3.52). For the particular case u = s = 0 (i.e.
for systems (3.84)) these polynomials become

λ
∣∣
{u=s=0} = 27(3c − g2 + m2), µ

∣∣
{u=s=0} = 27(3c − g2 + 4m2).

On the other hand we observe that the sign of the polynomial λ as well as the the value of the
polynomial µ are governed by the invariant polynomials ζ1 and ζ2 which for systems (3.51)
have the form (see page 54)

ζ1 =
80

3κ2 (s
2 + 3u)2x2λ, ζ2 = 8µ.

As we can see for u = s = 0 the invariant ζ1 vanishes, i.e. it could not be used to define the
sign of λ

∣∣
{u=s=0}, i.e. the sign of the polynomial 3c − g2 + m2.

Thus we have to define another invariant polynomial which captures the sign of 3c − g2 +

m2. Such a polynomial could be ζ8 which for systems (3.84) has the value

ζ8 = 8m2(3c − g2 + m2).

On the other hand according to the conditions provided by the statement (A6) of the Main
Theorem the condition χ15 ̸= 0 must hold. For systems (3.84) we calculate χ15 = mx3y2 ̸= 0,
i.e. m ̸= 0 and we have

sign (ζ8) = sign (3c − g2 + m2) = sign (λ
∣∣
{u=s=0}).

Thus substituting the invariant polynomial ζ1 (which vanishes) by ζ8 we could determine
which sets of the conditions provided by Proposition 3.26 are compatible in the case D8 =

D4 = 0 (i.e. u = s = 0).

Proposition 3.36. Assume that for a system (3.84) the condition χ15 ̸= 0 (i.e. m ̸= 0) holds. Then
this system possesses one of the configurations of the invariant lines presented below if and only if the
corresponding conditions are satisfied, respectively:

ζ8 < 0, ζ2 ̸= 0, ζ5 < 0 ⇔ Config. 7.14b;
ζ8 < 0, ζ2 ̸= 0, ζ5 > 0 ⇔ Config. 7.16b;
ζ8 < 0, ζ2 = 0 ⇔ Config. 7.17b;
ζ8 > 0 ⇔ Config. 7.19b;
ζ8 = 0 ⇔ Config. 7.23b.

Proof. Considering Proposition 3.26 we evaluate for systems (3.84) the invariant polynomials
ζ8 (instead of ζ1), ζ2, ζ4, ζ5 and D7 which are involved in Proposition 3.26 in the case D4 = 0.
The calculations yield:

ζ8 = 8m2(3c − g2 + m2), ζ2 = 216(3c − g2 + 4m2), ζ4 = −m2(13x2 + 3y2),

ζ5 = −64(3c − g2 + 4m2)(3c − g2 + m2), D4 = 0, D7 = 4, D6 = −4.

As we can see the conditions D7 > 0 and ζ4 ̸= 0 (due to χ15 ̸= 0, i.e. m ̸= 0) hold.
Therefore we conclude that the configurations Configs. 7.13b, 7.15b, 7.18b, 7.20b, 7.21b, 7.22b
which correspond to the case D7 < 0 (or ζ4 = 0) and are realizable for systems (3.54) (see
Proposition 3.26) could not be realizable for systems (3.84). Moreover the configuration Con-
figs. 7.24b is defined by the conditions ζ8 = ζ2 = 0, however these conditions are incompatible



The family of cubic differential systems with invariant straight lines 77

with χ15 ̸= 0. Indeed, assuming ζ8 = 0 we get c = (g2 − m2)/3 and then ζ2 = 648m2 ̸= 0 (due
to χ15 ̸= 0). Hence Configs. 7.24b could also not be realizable for systems (3.84).

To prove the compatibility of other conditions provided by Proposition 3.36 it is sufficient
to present the examples of the realization of the corresponding configurations for systems
(3.84) in terms of the parameters (c, g, m) = (c0, g0, m0). So we have

Config. 7.14b: (c0, g0, m0) = (−3/2, 1,−1);
Config. 7.16b: (c0, g0, m0) = (−1/2, 1,−1);
Config. 7.17b: (c0, g0, m0) = (−1, 1,−1);
Config. 7.19b: (c0, g0, m0) = (1, 1,−1);
Config. 7.23b: (c0, g0, m0) = (0, 1, 1).

This completes the proof of Proposition 3.36.

3.2.7 The statement (A7)

According to the proof of the statement (A) of the Main Theorem the affine invariant condi-
tions provided by the statement (A7) for the family of systems (3.12) lead to the conditions
(3.39). We observe that these conditions contain the equality H′ = 0 where the polynomial

H′ = 27a2 + 2am(9c + 4m2)− (c − f )(c2 + 4c f + 4 f 2 + 4 f m2)

is quadratic with respect to parameter a. So in order to construct the canonical form of systems
(3.12) subject to conditions (3.39) we have to examine this polynomial. We observe that

Discrim[H′, a] = 4(3c − 3 f + m2)(3c + 6 f + 4m2)2

and since according to the conditions (3.39) we must have 3c + 6 f + 4m2 ̸= 0 and 3c − 3 f +
m2 ≥ 0 we set a new parameter v as follows: 3c − 3 f + m2 = v2 ≥ 0. Then we obtain
f = (3c + m2 − v2)/3 and this implies

H′ =
[
27a + 9cm + 4m3 + 3(3c + 2m2)v − 2v3][27a + 9cm + 4m3 − 3(3c + 2m2)v + 2v3]/27 = 0.

Due to the change v → −v we may assume that the first factor vanishes and we obtain

a = −(m + v)(9c + 4m2 + 2mv − 2v2)/27.

This leads to the family of systems

ẋ = (3x − m − v)(9c + 4m2 + 2mv − 2v2 + 12mx − 6vx − 18x2)/27

≡ 1
27

L̃1(x)L̃2,3(x),

ẏ =y(3c + m2 − v2 + 6mx − 9x2 − 3y2)/3.

(3.86)

We need to determine if the two lines defined by the equation L̃2,3 = 0 are real or complex
and in the case when they are real, if one of them coincides with the invariant line L̃1 = 0 or
not. So we calculate

Discrim [L̃2,3, x] = 108(6c + 4m2 − v2) ≡ 108λ̃, Resx(L̃1, L̃2,3) = 27(3c + 2m2 − 2v2) ≡ 27µ̃

(3.87)



78 C. Bujac, D. Schlomiuk and N. Vulpe

and clearly the invariant lines L̃2,3 = 0 are real (respectively complex; coinciding) if λ̃ > 0
(respectively λ̃ < 0; λ̃ = 0). Moreover the invariant line L̃1 = 0 coincides with one of the lines
L̃2,3 = 0 if and only if µ̃ = 0.

On the other hand for systems (3.86) we calculate

ζ1 = −720λ̃x2, ζ5 = 64λ̃µ̃

and evidently we have sign (ζ1) = −sign (λ̃) and in the case ζ1 ̸= 0 the condition µ̃ = 0 is
equivalent to ζ5 = 0.

Proposition 3.37. Assume that for a system (3.86) the condition χ11 ̸= 0 holds. Then this system
possesses one of the configurations of the invariant lines presented below if and only if the corresponding
conditions are satisfied, respectively:

ζ1 < 0, ζ5 < 0 ⇔ Config. 7.13b;
ζ1 < 0, ζ5 > 0 ⇔ Config. 7.15b;
ζ1 < 0, ζ5 = 0 ⇔ Config. 7.17b;
ζ1 > 0, ζ4 ̸= 0 ⇔ Config. 7.18b;
ζ1 > 0, ζ4 = 0 ⇔ Config. 7.20b;
ζ1 = 0, ζ5 ̸= 0 ⇔ Config. 7.22b;
ζ1 = 0, ζ5 = 0 ⇔ Config. 7.24b.

Proof. Considering the above proposition we consider three cases: ζ1 < 0, ζ1 > 0 and ζ1 = 0.

a) The case ζ1 < 0. This implies λ̃ > 0 and we may set λ̃ = 3w2 > 0. Then we obtain
c = (v2 + 3w2 − 4m2)/6 and this leads to the factorization

L̃2,3 = −(2m − v − 3w − 6x)(2m − v + 3w − 6x)/2

and since the condition µ̃ = 0 implies the coalescence of two invariant lines from the triplet
we examine two subcases: ζ5 ̸= 0 and ζ5 = 0.

a.1) The subcase ζ5 ̸= 0. Then µ̃ ̸= 0 and for the value of the parameter c given above we
calculate: µ̃ = 3(w − v)(w + v)/2 ̸= 0 and we can apply to systems (3.86) the transformation

x1 =
2

(w − v)
x − 2(m + v)

3(w − v)
, y1 =

2
(w − v)

y, t1 = t(w − v)2/4.

Then setting an additional parameter a = (v + w)/(v − w) ̸= 0, 1 (because µ̃ ̸= 0 and a − 1 =

2w/(v − w) ̸= 0), we arrive at the following family of systems (we keep the old notations for
the variables):

ẋ = − 2x(x − 1)(x − a),

ẏ = y(−2a + 2x + 2ax − 3x2 − y2).
(3.88)

with a(a − 1) ̸= 0. It remains to observe that this family of systems is a subfamily of systems
(3.56) defined by the conditions u = −3 and s = 0. The canonical form (3.56) was obtained
from (3.51) via an affine transformation and time rescaling in the case ζ1 < 0 and ζ2 ̸= 0
(which imply λ > 0 and µ ̸= 0, respectively) and therefore all the invariant lines from the
triplet are real and distinct.

In the proof of Proposition 3.26 it was shown that systems (3.56) with s = 0 and a(a −
1)(u + 1) ̸= 0 possess the following configurations of invariant lines if and only if the corre-
sponding conditions are satisfied, respectively:
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a(1 + u) > 0, 1 + u < 0 ⇔ Config. 7.13b ;
a(1 + u) > 0, 1 + u > 0 ⇔ Config. 7.14b;
a(1 + u) < 0, 1 + u < 0 ⇔ Config. 7.15b ;
a(1 + u) < 0, 1 + u > 0 ⇔ Config. 7.16b.

Since for the systems (3.88) is a subfamily of systems (3.56) defined by the conditions u = −3
and s = 0 we have 1 + u = −2 < 0. Therefore we conclude that systems (3.88) could not
possess configurations Config. 7.14b and Config. 7.16b.

On the other hand for these systems we have

ζ5 = −1152a(a − 1)2 ⇒ sign (ζ5) = −sign (a)

and hence we arrive at Config. 7.13b if ζ5 < 0 and at Config. 7.15b if ζ5 > 0. So we deduce that
in the case ζ1 < 0 and ζ5 ̸= 0 systems Proposition 3.37 is true.

a.2) The subcase ζ5 = 0. Then µ̃ = 0 and we get (w − v)(w + v) = 0. We may assume
w − v = 0 due to change w → −w. So setting v = w ̸= 0 we obtain c = −2(m − w)(m + w)/3
and therefore systems (3.86) become as systems

ẋ = 2(m − 2w − 3x)(m + w − 3x)2/27,

ẏ = y
[
− (m − w)(m + w)y/3 + 2mxy − 3x2y − y3].

We observe that the above systems via the transformation

x1 = − 1
w

x +
m + w

3w
, y1 = − 1

w
y, t1 = tw2

can be brought to the system

ẋ = − 2x2(x − 1), ẏ = y(2x − 3x2 − y2).

This system is contained in the family (3.59) for u = −3 and s = 0. Since systems (3.59) in
the case s = 0 possess the unique configuration of invariant line given by Config. 7.17b we
conclude that Proposition 3.37 is true also in the case ζ1 < 0 and ζ5 = 0.

b) The case ζ1 > 0. This implies λ̃ < 0 and we may set λ = −3w2 < 0. So we obtain
c = (v2 − 3w2 − 4m2)/6 and this leads to the family of systems

ẋ = (m + v − 3x)
[
9w2 + (−2m + v + 6x)2]/54,

ẏ =− y(2m2 + v2 + 3w2 − 12mx + 18x2 + 6y2)/6,
(3.89)

for which we examine two subcases: v ̸= 0 and v = 0. These conditions are governed by the
invariant polynomial ζ4 = −v2(13x2 + 3y2).

b.1) The subcase ζ4 ̸= 0. Then v ̸= 0 and via the transformation

x1 = −2
v

x +
2(m + w)

3v
, y1 = −2

v
y, t1 = tv2/4

after the additional setting of the parameter a = w/v ̸= 0 systems (3.89) can be brought to the
systems

ẋ = − 2x
[
(x − 1)2 + a2], ẏ = y(−2 − 2a2 + 4x − 3x2 − y2). (3.90)

So we get a subfamily of systems (3.61) defined by the conditions u = −3 and s = 0. We
observe that systems (3.61) in the case s = 0 possess 2 configurations: Config. 7.18b if u + 1 < 0
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and Config. 7.19b if 1 + u > 0. However for systems (3.90) we have 1 + u = −2 < 0 and
therefore we obtain the unique configuration Config. 7.18b.

b.2) The subcase ζ4 = 0. Then v = 0 and since w ̸= 0 in this case we apply to systems (3.89)
the transformation

x1 = − 2
w

x − 2m
3w

, y1 = − 2
w

y, t1 = tw2/4

obtaining the following system

ẋ = − 2x(1 + x2), ẏ = −y(2 + 3x2 + y2).

which is contained in the family (3.63) for u = −3 and s = 0. Since for this system we have
D4 = 0, ζ1 > 0, ζ4 = 0 and D7 = −8 < 0, according to Proposition 3.26 we deduce that the
above system possesses the unique configuration given by Config. 7.20b.

c) The case ζ1 = 0. This implies λ̃ = 0 and considering (3.87) we obtain c = (v2 − 4m2)/6
and this leads to the systems

ẋ = (2m − v − 6x)2(m + v − 3x)/54,

ẏ =− y(2m2 + v2 − 12mx + 18x2 + 6y2)/6,

for which we calculate ζ4 = −v2(13x2 + 3y2).

c.1) The subcase ζ4 ̸= 0. Then v ̸= 0 and via the transformation

x1 = −2
v

x +
2(m + v)

3v
, y1 = −2

v
y, t1 = tv2/4

we arrive at the following system

ẋ = − 2(x − 1)2x, ẏ = y(−2 + 4x − 3x2 − y2)

which belongs to the family (3.63) for u = −3 and s = 0 already examined. We observe that
systems (3.63) in the case s = 0 possess 2 configurations: Config. 7.22b if u + 1 < 0 and Config.
7.23b if u + 1 > 0. However for the above system we have 1 + u = −2 < 0 and therefore we
obtain the unique configuration Config. 7.22b.

c.1) The subcase ζ4 = 0. Then v = 0 and we get the systems

ẋ = 2(m − 3x)3/27, ẏ = −y(m2 − 6mx + 9x2 + 3y2)/3

which via the transformation x1 = x − m/3, y1 = y, t1 = t will be brought to the homoge-
neous systems

ẋ = − 2x3, ẏ = −y(3x2 + y2).

This system belongs to the family (3.65) for u = −3 and s = 0 already examined and in the
case s = 0 it was determined that we have the unique configuration Config. 7.24b.

As all the cases are examined we deduce that Proposition 3.37 is proved.

3.2.8 The statement (A8)

We prove the following proposition.

Proposition 3.38. Assume that for a system (3.12) the conditions provided by the statement (A8) of
the Main Theorem are satisfied. Then this system possesses one of the configurations of the invariant
lines presented below if and only if the corresponding conditions are satisfied, respectively:
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D4 ̸= 0, χ5 ̸= 0, ζ3 < 0 ⇔ Config. 7.33b;
D4 ̸= 0, χ5 ̸= 0, ζ3 > 0 ⇔ Config. 7.34b;
D4 ̸= 0, χ5 = 0 ⇔ Config. 7.35b;
D4 = 0, ζ2 ̸= 0, ζ5 < 0 ⇔ Config. 7.36b;
D4 = 0, ζ2 ̸= 0, ζ5 > 0 ⇔ Config. 7.37b;
D4 = 0, ζ2 = 0 ⇔ Config. 7.38b.

Proof. As it was proved in the proof of the statement (A) of the Main Theorem the affine
invariant conditions provided by the statement (A8) for the family of systems (3.12) lead to
the conditions (3.43) in the case D4 ̸= 0 and to the conditions (3.44) in the case D4 = 0. So we
consider two cases: D4 ̸= 0 and D4 = 0.

1: The case D4 ̸= 0. Then for the family of systems (3.12) the conditions (3.43) are satisfied
and we arrive at the systems

ẋ =
1

64s2 (8sx − 3l)(8gsx + 3lg + 8cs) ≡ 1
64s2 L(1)

1 L(1)
2 ,

ẏ =
l

256s2 (9l2 + 12lgs + 32cs2 + l2s2)− l
64s

(21l − 8gs + ls2)x + lx2

+
1

64s2 (3l2s2 − 9l2 + 24lgs + 64cs2)y − 1
4s
(ls2 − 3l − 4gs)xy − sx3 − x2y − sxy2 − y3.

(3.91)
Next we investigate if the invariant lines L(1)

1 = 0 and L(1)
2 = 0 could coincide. So we calculate

Resx(L(1)
1 , L(1)

2 ) = 16s(3lg + 4cs) ≡ 16sµ(1)

and since s ̸= 0 we conclude that these two parallel invariant lines could coincide if and only
if µ(1) = 0. We determine that this condition is governed by the invariant polynomial χ5

because for systems (3.91) we have

χ5 = −(3lg + 4cs)(9 + s2)/18.

a) The case χ5 ̸= 0. Then µ(1) ̸= 0 and due to gs ̸= 0 via the transformation

x1 = − 4gs
µ(1)

x +
3lg

2µ(1)
, y1 = − 4gs

µ(1)
y − lgs

2µ(1)
, t1 =

[
µ(1)]2

16g2s2 t,

after the additional setting of a new parameter a = − 4g2s
µ(1) we arrive at the systems

ẋ = ax(x − 1), ẏ = −ay + axy − sx3 − x2y − sxy2 − y3 (3.92)

for which we have χ5 = 2as(9 + s2)/9 ̸= 0, i.e. as ̸= 0.
We determine that systems (3.92) possess five distinct invariant affine straight lines

L1 : x = 0, L2 : x = 1, L3 : y = −sx, L4,5 : y = ±ix

and by Lemma 3.2 the line at infinity is of multiplicity 2. On the other hand these systems
possess the following six finite singularities:

M1(0, 0), M2,3
(
0,±

√
−a

)
, M4,5(1,±i), M6(1,−s).
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We observe that the singular points M2,3 could be real (if a < 0) or complex (if a > 0), but they
could not coincide due to a ̸= 0. We draw attention to the fact that all these finite singularities
are simple, because three finite singular points coalesced with infinite singularities.

Indeed considering Lemma 2.7 for systems (3.92) we calculate

µ0 = µ1 = µ2 = 0, µ3 = a3(sx + y)(x2 + y2) ̸= 0.

So by Lemma 2.7 (see statement (i)) considering the factorization of the invariant polynomial
µ3 we deduce that one real finite singular point coalesced with the real infinite singularity
N[1 : −s : 0] which becomes of the multiplicity (1, 1) (see Remark 1.4). And simultaneously
two complex finite singularities coalesced with the complex infinite singularities located at the
intersection of the complex lines y = ±ix with the line at infinity Z = 0 (however according
to Definition 1.2 of a configuration, we do not consider the complex singularities).

On the other hand all the invariant lines of systems (3.92) are fixed, except for the invariant
line L3 : y = −sx. Moreover we will determine according to our Convention (see page 8) the
position of this line with respect to the complex lines L4,5 : y = ±ix . Since s ̸= 0, according to
Remark 3.27 the invariant line y = −sx does not coincide with the projection of the complex
invariant lines y = ±ix on the plane (x, y).

We remark that the singular point M1(0, 0) is a point of intersection of four invariant lines:
L1, L3, L4 and L5 and that in the case a < 0 the real singular points M2,3

(
0,±

√
−a

)
, located

on the invariant line x = 0, are symmetric with respect to the origin of coordinates. As a result
we arrive at the following two distinct configurations of invariant lines for systems (3.92) with
as ̸= 0: Config. 7.33b if a < 0 and Config. 7.34b if a > 0.

On the other hand for systems (3.92) we calculate ζ3 = 2a3s2(9 + s2)2/81 and hence
sign (a) = sign (ζ3). So we deduce that systems (3.92) possess the configuration Config. 7.33b
if ζ3 < 0 and Config. 7.34b if ζ3 > 0.

b) The case χ5 = 0. This implies µ(1) = 0 and this means that the invariant line L(1)
1

coalesces with L(1)
2 and we have a double invariant line in the direction x = 0. The condition

µ(1) = 0 yields 3lg + 4cs = 0, i.e. c = −3lg/(4s). In this case systems (3.91) can be brought
via the transformation

x1 =
1
g

x − 3l
8gs

, y1 =
1
g

y +
l

8g
, t1 = g2 t,

to the family of systems

ẋ = x2, ẏ = xy − sx3 − x2y − sxy2 − y3 (3.93)

with s ̸= 0 (due to D4 ̸= 0). We determine that the above systems possess four distinct
invariant affine straight lines

L1,2 : x = 0, L3 : y = −sx, L4,5 : y = ±ix.

We observe that the line x = 0 as well as the line at infinity are of multiplicity 2 (see Lemma
3.2). On the other hand these systems possess the unique singularity M1(0, 0) which is of the
multiplicity six. Indeed considering Lemma 2.7 for systems (3.93) we calculate

µ0 = µ1 = µ2 = 0, µ3 = (sx + y)(x2 + y2) ̸= 0, µ4 = µ5 = µ6 = µ7 = µ8 = µ9 = 0.

Therefore by Lemma 2.7 (see statement (ii)) the above finite singularity has multiplicity six.
On the other hand by the same arguments which we provided for systems (3.92) we deduce
that the infinite singularity N[1 : −s : 0] is of the multiplicity (1, 1).
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So taking into account the condition s ̸= 0 and Remark 3.27 as well as the fact that all
the invariant affine lines of systems (3.93) intersect at the same singular point M1(0, 0) (of
multiplicity 6) we arrive at the unique configuration Config. 7.35b.

2: The case D4 = 0. Then for the family of systems (3.12) the conditions (3.44) are satisfied
and we arrive at the systems

ẋ =
1
4
(g − 2m + 2x)(2c − g2 + 2gm + 2gx) ≡ 1

4
L(2)

1 L(2)
2 ,

ẏ =
1
4
(4c − 3g2 + 8gm − 4m2)y + 2mxy − x2y − y3.

(3.94)

We calculate
Resx(L(2)

1 , L(2)
2 ) = 4(c − g2 + 2gm) ≡ 4µ(2)

and clearly the parallel invariant lines L(1)
1 = 0 and L(1)

2 = 0 could coincide if and only if
µ(2) = 0.

On the other hand for systems (3.94) we have ζ2 = 288µ(2) and therefore the condition
µ(2) = 0 is equivalent to ζ2 = 0.

a) The case ζ2 ̸= 0. Then since g ̸= 0 (due to χ̃1 = 2gx2y/3 ̸= 0) via the transformation

x1 = − g
µ(2)

x − g(g − 2m)

2µ(2)
, y1 = − g

µ(2)
y, t1 =

[
µ(2)]2

g2 t,

after the additional setting of a new parameter a = − g2

µ(2) we arrive at the systems

ẋ = ax(x − 1), ẏ = −ay + axy − x2y − y3.

So we get a subfamily of systems (3.92) defined by the condition s = 0 and considering the
investigation of systems (3.92) and Remark 3.27 we deduce that the above systems possess the
configuration Config. 7.36b if a < 0 and Config. 7.37b if a > 0.

We observe that in the case s = 0 the invariant polynomial ζ3 vanishes because it contains
as a factor s2. In this case for determining the sign of the parameter a we apply the invariant
ζ5 that for the above systems has the value ζ5 = −144a3. Hence we have sign (a) = −sign (ζ5)

and consequently we get the configuration Config. 7.36b if ζ5 > 0 and Config. 7.37b if ζ5 < 0.

b) The case ζ2 = 0. Then µ(2) = 0 and this means that the invariant line L(2)
1 coalesces with

L(2)
2 and we have a double invariant line in the direction x = 0. The condition µ(2) = 0 yields

c = g(g − 2m) and then systems(3.94) via the transformation

x1 =
x
g
+

g − 2m
2g

, y1 =
y
g

y, t1 = g2 t,

can be brought to the system

ẋ = x2, ẏ = xy − x2y − y3,

which belongs to the family (3.93) defined by the condition s = 0. Considering Remark 3.27
we deduce that the above system possesses the configuration Config. 7.38b.

Since all the cases are examined we conclude that Proposition 3.38 is proved.
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3.2.9 The statement (A9)

We prove the following proposition.

Proposition 3.39. Assume that for a system (3.12) the conditions provided by the statement (A9) of
the Main Theorem are satisfied. Then this system possesses one of the configurations of the invariant
lines presented below if and only if the corresponding conditions are satisfied, respectively:

D4 ̸= 0, ζ9 < 0 ⇔ Config. 7.39b;
D4 ̸= 0, ζ9 > 0 ⇔ Config. 7.40b;
D4 = 0, ζ9 < 0 ⇔ Config. 7.41b;
D4 = 0, ζ9 > 0 ⇔ Config. 7.42b;

Proof. According to the proof of the statement (A) of the Main Theorem the affine invariant
conditions provided by the statement (A9) for the family of systems (3.12) lead either to the
conditions (3.47) in the case D4 ̸= 0 or to the conditions (3.49). So we examine these two cases.

1: The case D4 ̸= 0. Then we have the conditions (3.47) and in this case we arrive at the
systems

ẋ = cx − 3cl
8s

,

ẏ =
l

256s2 (9l2 + 32cs2 + l2s2)− l2

64s
(21 + s2) x +

1
64s2 (3l2s2 − 9l2 + 64cs2) y

+ lx2 − l
4s
(s2 − 3) xy − sx3 − x2y − sxy2 − y3.

For these systems we have

χ̃2 = 4cx3(sx + y)(x2 + y2)
[
(3s2 − 1)x2 + 8sxy + (3 − s2)y2]/3, D4 = 2304s(9 + s2)

and therefore the condition χ̃2D4 ̸= 0 implies cs ̸= 0. Then the above systems could be
brought via the transformation

x1 = x − 3l
8s

, y1 = y +
l
8

, t1 = t

to the following family of systems

ẋ = cx, ẏ = cy − sx3 − x2y − sxy2 − y3 (3.95)

with cs ̸= 0. We determine that systems (3.95) possess four distinct invariant affine straight
lines

L1 : x = 0, L2 : y = −sx, L3,4 : y = ±ix.

Moreover the line at infinity has multiplicity 3 (see Lemma 3.2, statement (iii)). On the other
hand these systems possess the following three singularities:

M1(0, 0), M2,3
(
0,±

√
c
)

and the singular points M2 and M3 could be real (if c > 0) or complex (if c < 0). We draw
attention to the fact that all these finite singularities are simple, because six finite singularities
coalesced with infinite singularities.
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Indeed considering Lemma 2.7 for systems (3.95) we calculate

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = −c3(sx + y)2(x2 + y2)2 ̸= 0.

So by Lemma 2.7 (see statement (i)) considering the factorization of the invariant polynomial
µ6 we deduce that two real finite singular point coalesced with the real infinite singularity
N1[1 : −s : 0] and this infinite singularity becomes of the multiplicity (2, 1) (see Remark
1.4), whereas four complex finite singularities coalesced with complex singularities at infinity.
More exactly, two of them with N[1 : +i : 0] and other two with N̄[1 : −i : 0]. However
according to Definition 1.2 this fact is irrelevant for a configuration.

So taking into account our Convention (see page 8) and the fact that all the invariant affine
lines of systems (3.95) intersect at the same singular point M1(0, 0) (of multiplicity 6) we arrive
at the following two configurations:

Config. 7.39b ⇔ c > 0; Config. 7.40b ⇔ (c < 0).

On the other hand for systems (3.95) we calculate

ζ9 = −2cx2[(3s2 − 1)x2 + 8sxy + (3 − s2)y2]2/27

and hence sign (ζ9) = −sign (c). Therefore we get Config. 7.39b if ζ9 < 0 and Config. 7.40b if
ζ9 > 0.

2: The case D4 = 0. Then s = 0 and in this case the conditions (3.49) hold for systems
(3.12). In this case we arrive at the systems

ẋ = − cm + cx, ẏ = (c − m2)y + 2mxy − x2y − y3

applying the transformation (x, y, t) 7→ (x + m, y, t) we arrive at the systems (3.95) with s = 0.
Thus considering our Convention (see page 8) and the sign of the invariant polynomial ζ9

we arrive at the configuration of invariant lines given by Config. 7.41b if ζ9 < 0 and by Config.
7.42b if ζ9 > 0. This completes the proof of Proposition 3.39.

Since all the cases provided by the statement (A) are examined we conclude that the
statement (B) of the Main Theorem is proved completely.

3.3 Geometric invariants and the proof of the statement (C)

In this subsection we complete the proof of the Main Theorem by showing that all 42 con-
figurations of invariant lines we constructed are non-equivalent according to Definition 1.3.
For this we define the invariants that split the configurations of this family into the 42 dis-
tinct ones. We would like these invariants to be among those best suited for describing the
geometric phenomena that are specific to this class.

The basic algebraic-geometric definitions of use here are the notion of an integer valued
r-cycle and its type i.e. we take G = Z in the Definitions 1.5 and 1.6 and we have:

Definition 3.40. Let V be an irreducible algebraic variety of dimension n over a field K. A
cycle of dimension r or r-cycle on V is a formal sum ∑W m(W)W where W is a subvariety of V
of dimension r which is not contained in the singular locus of V, m(W) ∈ Z, and only a finite
number of m(W)’s are non-zero. We call degree of an r-cycle the sum ∑W . An (n − 1)-cycle is
called a divisor.
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Definition 3.41. We call type of an r-cycle the set of all ordered couples (n1, n2) where n1 is
a coefficient, n1 = m(W) appearing in the r − cyle and n2 is the number of W’s in the cycle
whose coefficient is m(W).

We denote the type of an r-cycle C by T (C). We use the following notations:

CS =

{
(S)

∣∣∣∣ (S) is a system (2.1) such that gcd(P(x, y), Q(x, y)) = 1
and max

(
deg(P(x, y)), deg(Q(x, y))

)
= 3

}
;

CSL =

{
(S) ∈ CS

∣∣∣∣ (S) possesses at least one invariant affine line or
the line at infinity with multiplicity at least two

}
.

Notation 3.42. Let

P̃(X, Y, Z) = p0(a)Z2 + p1(a, X, Y)Z + p2(a, X, Y);

Q̃(X, Y, Z) = q0(a)Z2 + q1(a, X, Y)Z + q2(a, X, Y);

C̃(X, Y, Z) = YP̃(X, Y, Z)− XQ̃(X, Y, Z);

σ(p, q) = {w ∈ R2)| p(w) = q(w) = 0};

DS(P̃, Q̃) = ∑
w∈σ(P̃,Q̃)

Iw(P̃, Q̃)w;

DS(C̃, Z) = ∑
w∈{Z=0}

Iw(C̃, Z)w if Z ∤ C̃(X, Y, Z);

DS(P̃, Q̃; Z) = ∑
w∈{Z=0}

Iw(P̃, Q̃)w;

D̂S(P̃, Q̃, Z) = ∑
w∈{Z=0}

(
Iw(C̃, Z), Iw(P̃, Q̃)

)
w,

where Iw(F, G) is the intersection number (see [19]) of the curves defined by homogeneous
polynomials F, G ∈ C[X, Y, Z] and deg(F), deg(G) ≥ 1.

The set σ(p, q) is thus formed by the finite (or affine) singularities of a polynomial system
defined by p(x, y), q(x, y). The multiplicity of a finite singular point w is the number Iw(p, q)
which is the intersection number of the affine curves defined by p and q. The total multiplicity
of a point at infinity, i.e. located on Z = 0 is Iw(P̃, Q̃) and it is the sum Iw(C̃, Z) + Iw(P̃, Q̃)

of the two multiplicities appearing in the last divisor above. A complex projective line uX +

vY + wZ = 0 in P2(C) is invariant for a system (S) if it either coincides with Z = 0 or it is the
projective completion of an invariant affine line ux + vy + w = 0.

Notation 3.43. Let (S) ∈ CSL. Let us denote

IL(S) =
{

l
∣∣∣∣ l is a line in P2(C) such

that l is invariant for (S)

}
;

M(l) = the multiplicity of the invariant line l of (S).

In defining M(l) we assume, of course, that (S) has a finite number of invariant lines.

Remark 3.44. We note that the line L∞ : Z = 0 is included in IL(S) for any (S) ∈ CSL.

Assuming we have a finite number of invariant lines, let li : fi(x, y) = ax + by + c = 0,
i = 1, . . . , k, be all the distinct invariant affine lines (real or complex) of a system (S) ∈ CSL.
Let Li : Fi(X, Y, Z) = aX + bY + cZ = 0 be the complex projective completion of li. Let Mi
be the multiplicity of the line Li and let M be the multiplicity of the line at infinity Z = 0.
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Notation 3.45.

G : ∏
i
Fi(X, Y, Z)Mi ZM = 0; SingG = {w ∈ G | w is a singular point of G} ;

m(w) = the multiplicity of the point w, as a point of G.

We call G the total curve.
Suppose that a system (2.1) possesses a finite number of invariant lines L1, . . . Lk, including

the line at infinity. Sometimes it is convenient to consider in our discussion a number of
these invariant lines say Li1 , . . . Lil of a system (S). We call marked system (S) by the lines
Li1 , . . . Lil the object denoted by (S, Li1 , . . . Lil ) of the system (S) in which we singled out the
lines Li1 , . . . Lil . We shall consider invariants attached to such marked systems.

Because in this paper we are concerned with triplets of parallel lines, the affine plane clearly
plays an important role. This needs to be reflected in our choice of invariants. We now define
an invariant that captures the most basic geometric distinctions of the configurations in this
family:

Definition 3.46. Let M be the ordered couple (MAff , M(l∞)), where MAff is the maximum
multiplicity of the invariant affine lines of the system and M(l∞) is the multiplicity of the line
at infinity. Clearly M is an invariant.

Using M we split the 42 configurations in 6 classes: three with M(l∞) = 1 and three with
M(l∞) > 1.

We describe now the way the invariant M captures the geometry of the configurations
related to the parallel lines by letting M run through all its six possible values: the generic
case and five limiting cases:

M = (1, 1) This is the generic case with 3 (distinct) parallel lines;
M = (2, 1) is a first limit case of the preceding one, where two of the three parallel lines

coalesced yielding just two parallel lines, one of them double;
M = (3, 1) is a second limit case where the three parallel lines coalesced yielding a triple

line;
M = (1, 2) is a third limit case where a line of the triplet coalesced with the line at infinity

yielding a double line at infinity;
M = (1, 3) is a fourth limit case where two lines of the triplet disappeared at infinity

yielding a triple line at infinity;
M = (2, 2) is a fifth limit case when one one line of the triplet went to infinity and the

other two lines of the triplet coalesced.
It is clear that we also need to define invariants that relate to the real singularities of the

systems located on the configurations. We first observe that all the real singularities of the
systems are located on the invariant lines of the configurations, occasionally even on a single
line.

We encapsulate in two zero-cycles CR
Sing = ∑w ν(w)w and CR

G = ∑w m(w)w the multiplicity
properties of the real singularities of the systems located on the configurations. In the first
cycle we denoted by ν(w) the multiplicity of the real singular point w and in the second cycle
we denoted by m(w) the multiplicity of the real singular point w this time regarded as a
simple or multiple point of the total curve G. We denote their respective types by T R

Sing and
T R
G . In view of the geometry of the systems we actually only need to consider the restriction

of these two invariants on the affine plane and we denote them by T R,aff
Sing and T R,aff

G . If anyone

of these two invariants, say T R,aff
G yields the same value for two or more configurations, to be
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Figure 3.1: Diagram of non-equivalent configurations

able to distinguish we shall need to restrict its value to a single affine line L and in this case
the resulting invariant will be denoted by T R

G,L.
Assume that for a marked system (S, Lr, Lc, L̄c) with a real invariant line Lr and a complex

invariant line Lc together with its conjugate line L̄c these three invariant lines intersect at the
same real point which could be finite or infinite.

Considering our Convention (see page 8) we define an invariant T fin
L for such marked

systems (S, Lr, Lc, L̄c) in the case when the intersection point is finite:

T fin
L = 1 if and only if the real invariant line Lr coincides with the line R(Lc, L̄c) : y = ax+ c
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Figure 3.1 (cont.): Diagram of non-equivalent configurations

defined in our Convention on page 6;
T fin

L = 0 if and only if the the real invariant line Lr does not coincide with R(Lc, L̄c).
Let us now consider the generic case M = (1, 1) which is the more complex one. This class

contains 30 configurations i.e. all Config. 7.jb with j ≤ 32 with two exceptions: Config. 7.12b and
Config. 7.22b. To distinguish the corresponding configurations the first one of the invariants we
use is T R,aff

Sing and its values for this class are: T R,aff
Sing : {(1, 1)}, {(1, 1), (2, 1)}, {(1, 3)}, {(1, 5)}.

For the second case we then only need to apply T R
G,Lm

while for the first and last case to
distinguish further the configurations we need to apply first T R

G,Lm
, where Lm is the middle

line in the triplet of parallel lines and secondly the invariant T fin
L . In the third case, i.e.

T R,aff
Sing = {(1, 3)} we first use T R,aff

G which has three values and for two of them T R
G,Lm

together

with T fin
L distinguish the configurations. For the value T R,aff

G = {(1, 1), (2, 1), (3, 1)} we need
a new invariant which we denote by T≺ and define as follows:

We first observe that for all six configurations occurring for T R,aff
G = {(1, 1), (2, 1), (3, 1)}

all real affine singularities are located on a single real affine line and they are three in number
determining a closed interval on this line. Based on this observation we introduce this new
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invariant. We consider these three real singular points and their associated multiplicities as
simple or multiple points of the curve G. We first note that the maximum multiplicity of the
three points in all six cases is either 3 or 4 and this maximum multiplicity corresponds to a
uniquely determined point. We then list the multiplicities m(w) in an ordered sequence in
the following way. If we have an end point of the segment determined by the three points
which is of maximum multiplicity, we initiate the sequence with its multiplicity and we folow
with the multiplicity of the middle point and end with the multiplicity of the other end point
of the segment. If none of the end points has maximum multiplicity then we start with
the multiplicity of the end point of maximum multiplicity among the two and follow with
the multiplicity of the middle point and finally with the multiplicity of the other end point.
In case the two end points have equal multiplicity we start with the common multiplicity
followed by the multiplicity of the middle point and end with the common multiplicity of the
end points. This order is clearly preserved as the multiplicities are preserved. So this is an
invariant which we denote by T≺. The case T R,aff

G = {(1, 1), (2, 1), (3, 1)} is the only one where
this invariant occurs. For the remaining values of M to distinguish the configurations the two
invariants T R,aff

Sing and T fin
L do the job as we see in the bifurcation diagram for the configurations

which gives all the explicit calculations of the invariants (see Figure 5).
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