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Abstract. In this work we study a Nicholson-type periodic system with variable delay,
density-dependent mortality and linear harvesting rate. Using the topological degree
and Lyapunov stability theories, we obtain sufficient conditions that allow us to demon-
strate the existence of periodic solutions for the Nicholson-type system and, under suit-
able conditions, the uniqueness and local exponential stability of the periodic solution
is established. We illustrate our results with an example and numerical simulations.
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1 Introduction

In recent years, the question of the existence of periodic solutions for Nicholson-type sys-
tems with periodic coefficients has received the attention of many researchers. This class of
systems of differential equations with delays was introduced as a coupled patch population
model for marine protected areas and B-cell chronic lymphocytic leukemia [7]. However, it
has been pointed out that the new models applied to the fishery must consider nonlinear
density-dependent mortality rates [6]. Consequently, research on Nicholson-type equations
and systems with density-dependent mortality has developed rapidly. But despite that, few
studies have considered periodic Nicholson models with density-dependent mortality and
harvesting. The goal of this article is to investigate the existence and stability of positive
periodic solutions for a m-dimensional Nicholson-type system with periodic coefficients, non-
linear mortality rates, and linear harvesting.
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1.1 The Nicholson models

In [16] Gurney, Blythe and Nisbet proposed a model to describe the behavior of a population
of flies that had been studied in the 1950s by Nicholson [27]. The model corresponds to the
following delayed differential equation

ẋ(t) = −mx(t) + bx(t− τ) exp
{
−γ−1x(t− τ)

}
, (1.1)

where x is the density of the adult population, m is the per capita mortality rate, b the maxi-
mum birth rate, τ is the time to maturity and γ indicates where the unimodal function reaches
its maximum. Equation (1.1) is known as the Nicholson model.

In [7] Berezansky, Idels and Troib studied the dynamics of metapopulation models with
migration between two patches. Within the models studied, the authors considered a model
of a marine population, with an age structure that inhabits two areas, one protected and the
other for extraction. From this model, they obtained the system of differential equations with
delay:

ẋ1(t) = −(m1 + d1)x1(t) + b1x1(t− τ) exp
{
−γ−1

1 x1(t− τ)
}
+ d2x2(t)

ẋ2(t) = −(m2 + d2 + h)x2(t) + b2x2(t− τ) exp
{
−γ−1

2 x2(t− τ)
}
+ d1x1(t),

(1.2)

where xi corresponds to the densities of adult populations, mi are the per capita mortality
rates, di are the diffusion rates between patches, bi are the maximum birth rates, γi indicates
where the unimodal functions reaches its maximum, τ is the time to maturity, and h is the
harvesting rate. Due to the presence of a nonlinear birth rate that considers delay, models
similar to (1.2) are known as Nicholson-type systems.

The model (1.2) has been extended to the non-autonomous case to consider variations due
to the passage of time, such as the seasons of the year, which has led to the study of periodic
and almost periodic solutions, see [14, 15, 22, 28, 29, 35].

Since the model (1.2) allows predicting the dynamics of an adult population, it is relevant
to include some types of harvesting in them so that they can be applied in models of fishery or
agricultural livestock production. Different authors have considered Nicholson-type equations
and systems with linear harvesting [13,24,38] and nonlinear harvesting [1,4,5] among others.

Berezansky, Braverman, and Idels in [6] mention that for marine populations at low den-
sities it is appropriate a linear model of density-dependent mortality and that new fishery
models must consider nonlinear density-dependent mortality rates. Afterward, research on
Nicholson-type equations and systems with density-dependent mortality has been developing
rapidly, see [3, 8, 9, 19, 23, 25, 30, 33]. However, the study of periodic Nicholson models with
density-dependent nonlinear mortality and harvesting terms have not yet been sufficiently
explored and this work aims to contribute in this direction.

1.2 Novelty of this work

We consider a Nicholson-type system with nonlinear density-dependent mortality, linear har-
vesting terms, and several concentrated delays of the form

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t− τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)
cij(t) + xj(t)

− hi(t)xi(t) (1.3)
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where r(x) = x exp(−x), and δij , cij, bij , τij, hi : R → (0,+∞) , i = 1, . . . , m, j = 1, . . . , n, are
bounded, continuous and ω–periodic functions.

Note that the above system includes the case where each patch considers a different Ricker-
type function, namely ri(yi) = yie−γ−1

i yi . In fact, in this case the system (1.3) is obtained by
making the change of variable yi = γixi.

Our objective is to apply topological degree and Lyapunov stability theory to the system
(1.3) to determine the conditions that guarantee the existence and exponential stability of
periodic solutions of the system.

1.3 Outline

Section 2 deals with fundamental preliminary aspects of this work, particularly the theory of
differential equations with delay and a theorem of continuation of the topological degree; In
addition, a result of the existence of solutions and a priori estimates are obtained. Section 3
establishes the main results of this work: Theorem 3.1 provides sufficient conditions for the
existence of positive periodic solutions, while Theorems 3.3 and 3.5 prove the local asymp-
totic and exponential stability, respectively. Section 4 focuses on an example and its numerical
simulations. Section 5 is dedicated to the conclusions and discussion of the results, particu-
larly the possible extension of the present study to one involving nonlinear harvesting terms
previously considered in population models, see [18, 34].

2 Preliminaries

2.1 Delay differential equations

Time delays occur naturally in many population dynamical models and their presence is due,
among others, to factors like sexual maturity or gestation. Mathematical models with time-
delays has a significant role in population dynamics, we refer the reader to [12, 26, 32, 36].
Delayed differential equations may exhibit more complex dynamics than ODE’s because of
the presence of delay may induce a Hopf bifurcation, periodic and oscillatory solutions or
chaos, see [17, 21, 36].

We introduce some definitions and notation for delay differential equations. For τ ≥ 0,
we consider C = C([−τ, 0], Rm) the Banach space with the norm ‖ϕ‖τ = sup−τ≤θ≤0 ‖ϕ(θ)‖,
where ‖ · ‖ is the maximum norm in Rm. Any vector v ∈ Rm is identified in C with the constant
function v(θ) = v for θ ∈ [−τ, 0]. A general system of functional differential equations take
the form

ẋ(t) = f (t, xt), (2.1)

where f : R× C ⊃ D 7→ Rm and xt corresponds to the translation of a function x(t) on the
interval [t− τ, t] to the interval [−τ, 0], more precisely xt ∈ C is given by xt(θ) = x(t + θ), θ ∈
[−τ, 0].

A function x is said to be a solution of system (2.1) on [−τ, A) if there is A > 0 such
that x ∈ C([−τ, A), Rm), (t, xt) ∈ D and x(t) satisfies (2.1) for t ∈ [0, A). For given φ ∈ C,
we say x(t; 0, φ) is a solution of system (2.1) with initial value φ at 0 if there is an A > 0
such that x(t; 0, φ) is a solution of equation (2.1) on [−τ, A) and x0(t; 0, φ) = φ. In addition,
for a given continuous and bounded function f ∈ C(R, R) we will denote by f+ and f−

respectively, the supremum and infimum of f over R. Now, for system (1.3) we consider
τ := max{τ+

ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
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Since nonnegative solutions are significant for population models, the following subsets of
C are often introduced :

C+ := C([−τ, 0], Rm
+), C0 := {φ ∈ C+ : φi(0) > 0, 1 ≤ i ≤ m}.

Theorem 2.1. The system (1.3) has a unique nonnegative solution defined over [−τ,+∞) for each
initial condition φ ∈ C+.

Proof. We will denote by Fi(t, x(t), x(t− τi1(t)), . . . , x(t− τij(t))) the right hand side of system
(1.3) and x(t) = (x1(t), . . . , xm(t))T, then (1.3) can be written as,

ẋ(t) = F(t, x(t), x(t− τ11(t)), . . . , x(t− τmn(t))), (2.2)

where F : R+ × (Rm
+)

mn+1 → Rm. We denote Fx to the derivative of F respect to the state x(t),
consequently the map Fx : R+ × (Rm

+)
mn+1 → M(R)m×m defined by

Fx =


F1/∂x1 F1/∂x2 . . . F1/∂xm

F2/∂x1 F2/∂x2 . . . F2/∂xm
...

... . . .
...

Fm/∂x1 Fm/∂x2 . . . Fm/∂xm


is continuous over R+× (Rm

+)
mn+1. Now, applying Theorems 3.1 and 3.2 of [36], it follows that

the system (1.3) has a unique solution defined over a maximal interval, for each initial condi-
tion φ ∈ C+. In order to show that x(t; 0, φ) takes nonnegative values, we fix i ∈ {1, . . . , m} and
t in the maximal interval, in addition we assume that entries of the function F are nonnegative
vectors while x ∈ Rm

+ is such that xi = 0, then

Fi(t, x, ·) = − δii(t)xi

cii(t) + xi
+

n

∑
j=1

bij(t)r(·) +
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
− hi(t)xi

=
n

∑
j=1

bij(t)r(·) +
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
≥ 0.

Consequently, each nonnegative initial condition φ has a corresponding solution x(t; 0, φ) that
takes nonnegative values for t in the maximal interval. Now we will prove that the solutions
of (1.3), corresponding to nonnegative initial conditions, are defined for all t ≥ 0. Otherwise,
they would be defined over an interval [−τ, A), where 0 < A < ∞. Since x(t) is a solution of
(1.3), it follows that xi(t) satisfies

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t− τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)
cij(t) + xj(t)

− hi(t)xi(t)

≤
n

∑
j=1

bij(t)r(xi(t− τij(t))) +
m

∑
j=1,j 6=i

δij(t)xj(t)
cij(t) + xj(t)

≤
n

∑
j=1

b+ij e−1 +
m

∑
j=1,j 6=i

δ+ij .

Whence, integrating the above estimation we obtain

xi(t) ≤ xi(0) +

(
n

∑
j=1

b+ij e−1 +
m

∑
j=1,j 6=i

δ+ij

)
t, 0 ≤ t < A.

This estimates ensure that A = +∞, because if A < +∞ then |x(t)| → ∞ as t → A, contra-
dicting the estimates.
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2.2 Topological degree and periodic functions

We begin this subsection by recalling some definitions and notations that will be used in this
work. The closure and the boundary of a subset A of a topological space will be denoted
respectively by A and ∂A. Let

Cω := {x(t) = (xi(t)) ∈ C(R, Rm) : x(t + ω) = x(t) for all t ∈ R}

the Banach space of the continuous vector functions ω periodic with the norm

‖x‖ = max
1≤i≤m

{
sup

t∈[0,ω]

‖xi(t)‖
}

.

It is useful consider the usual notation for the natural embedding Rm → Cω given by
y → y, where y(t) = y for t ∈ R. Given a continuous function and ω periodic f ∈ C(R, R)

notice that f+ and f− coincide, respectively, with the maximum and the minimum value of f
over the interval [0, ω].

The existence of periodic solutions of the system (1.3) will be proved as a consequence of
a general continuation theorem, see [2, Theorem 6.3], in our case we consider:

Lemma 2.2. Assume there exists an open bounded Ω ⊂ Cω such that:

i) The system
x′(t) = λF(t, x(t), x(t− τ11(t)), . . . , x(t− τmn(t))) (2.3)

has no solutions on ∂Ω for λ ∈ (0, 1).

ii) g(x) 6= 0 for x ∈ ∂Ω ∩Rm, where g = (gi) : Rm → Rm is given by

gi(x) =
1
ω

∫ ω

0

(
δii(t)xi

cii(t) + xi
−

n

∑
j=1

bij(t)r(xi)−
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
+ hi(t)xi

)
dt.

iii) degB(g, Ω ∩Rm, 0) 6= 0.

Then there exist at least one solution of (1.3) in Ω.

To study conditions ii) and iii) is useful introduce additional notation, let Im = Πm
i=1[ai, bi]

be a bounded and closed subset of Rm and x = (xi) ∈ Rm, for each 1 ≤ i ≤ m let us denote

I−i := {x ∈ Im : xi = ai}, I+i := {x ∈ Im : xi = bi},

the i-th opposite faces. Condition iii) of the lemma 2.2 will be obtained by the construction of
an affine isomorphism homotopic to g combined with the homotopy invariance property of
the Brouwer degree.

2.3 A priori bounds

To prove the existence of a periodic solution of (1.3) by using the theory of topological degree
we need to find some a priori bounds for any ω-periodic solution of the system (2.3). Next,
we will state some propositions related to upper and lower a priori bounds that will be useful
when proving the existence of positive periodic solutions of (1.3). To obtain the existence of
upper bounds for the solutions of the system (2.3) we consider the following assumption:
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(H1) The coefficients of the system satisfy:

min
ξ∈[0,ω]

(
δii(ξ)−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)
> 0, i = 1, . . . , m.

Proposition 2.3. If (H1) holds, then every non-negative ω-periodic solution of (2.3) is bounded above
for any λ ∈ (0, 1).

Proof. Let (xi(t)) an ω-periodic solution of (2.3) and x+i = Ri ≥ x+j , for i 6= j let ξ ∈ [0, ω] such
that x+i = xi(ξ), since x′i(ξ) = 0 it follows that

0 = λ

[
− δii(ξ)xi(ξ)

cii(ξ) + xi(ξ)
+

n

∑
j=1

bij(ξ)r(xi(ξ − τij(ξ))) +
m

∑
j=1,j 6=i

δij(ξ)xj(ξ)

cij(ξ) + xj(ξ)
− hi(ξ)xi(ξ)

]
.

Now, combining the monotonicity of the map u 7→ δu
c+u , the assumptions over the functions

bij(·), δij(·), cij(·), hi(·) and, the fact that r(u) ≤ 1
e for u ∈ R+ we obtain

0 ≥ δii(ξ)R
cii(ξ) + R

− 1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)R
cij(ξ) + R

.

Next, adding and subtracting the terms δii(ξ) + ∑m
j=1,j 6=i δij(ξ), we can assert that

0 ≥
(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)
− δ+ii

(
1− R

cii(ξ) + R

)
+

m

∑
j=1,j 6=i

δ−ij

(
1− R

cij(ξ) + R

)
.

The above inequality implies

0 ≥
(

δii(ξ)−
1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)

)
− δ+ii

(
1− R

cii(ξ) + R

)
. (2.4)

On the other hand, (H1) and the continuity of the coefficients imply that there is ζ > 0 such
that

min
ξ∈[0,ω]

(
δii(ξ)−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− ζ

)
> 0. (2.5)

Note that limR→∞
(
1− R

cii(ξ)+R

)
= 0 uniformly on ξ ∈ [0, ω], so there exists R� 0 such that

− ζ ≤ −δ+ii

(
1− R

cii(ξ) + R

)
< 0, ξ ∈ [0, ω]. (2.6)

Now, for R� 0 taking the minimum in (2.4), by using the estimations (2.5) and (2.6) we obtain
the contradiction

0 ≥ min
ξ∈[0,ω]

[
δii(ξ)−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(
1− R

cii(ξ) + R

)]
> 0.

Consequently there is a positive number R0 such that

xi(t) < R0, for t ∈ R and i = 1, 2, . . . , m. (2.7)



Existence and stability of periodic solutions of Nicholson-type systems 7

To study the a priori lower bounds for the solutions of the system (2.3) we will proceed in a
similar way to the proof of the proposition 2.3, but this time the key hypothesis is:

(H2) For i = 1, 2, . . . , m we have:

max
η∈[0,ω]

(
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

)
< 0.

Proposition 2.4. If (H1) and (H2) hold, then every positive ω-periodic solution of (2.3) is bounded
below by a positive constant for any λ ∈ (0, 1).

Proof. Consider ε = min{x−1 , x−2 , . . . , x−m} and, without loss of generality, we suppose that
xi(η) = ε for some η ∈ [0, ω], then we obtain x′i(η) = 0 whence

0 =
δii(η)xi(η)

cii(η) + xi(η)
−

n

∑
j=1

bij(η)r(xi(η − τij(η)))−
m

∑
j=1,j 6=i

δij(η)xj(η)

cij(η) + xj(η)
+ hi(η)xi(η). (2.8)

Since (H1) holds, proposition 2.3 implies that the periodic solutions of (2.3) are bounded from
above by R0.

We assume that R0 ≥ 1 and consider ρ0 as the unique value in (0, 1] such that r(ρ0) =

r(R0). We may suppose that ε ≤ ρ0 since otherwise, we have trivially a lower bounds for the
solutions of (2.3), from ρ0 < xi(t), for t ∈ R. Now, since ε ≤ ρ0, it follows

ε ≤ xi(η − τij(η)) ≤ R0, and r(xi(η − τij(η))) ≥ r(ε), 1 ≤ j ≤ n.

By adding and subtracting the terms δii(η)ε
cii(η)

, ∑n
j=1 bij(η)ε, and ε ∑m

j=1,j 6=i
δij(η)

cij(η)
to equation (2.8),

we obtain

0 =
δii(η)ε

cii(η) + ε
−

n

∑
j=1

bij(η)r(xi(η − τij(η)))−
m

∑
j=1,j 6=i

δij(η)xj(η)

cij(η) + xj(η)
+ hi(η)ε

≤ δii(η)ε

cii(η) + ε
−

n

∑
j=1

bij(η)εe−ε −
m

∑
j=1,j 6=i

δij(η)ε

cij(η) + ε
+ hi(η)ε

=
δii(η)ε

cii(η)
−

n

∑
j=1

bij(η)ε− ε
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)ε

− δii(η)ε

(
1

cii(η)
− 1

cii(η) + ε

)
+

n

∑
j=1

bij(η)ε(1− e−ε)

+
m

∑
j=1,j 6=i

δij(η)ε

(
1

cij(η)
− 1

cij(η) + ε

)

≤ δii(η)ε

cii(η)
−

n

∑
j=1

bij(η)ε− ε
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)ε

+
n

∑
j=1

b+ij ε(1− e−ε) +
m

∑
j=1,j 6=i

δ+ij ε

(
1

cij(η)
− 1

cij(η) + ε

)
.

Since ε > 0, the above inequality is equivalent to

0 ≤ δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1− e−ε) +
m

∑
j=1,j 6=i

δ+ij

(
1

cij(η)
− 1

cij(η) + ε

)
.

(2.9)
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On the other hand, (H2) and the continuity of the coefficients imply that there is ζ > 0 such
that

max
η∈[0,ω]

(
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η) + ζ

)
< 0.

Note that there exists 0 < ε� 1 such that

0 <
n

∑
j=1

b+ij (1− e−ε) +
m

∑
j=1,j 6=i

δ+ij

(
1

cij(η)
− 1

cij(η) + ε

)
≤ ζ, η ∈ [0, ω].

Therefore, for ε > 0 arbitrarily small values we obtain

0 ≤ max
η∈[0,ω]

[
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1− e−ε) +
m

∑
j=1,j 6=i

δ+ij

(
1

cij(η)
− 1

cij(η) + ε

)]
< 0,

a contradiction. Consequently there is a positive number ε0 such that

ε0 < xi(t) < R0, for t ∈ R and i = 1, 2, . . . , m.

3 Results

In this section, we address the problem of the existence and local stability of positive periodic
solution for (1.3). We prove the existence of at least one periodic solution of the system (1.3)
under assumptions (H1) and (H2) by using the degree topological theory.

Theorem 3.1. Assume that (H1) and (H2) hold. Then system (1.3) has at least one ω-periodic positive
solution.

Proof. The proof of this result is supported by lemma 2.2. Since (H1) and (H2) hold, we apply
propositions 2.3 and 2.4 to obtain lower and upper bounds for the periodic solutions of (2.3)
for all λ ∈ (0, 1). Next define the set Ω ⊂ Cω as

Ω := {(xi(t)) ∈ Cω : ε0 < xi(t) < R0, t ∈ [0, ω], i = 1, 2, . . . , m}, (3.1)

where the positive constants R0 and ε0 are, respectively, the upper and lower bounds given
by propositions 2.3 and 2.4, we note that Ω ∩ Rm = (ε0, R0)m. As a consequence of these
propositions, it follows that the system (2.3) has no solution in ∂Ω for any λ ∈ (0, 1). We will
prove that there are positive constants ε and R such that g(x) 6= 0 for x ∈ ∂I, where I = [ε, R]m.

We recall that, for i = 1, 2, . . . , m and x = (xi) ∈ Rm, we have

gi(x) =
1
ω

∫ ω

0

(
δii(t)xi

cii(t) + xi
−

n

∑
j=1

bij(t)r(xi)−
m

∑
j=1,j 6=i

δij(t)xj

cij(t) + xj
+ hi(t)xi

)
dt. (3.2)

From the definition of gi(x), considering the notation 1 = (1, 1, . . . , 1), it follows that for
z ∈ I−i we obtain

gi(z) =
1
ω

∫ ω

0

(
δii(t)ε

cii(t) + ε
−

n

∑
j=1

bij(t)r(ε)−
m

∑
j=1,j 6=i

δij(t)zj

cij(t) + zj
+ hi(t)ε

)
dt

≤ ε

ω

∫ ω

0

(
δii(t)

cii(t) + ε
−

n

∑
j=1

bij(t)e−ε −
m

∑
j=1,j 6=i

δij(t)
cij(t) + ε

+ hi(t)

)
dt

= gi(ε1).
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Analogously to the estimates made in the proof of proposition 2.4, we deduce that

gi(ε1) ≤ max
η∈[0,ω]

[
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1− e−ε) +
m

∑
j=1,j 6=i

δ+ij

(
1

cij(η)
− 1

cij(η) + ε

)]
.

From (H2), it follows that there exists some 0 < ε� 1 such that

max
η∈[0,ω]

[
δii(η)

cii(η)
−

n

∑
j=1

bij(η)−
m

∑
j=1,j 6=i

δij(η)

cij(η)
+ hi(η)

+
n

∑
j=1

b+ij (1− e−ε) +
m

∑
j=1,j 6=i

δ+ij

(
1

cij(η)
− 1

cij(η) + ε

)]
< 0.

Therefore, there exists a positive number ε1 such that if ε ≤ ε1 we have

gi(z) ≤ gi(ε1) < 0 for z ∈ I−i . (3.3)

On the other hand, if z ∈ I+i then

gi(z) =
1
ω

∫ ω

0

(
δii(t)R

cii(t) + R
−

m

∑
j=1,j 6=i

δij(t)zj

cij(t) + zj
−

n

∑
j=1

bij(t)r(R) + hi(t)R

)
dt

≥ 1
ω

∫ ω

0

(
δii(t)R

cii(t) + R
−

m

∑
j=1,j 6=i

δij(t)R
cij(t) + R

−
n

∑
j=1

bij(t)Re−R + hi(t)R

)
dt

= gi(R1).

Since r(R) ≤ 1
e for R ∈ R+ and analogously to the estimates made in the proof of proposition

2.3, for z ∈ I+i we obtain

gi(R1) > min
ξ∈[0,ω]

[
δii(ξ)−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(
1− R

cii(ξ) + R

)]
.

From (H1), it follows that there exists some R > R0 such that

min
ξ∈[0,ω]

[
δii(ξ)−

1
e

n

∑
j=1

bij(ξ)−
m

∑
j=1,j 6=i

δij(ξ)− δ+ii

(
1− R

cii(ξ) + R

)]
> 0.

Hence there is R1 > 0 such that if R ≥ R1, then

gi(z) ≥ gi(R1) > 0 for z ∈ I+i . (3.4)

We have proved that if ε < ε1 and R > R1, then g(x) 6= 0 for x ∈ ∂I, where I = [ε, R]m.
We claim that g is homotopic to an affine isomorphism. In fact we consider A : Rm → Rm

defined by
A(x) = b + Mx,
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where b ∈ Rm and the diagonal matrix M ∈Mm×m are completely defined by the systems of
linear equation

bi + miiε = gi(ε1),

bi + miiR = gi(R1).

It follows immediately that mii = (gi(R1)− gi(ε1))/(R− ε) > 0, and bi = gi(ε1)− mii < 0.
Furthermore, there is a unique vector x = (xi) with xi ∈ (ε, R) satisfying bi + miixi = 0,
hence x is the unique vector in the interior of I such that A(x) = 0. Next we define the map
H : Rm × [0, 1]→ Rm given by

H(x, σ) = σg(x) + (1− σ)A(x),

which is a homotopy between A and g. Since sign g(I+i ) = signA(I+i ) and sign g(I−i ) =

signA(I−i ) it follows that H(·, σ) does not vanish on ∂I for any σ ∈ [0, 1], and we conclude that
g is homotopic to the affine isomorphism A. The homotopy invariance property of Brouwer
degree implies that

degB(g, Ω ∩Rm, 0) = degB(A, Ω ∩Rm, 0),

and by the definition of Brouwer degree it follows that

degB(A, Ω ∩Rm, 0) = sign (det(DA(x))) = sign

(
m

∏
i=1

mii

)
= 1.

Finally we apply Lemma 2.2 to conclude that the system (1.3) has at least one solution
x(t) ∈ Ω.

Remark 3.2. Several types of delayed harvesting terms have been considered for the Nicholson
scalar equation. If we modify the harvesting terms hi(t)xi(t) in our model to delayed terms
similar to those used in the work of Qiyuan Zhou in [38], then we obtain the system

x′i(t) = −
δii(t)xi(t)

cii(t) + xi(t)
+

n

∑
j=1

bij(t)r(xi(t− τij(t)))

+
m

∑
j=1,j 6=i

δij(t)xj(t)
cij(t) + xj(t)

−
n

∑
j=1

hij(t)xi(t− τij(t)).
(3.5)

Then it is possible to obtain a result analogous to proposition 2.4 and theorem 3.1 considering
(H1) and changing (H2) by:

(H2’) There exists a positive upper bound R0 for the solutions of system (3.5), such that for
i = 1, 2, . . . , m we have:

max
η∈[0,ω]

(
δii(η)

cii(η)
−

m

∑
j=1,j 6=i

δij(η)

cij(η)
+ R0

n

∑
j=1

[
hij(η)− bij(η)e−R0

])
< 0.

Next, we will address the asymptotic and exponential stability of the system (1.3). As is
common in the literature on Nicholson-type models, our results are obtained by constructing
appropriate Lyapunov functions. We define the region of stability of the solutions of our
system as the set

B = {(xi(t)) ∈ C(R, Rm) : 0 < xi(t) < Ki, i = 1, 2, . . . , m}. (3.6)

To achieve our stability results, we assume the following:
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(H3) The delays involve in the model (1.3) are continuously differentiable and satisfy:

τ′ij(t) ≤ τ∗ij < 1, (i, j) ∈ {1, . . . , m} × {1, . . . , n}.

(H4) For i = 1, 2, . . . , m we have

δ−ii c−ii
(c+ii + Ki)2

>
m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2
− h−i +

n

∑
j=1

b+ij
1− τ∗ij

.

Now we state and prove our first stability theorem.

Theorem 3.3. If assumptions (H1)–(H4) hold, then there is a unique asymptotically stable ω-periodic
solution of system (1.3) in B.

Proof. Let x(t) = (xi(t)) and y(t) = (yi(t)) two solutions in B of system (1.3). We consider the
functions:

Vi(t) = |yi(t)− xi(t)|+
n

∑
j=1

b+ij
1− τ∗ij

∫ t

t−τij(t)
|yi(s)− xi(s)|ds, i = 1, 2, . . . , m.

Calculating the upper right Dini derivative of Vi(t) along the solutions of (1.3), since 0 ≤
xi(t), yi(t) ≤ Ki and |r′(x)| ≤ 1 for x ∈ [0,+∞), then proceeding similarly to theorem 2 in [31]
we have

D+Vi(t) ≤ −
δii(t)cii(t)|yi(t)− xi(t)|

(cii(t) + yi(t))(cii(t) + xi(t))
+

m

∑
j=1,j 6=i

δij(t)cij(t)|yj(t)− xj(t)|
(cij(t) + yi(t))(cij(t) + xi(t))

+
n

∑
j=1

bij(t)|r(yi(t− τij(t)))− r(xi(t− τij(t)))| − hi(t)|yi(t)− xi(t)|

+
n

∑
j=1

b+ij
1− τ∗ij

|yi(t)− xi(t)| −
n

∑
j=1

b+ij
1− τ∗ij

|y1(t− τij(t))− xi(t− τij(t))|(1− τ′ij(t)).

Notice that assumption (H3) implies that

1 <
1− τ′ij(t)

1− τ∗ij
,

hence we obtain the following estimate

D+Vi(t) ≤ −
δ−ii c−ii |yi(t)− xi(t)|

(c+ii + Ki)2
+

m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|
(c−ij )

2

+
n

∑
j=1

b+ij |y1(t− τij(t))− xi(t− τij(t))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− xi(t)|

1− τ∗ij
−

n

∑
j=1

b+ij |yj(t− τij(t))− xi(t− τij(t))|

≤
(
−

δ−ii c−ii
(c+ii + Ki)2

− h−i +
n

∑
j=1

b+ij
1− τ∗ij

)
|yi(t)− xi(t)|

+
m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2
|yj(t)− xj(t)|.
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Now, we define the Lyapunov functional V(t) := ∑m
i=1 Vi(t), and by a straightforward compu-

tation of the corresponding sums it follows

D+V(t) ≤
m

∑
i=1

(
−

δ−ii c−ii
(c+ii + Ki)2

− h−i +
n

∑
j=1

b+ij
1− τ∗ij

+
m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2

)
|yi(t)− xi(t)|.

Hypothesis (H4) ensure the existence of a positive constant µ such that

D+V(t) ≤ −µ
m

∑
i=1
|yi(t)− xi(t)|, t ≥ 0,

then we get

V(t) + µ
∫ t

0

m

∑
i=1
|yi(s)− xi(s)|ds ≤ V(0) < +∞, t ≥ 0,

and ∫ t

0

m

∑
i=1
|yi(s)− xi(s)|ds ≤ V(0)

µ
< +∞, t ≥ 0. (3.7)

It follows that Hi(s) := |yi(s)− xi(s)| ∈ L1([0,+∞]), 1 ≤ i ≤ m and, since Hi(t) are uniformly
continuous in [0,+∞), we can apply the Barbalat’s Lemma [20, Lemma 8.2] to conclude:

lim
t→+∞

m

∑
i=1
|yi(t)− xi(t)| = 0.

Therefore, all solution of the system (1.3) in B converge to an ω-periodic solution, hence there
is a unique periodic solution of (1.3) in B.

Remark 3.4. Note that in the proof of theorem (3.3), we use arguments similar to those pre-
sented in the proof of theorem (4.5) of [37]. Both results are supported by considering the
derivative of Dini and the definition of an adequate Lyapunov functional, in addition to the
uniform continuity of the integrands of (3.7) of our proof, equivalent to the integrand given
in (4.13) of the proof used in [37]. These are key aspects in the literature on stability in
Nicholson-type models, see for instance [13] and references therein.

In order to state and prove our second stability theorem we define, for i = 1, . . . , m, the
continuous functions Gi : R→ R given by

Gi(ε) =
δ−ii c−ii

(c+ii + Ki)2
− ε−

m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2
+ h−i −

n

∑
j=1

b+ij
1− τ∗ij

eετ+
ij . (3.8)

Notice that hypothesis (H4) ensures that Gi(0) > 0 for each i = 1, . . . , m, furthermore, the
continuity of Gi guarantees the existence of positive constants ri, such that

Gi(ε) > 0, for 0 ≤ ε ≤ ri, (3.9)

and we define λ0 := min1≤i≤m{ri}, so Gi(λ0) > 0 for i = 1, . . . , m.

Theorem 3.5. If the hypotheses (H1)–(H4) hold, then all solution of system (1.3) in B converge expo-
nentially to the ω-periodic solution.
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Proof. We consider x(t) = (xi(t)) and y(t) = (yi(t)) two arbitrary solutions in B of system
(1.3) and we define the functions:

Wi(t) = |yi(t)− xi(t)|eλt +
n

∑
j=1

b+ij
1

1− τ∗ij

∫ t

t−τij(t)
|yi(s)− xi(s)|eλ(s+τ+

ij )ds .

Calculating the upper right Dini derivative of Wi(t) along the solutions of model (1.3) we have

D+Wi(t) = |yi(t)− xi(t)|λeλt + [y′i(t)− x′i(t)]× sgn{yi(t)− xi(t)} × eλt

+
n

∑
j=1

b+ij
1

1− τ∗ij
|yi(t)− xi(t)|eλ(t+τ+

ij )

−
n

∑
j=1

b+ij
1

1− τ∗ij
|yi(t− τij(t))− xi(t− τij(t))|(1− τ′ij(t))e

λ(t−τij(t)+τ+
ij ) .

Replacing xi and yi given in the system, applying triangular inequality, considering (H3),
0 ≤ xi(t), yi(t) ≤ Ki, |r′(x)| ≤ 1 for x ∈ [0,+∞) and grouping we obtain

D+Wi(t) ≤ eλt

[
|yi(t)− xi(t)|λ−

δ−ii c−ii |yi(t)− xi(t)|
(c+ii + Ki)2

+
m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|
(c−ij )

2

+
n

∑
j=1

b+ij |r(yi(t− τij(t)))− r(xi(t− τij(t)))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− xi(t)|

1− τ∗ij
eλτ+

ij −
n

∑
j=1

b+ij |yi(t− τij(t))− xi(t− τij(t))

]

D+Wi(t) ≤ eλt

[
|yi(t)− xi(t)|λ−

δ−ii c−ii |yi(t)− xi(t)|
(c+ii + Ki)2

+
m

∑
j=1,j 6=i

δ+ij c+ij |yj(t)− xj(t)|
(c−ij )

2

+
n

∑
j=1

b+ij |yi(t− τij(t))− xi(t− τij(t))| − h−i |yi(t)− xi(t)|

+
n

∑
j=1

b+ij
|yi(t)− x1(t)|

1− τ∗ij
eλτ+

ij −
n

∑
j=1

b+ij |yi(t− τij(t))− xi(t− τij(t))|
]

≤ − eλt

−λ +
δ−ii c−ii

(c+ii + Ki)2
+ h−i −

n

∑
j=1

b+ij eλτ+
ij

1− τ∗ij

 |yi(t)− xi(t)|

+ eλt
m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2
|yj(t)− xj(t)|

= − eλt

−λ +
δ−ii c−ii

(c+ii + Ki)2
+ h−i −

n

∑
j=1

b+ij eλτ+
ij

1− τ∗ij

 |yi(t)− xi(t)|

−
m

∑
j=1,j 6=i

δ+ij c+ij
(c−ij )

2
|yj(t)− xj(t)|

)
.
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Extending the sum for i = 1 to m and grouping terms we obtain that the Lyapunov functional
W(t) = ∑m

i=1 Wi(t) satisfies

D+W(t) ≤ −e−λt
m

∑
i=1

Gi(λ)|yi(t)− xi(t)|.

We fix λ = λ0 = min1≤i≤m{ri}, since (3.8) and (3.9) hold we deduce that

D+W(t) ≤ −e−λ0t
m

∑
i=1

Gi(λ0)|yi(t)− xi(t)| < 0, ∀t ∈ (0, ∞).

It follows that W(t) is decreasing for all t > 0 along the solutions of system (1.3), consequently
we have

m

∑
i=1
|yi(t)− xi(t)|eλ0t ≤W(t) ≤W(0),

whence
m

∑
i=1
|yi(t)− xi(t)| ≤W(t)e−λ0t < W(0)e−λ0t,

and the exponential convergence it is obtained for solutions of (1.3) in B.

4 Examples

In this section we show an example of the asymptotic stability of the solution and include
numerical simulations performed in R software using the library PBSddesolve, see for instance
[11]. In this example xi is the density of biomass in patch i, s(t) = sin(2πt/365), c(t) =

cos(2πt/365), and i ∈ {1, 2, 3}.

Example 4.1. We consider the system of differential equations with delay,

x′1(t) = −
(6 + 0.5c(t))x1(t)

2 + x1(t)
+ 3(1 + 0.5s(t))r(x1(t− 60))

+

(
(1 + 0.125c(t))x2(t)

5 + x2(t)
+

1 + 0.125c(t))x3(t)
5 + x3(t)

)
− 0.1x1(t),

x′2(t) = −
(4 + 0.5c(t))x2(t)

1.5 + x2(t)
+ 3(1 + 0.5s(t))r(x2(t− 60))

+

(
(1.5 + 0.125c(t))x1(t)

35 + x1(t)
+

0.75 + 0.0625c(t))x2(t)
35 + x2(t)

)
,

x′3(t) = −
(5 + 0.5c(t))x3(t)

1 + x3(t)
+ 3(1 + 0.5s(t))r(x3(t− 60))

+

(
(1.5 + 0.125c(t))x1(t)

12 + x1(t)
+

(0.75 + 0.0625c(t))x2(t)
12 + x2(t)

)
− 0.2x3(t).

(4.1)

Hypotheses (H1)–(H4) are verified where K1 < 1.087, K2 < 1.2814, K3 < 1.1086. The numerical
simulations are presented in Figure 4.1.
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Figure 4.1: Numerical simulation of (4.1) for sixteen years. Initial
conditions: (x1(θ), x2(θ), x3(θ)) ≡ (0.05, 0.287, 0.02), θ ∈ [−60, 0] (solid
curve), (x1(θ), x2(θ), x3(θ)) ≡ (0.075, 0.2, 0.015), θ ∈ [−60, 0] (dashed curve),
(x1(θ), x2(θ), x3(θ)) ≡ (0.1, 0.15, 0.01), θ ∈ [−60, 0] (dotted curve).

5 Conclusion and further work

A Nicholson-type system with nonlinear density-dependent mortality and linear harvesting
has been studied in this paper. Based on the theory of topological degree, has been obtained
sufficient conditions for the existence of a positive periodic solution of the model. In addition,
by using the Lyapunov–Krasovskii functional method, the uniqueness, stability, and expo-
nential stability of the Nicholson-type system were addressed. Numerical simulations were
performed based on an example to illustrate the results obtained.

Among the projections of this work, we will focus on the possible extension of the present
study to one involving nonlinear harvesting terms. We recall that in the works [1,4,5] advances
in this direction have been developed. However, from the point of view of applications, it
seems more realistic to consider the harvesting terms, proposed by Clark and Mangel in [10],
of the form

h(E, x) =
qEx

cE + `x
,

where q is the catch coefficient, E is the external effort dedicated to the harvest, c and ` are
constants. Population models with terms of this type have been studied in [18,34]. Thus, a new
version of the system (1.3) naturally arises, this time with these nonlinear harvesting terms as a
new research goal. We anticipate that the main aspects to take into account when applying the
methods presented in this work to these nonlinear terms is to search for alternative hypotheses
to (H2) and (H4), which can be deduced after a careful reading of this work.
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[32] M. J. Piotrowska, U. Foryś, Delay differential equations in bio-populations, Math. Popul.
Stud. 21(2014), No. 3, 125–126. https://doi.org/10.1080/08898480.2013.804684;

[33] C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nichol-
son’s blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl.
2020(2020), No. 13, 1–18. https://doi.org/10.1186/s13660-019-2275-4;

[34] S. N. Raw, B. Tiwari, P. Mishra, Analysis of a plankton–fish model with external tox-
icity and nonlinear harvesting, Ric. Mat. 69(2020), 653–681. https://doi.org/10.1007/
s11587-019-00478-4;

[35] J. Shao, Global exponential stability of non-autonomous Nicholson-type delay systems,
Nonlinear Anal. Real World Appl. 13(2012), No. 2, 790–793. https://doi.org/10.1016/j.
nonrwa.2011.08.018;

[36] H. L. Smith, An introduction to delay differential equations with applications to the life sciences,
Texts in Applied Mathematics, Vol. 57, Springer, New York, 2011. https://doi.org/10.
1007/978-1-4419-7646-8

[37] D. T. Son, L.V. Hien, T. T. Anh, Global attractivity of positive periodic solution of a
delayed Nicholson model with nonlinear density-dependent mortality term, Electron. J.
Qual. Theory Differ. Equ. 2019, No. 8, 1–21. https://doi.org/10.14232/ejqtde.2019.1.8;

[38] Q. Zhou, The positive periodic solution for Nicholson-type delay system with linear
harvesting terms, Appl. Math. Model. 37(2013), No. 8, 5581–5590. https://doi.org/10.
1016/j.apm.2012.10.056;

https://doi.org/10.1016/j.jde.2016.06.019
https://doi.org/10.1088/1361-6544/aa92e7
https://doi.org/10.48550/arXiv.2001.10522
https://doi.org/10.1007/s12591-021-00580-w
https://doi.org/10.1080/08898480.2013.804684
https://doi.org/10.1186/s13660-019-2275-4
https://doi.org/10.1007/s11587-019-00478-4
https://doi.org/10.1007/s11587-019-00478-4
https://doi.org/10.1016/j.nonrwa.2011.08.018
https://doi.org/10.1016/j.nonrwa.2011.08.018
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.14232/ejqtde.2019.1.8
https://doi.org/10.1016/j.apm.2012.10.056
https://doi.org/10.1016/j.apm.2012.10.056

	Introduction
	The Nicholson models
	Novelty of this work
	Outline

	Preliminaries
	Delay differential equations
	Topological degree and periodic functions
	A priori bounds

	Results
	Examples
	Conclusion and further work

